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Abstract
In recent years, the availability of advanced computational techniques has led to a growing emphasis
on fractional-order derivatives. This development has enabled researchers to explore the intricate
dynamics of various biological models by employing fractional-order derivatives instead of traditional
integer-order derivatives. This paper proposes a Caputo-Fabrizio fractional-order cholera epidemic
model. Fixed-point theorems are utilized to investigate the existence and uniqueness of solutions. A
recent and effective numerical scheme is employed to demonstrate the model’s complex behaviors
and highlight the advantages of fractional-order derivatives. Additionally, a sensitivity analysis is
conducted to identify the most influential parameters.

Keywords: Cholera; mathematical model; fixed-point theorems; sensitivity analysis; numerical simula-
tions
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1 Introduction

Cholera is recognized as one of the most dangerous and infectious communicable diseases, which
spreads globally and poses a threat to the survival of the human population, rivaling war and
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poverty. Infectious diseases exhibit immense diversity, and their outbreaks render millions of
people vulnerable to infection, resulting in a significant economic burden on the healthcare
system. Cholera is an illness transmitted through water and is characterized by a sudden onset
of symptoms, including the presence of large amounts of watery diarrhea. The causative agent
of the disease is known as Vibrio cholerae, a species of Gram-negative, facultative anaerobic,
comma-shaped bacteria belonging to the family Vibrionaceae, with serotypes O1 or O139.
Infection with V. cholera can occur through the consumption of unhygienic water or contaminated
food. People who are infected with cholera may either display symptoms or remain asymptomatic.
Those who show symptoms may experience severe watery stool, vomiting, leg cramps, decreased
blood pressure, kidney failure, and loss of body fluids or electrolytes (dehydration). If immediate
treatment is not administered to halt these symptoms, they can potentially lead to death [1–4].
The incidence of cholera cases in Africa has been reported by the World Health Organization
(WHO, 2021). The epidemic has occurred in two neighboring countries, Niger and Nigeria.
In Niger Republic, the regions of Maradi and Zinder have been the most affected by cholera
cases. Due to the cross-border movement of populations between these two states and Nigerian
communities, many patients have been identified in Nigeria. The WHO announced that the
Nigeria Centre for Disease Control (NCDC) has reported a total of 31,425 suspected cases of
cholera in Nigeria since the beginning of the year 2021. Out of these cases, 311 have been
confirmed, and 816 deaths have been recorded across 22 states and the Federal Capital Territory
Abuja (FCT).
In modern times, mathematical modeling plays a vital role in investigating and analyzing the
transmission dynamics of diseases, as well as predicting the potential impacts of intervention
strategies aimed at controlling their spread. By using mathematical models, researchers can
simulate various scenarios, test different interventions, and gain insights into the effectiveness
of strategies for disease containment. These models help in making informed decisions and
formulating policies to mitigate the dissemination of diseases, [5–11]. In recent years, there
has been significant research conducted by numerous authors on the complex dynamics of the
Cholera model. Theoretical analyses of such systems have resulted in a multitude of interesting
findings, which have been published in various studies [12–15], along with the references cited
within those publications. These authors have focused on mathematical models that describe the
interactions between populations, contaminated water, and poor sanitation. By exploring these
models, valuable insights into the dynamics of Cholera can be gained, contributing to a better
understanding of the disease and the development of effective control strategies.
Tilahun et al. [16] developed a stochastic mathematical model to investigate the behavior of cholera
disease, with a specific focus on the direct contact transmission pathway. They extensively studied
the qualitative and quantitative behavior of the model. Adewole and Faniran [17] developed a
human host and environment model to examine the complex dynamics of cholera infection. In
their model, they considered the fraction of infectious individuals who do not adhere to treatment
as part of the overall human population. Their findings suggest that while compliance with
treatment is necessary, it alone is not sufficient to eradicate cholera. These studies contribute
to the understanding of cholera dynamics by incorporating various factors and transmission
pathways into mathematical models. The results emphasize the importance of considering both
direct contact transmission and the impact of treatment adherence in devising effective strategies
for cholera control.
Fractional operators, which extend the concept of differentiation and integration to non-integer
orders, find extensive applications in various fields of knowledge, including physics, biology,
finance, and control theory [18–25]. Their popularity has been on the rise due to their ability to
model systems with complex, non-linear, and non-local behavior. One of the main advantages of
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fractional operators is their capability to describe systems with memory effects, which are prevalent
in physical and biological systems. Additionally, they can effectively capture the behavior of
systems with long-range interactions, making them a valuable tool for modeling complex systems
[26–36]. In [37], a stochastic computational model of cholera infection was proposed in the context
of a direct contact transmission pathway using fractional calculus theory. The research results
suggest that policymakers should consider measures such as reducing interactions, improving
treatment rates, and enhancing hygiene facilities to eradicate cholera. Baleanu et al. [38] introduced
a novel Caputo-Fabrizio fractional model for humans. They utilized the Picard-Lindelöf approach
and fixed-point theory to explore the existence of a unique solution. Additionally, the authors
demonstrated the superiority of the model over the existing model when compared to real clinical
data.

2 Several fundamental concepts

In this section, we will examine some basic concepts of Caputo-Fabrizio fractional operators that
are relevant to the theoretical analysis of the proposed model.
Suppose H(x1, x2) = {ψ : ψ ∈ L2(x1, x2), and ψ′ ∈ (x1, x2)}, where L2(x1, x2) is the space of
square integrable functions on (x1, x2).

Definition 1 [39] Suppose ψ ∈ H1(x1, x2) and α ∈ (0, 1). Then

CFDα
κ ψ(κ) =

M(α)

1 − α

∫ κ

x1

ψ′(y) exp
[
−α

κ − y
1 − α

]
dy, (1)

is defined as the Caputo-Fabrizio fractional derivative, where M(α) is a normalization function with
M(0) = M(1) = 1. In addition, if ψ /∈ H1(x1, x2) then (1) gives

CFDα
κ ψ(κ) =

αM(α)

1 − α

∫ κ

x1

(ψ(κ)− ψ(y)) exp
[
−α

κ − y
1 − α

]
dy. (2)

Remark 1 Setting p = 1−α
α ∈ (0,∞), then α = 1

1+p ∈ (0, 1). In view of (2), we have

CFDα
κ ψ(κ) =

N (p)
p

∫ κ

x1

ψ′(y) exp
[

κ − y
p

]
dy, (3)

where N (p) is a normalization term similar to M(α) and N (0) = N (∞) = 1.

Remark 2 The relation:

lim
p→0

1
p

exp
[

κ − y
p

]
= δ(y − κ), (4)

is true, where δ(y − κ) is the Dirac delta function.

Losada and Nioto [39] modified Definition 1, as

CFDα
κ ψ(κ) =

(2 − α)

2(1 − α)

∫ κ

x1

ψ′(y) exp
[
−α

κ − y
1 − α

]
dy, (5)

while its corresponding fractional integral is as follows:
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Definition 2 Suppose 0 < α < 1, where α is order of the integral. Then

CF Iα
κ ψ(κ) =

2(1 − α)

(2 − α)M(α)
ψ(κ) +

2α

(2 − α)M(α)

∫ κ

0
ψ(y)dy, κ ≥ x1, (6)

is referred as Caputo-Fabrizio fractional integral of a function ψ.

Remark 3 From (6), the Caputo-Fabrizio fractional integral of a function ψ of order 0 < α < 1 is a mean
between the function ψ and its integral of order one, i.e.,

2(1 − α)

(2 − α)M(α)
+

2α

(2 − α)M(α)
= 1,

thus, M(α) = 2
2−α , 0 < α < 1.

If M(α) = 2
2−α , then the new Caputo derivative and its corresponding integral as follows [39]:

Definition 3 Let 0 < α < 1, then

CFDα
κ ψ(κ) =

1
1 − α

∫ κ

x1

ψ′(y) exp
[
−α

κ − y
1 − α

]
dx, κ ≥ x1, (7)

and its fractional integral as:

CF Iα
κ ψ(κ) = (1 − α)ψ(κ) + α

∫ κ

x1

ψ(y)dy, κ ≥ x1, (8)

respectively, are referred as Caputo-Fabrizio fractional derivative and fractional integral of order α of a
function ψ.

3 Description of the model

We study the Cholera model as proposed in [40]. The classical Cholera model is formulated by the
following system:

dS(κ)
dκ

= Ω − (λI − µ)S + ηV + γR,

dI(κ)
dκ

= λSI − (µ + ω + σ + β)I,

dR(κ)
dκ

= βI − (µ + γ)R,

dV(κ)

dκ
= σI − ηV.

(9)

Thus, the Caputo-Fabrizio fractional-order model is given by:

CFDαS = Ω − λSI − µS + ηV + γR,
CFDα I = λSI − µI − ωI − σI − βI,

CFDαR = βI − µR − γR,
CFDαV = σI − ηV,

(10)
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Table 1. States variables

Compartment Description

S Susceptible population
I Symptomatic infected population with Cholera
R Recovered population
V Environment

Table 2. Meaning of each parameters.

Parameters Biological Meanings

Ω Population recruitment rate
λ Contact rate
β Recovery rate
ω Death rate due infection
γ Loose of immunity
µ Natural death rate
σ Rate of infection among compartment I and V
η Rate of infection among compartment V and S

subject to

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, and V(0) = V0 ≥ 0. (11)

Tables 1 and 2 display the biological meaning of each state variable and parameters used in the
model, respectively.

4 Qualitative analysis of the model

This section uses fixed point theorems to explore the existence and uniqueness of solutions to the
proposed model (10).

Existence and uniqueness result

By utilizing the fixed point theorems, this subsection aims to demonstrate the existence and
uniqueness of model (10). To facilitate this analysis, model (10) can be expressed as follows:

CFDαS = K1(κ, S),
CFDα I = K2(κ, I),

CFDαR = K3(κ, R),
CFDαV = K4(κ, V),

(12)

where

K1(κ, S) = Ω − λSI − µS + ηV + γR,

K2(κ, I) = λSI − µI − ωI − σI − βI,

K3(κ, R) = βI − µR − γR,

K4(κ, V) = σI − ηV.

(13)
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Applying fractional integral operator given in (6), system (12) reduces to the Volterra integral type
of order (0 < α < 1) given by

S(κ) = S(0) + 2
(1 − α)

(2 − α)M(α)
K1(κ, S) + 2

α

(2 − α)M(α)

∫ κ

0
K1(y, S)dy,

I(κ) = I(0) + 2
(1 − α)

(2 − α)M(α)
K2(κ, I) + 2

α

(2 − α)M(α)

∫ κ

0
K2(y, I)dy,

R(κ) = R(0) + 2
(1 − α)

(2 − α)M(α)
K3(κ, R) + 2

α

(2 − α)M(α)

∫ κ

0
K3(y, R)dy,

V(κ) = V(0) + 2
(1 − α)

(2 − α)M(α)
K4(κ, V) + 2

α

(2 − α)M(α)

∫ κ

0
K4(y, V)dy.

(14)

Next, under some assumptions, we demonstrate that the kernels K1, K2, K3 and K4 obey the
Lipschitz and contraction conditions. To do so, we state and prove the following lemma.

Lemma 1 The autonomous system (13) is Lipschitz continuous.

Proof For S and S∗, we have from (13), gives

∥K1(κ, S)−K1(κ, S∗)∥ = ∥λI(t)(S(κ)− S∗(κ))− µ(S(κ)− S∗(κ))∥
≤ ∥λI(κ)∥∥S(κ)− S∗(κ)∥+ µ∥S(κ)− S∗(κ)∥
≤ (ϵλ + µ)∥S(κ)− S∗(κ)∥
≤ l1∥S(κ)− S∗(κ)∥,

where 0 < l1 = (ϵλ + µ) and ∥I(κ)∥ ≤ ϵ is bounded.
For I and I∗, we have

∥K2(κ, I)−K2(I∗)∥ = ∥(λS − µ − ω − σ − β)(I(κ)− I∗(κ))∥
≤ (∥λS∥+ (µ + ω + σ + β))∥(I(κ)− I∗(κ))∥
≤ l2∥(I(κ)− I∗(κ))∥,

where 0 < l2 = (λϵ1 + (µ + ω + σ + β)) and ∥S(κ)∥ ≤ ϵ1 is bounded.
From R and R∗, we have

|K3(R)−K3(R∗)| = ∥− (µ + γ)(R(κ)− R∗(κ))∥
≤ (µ + γ)|(R(κ)− R∗(κ))∥
≤ l3∥R(κ)− R∗(κ)∥,

where 0 < l3 = (µ + γ).
From V and V∗, we have

|K4(V)−K4(V∗)| = ∥− η(V(κ)− V∗(κ))∥
≤ l4∥(V(κ)− V∗(κ)∥,

where 0 < l4 = η. Hence it’s Lipschitz continuous and the proof of the lemma is complete. ■
Now, system (14) can be written in recursive form by the difference between the successive terms
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as given below:

χ1n = Sn(κ)− Sn−1(κ) =
2(1 − α)

(2 − α)M(α)
(K1(κ, Sn−1)−K1(κ, Sn−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K1(κ, Sn−1)−K1(κ, Sn−2))dy,

χ2n = In(κ)− In−1(κ) =
2(1 − α)

(2 − α)M(α)
(K2(κ, In−1)−K2(κ, In−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K2(κ, In−1)−K2(κ, In−2))dy,

χ3n = Rn(κ)− Rn−1(κ) =
2(1 − α)

(2 − α)M(α)
(K3(κ, Rn−1)−K3(κ, Rn−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K3(κ, Rn−1)−K3(κ, Rn−2))dy,

χ4n = Vn(κ)− Vn−1(κ) =
2(1 − α)

(2 − α)M(α)
(K4(κ, Vn−1)−K4(κ, Vn−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K4(κ, Vn−1)−K4(κ, Vn−2))dy,

(15)

subject to initial conditions S0(κ) = S(0), I0(κ) = I(0), R0(κ) = R(0), V0(κ) = V(0). From the
first equation in (15), taking norm and applying triangular inequality yields:

∥Sn(κ)− Sn−1(κ)∥ =
2(1 − α)

(2 − α)M(α)
∥(K1(κ, Sn−1)−K1(κ, Sn−2))∥

+ 2
α

(2 − α)M(α)

∫ t

0
∥(K1(κ, Sn−1)−K1(κ, Sn−2))∥dy.

(16)

In view of Lemma 1, we get

∥Sn(κ)− Sn−1(κ)∥ =
2(1 − α)

(2 − α)M(α)
l1∥Sn−1 − Sn−2∥

+
2α

(2 − α)M(α)
l1
∫ κ

0
∥Sn−1 − Sn−2∥dy.

(17)

Therefore, we obtain

∥χ1n(κ)∥ ≤ 2(1 − α)

(2 − α)M(α)
l1∥χ1(n−1)(κ)∥+

2α

(2 − α)M(α)
l1
∫ κ

0
∥χ1(n−1)(y)∥dy. (18)

Thus, the rest of the equations in system (15) can be obtained in the same approach as:

∥χ2n(κ)∥ ≤ 2(1 − α)

(2 − α)M(α)
l1∥χ2(n−1)(κ)∥+

2α

(2 − α)M(α)
l1
∫ κ

0
∥χ2(n−1)(y)∥dy,

∥χ3n(κ)∥ ≤ 2(1 − α)

(2 − α)M(α)
l1∥χ3(n−1)(κ)∥+

2α

(2 − α)M(α)
l1
∫ κ

0
∥χ3(n−1)(y)∥dy,

∥χ4n(κ)∥ ≤ 2(1 − α)

(2 − α)M(α)
l1∥χ4(n−1)(κ)∥+

2α

(2 − α)M(α)
l1
∫ κ

0
∥χ4(n−1)(y)∥dy.

(19)
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Hence, we have 
Sn(κ) =

∑n
k=1 χ1k(κ),

In(κ) =
∑n

k=1 χ2k(κ),

Rn(κ) =
∑n

k=1 χ3k(κ),

Vn(κ) =
∑n

k=1 χ4k(κ).

(20)

The following theorem guarantees the existence of the solution.

Theorem 1 Consider the model given by (10), then there exist a solution if one can find κ1 for which

2(1 − α)

(2 − α)M(α)
lk +

2ακ1

(2 − α)M(α)
lk < 1, k = 1, 2, . . . , 4,

holds.

Proof From Lemma 1 and Eqs. (18) and (19), applying the recursive technique we obtained below:

∥χ1n(κ)∥ ≤ ∥Sn(0)∥
[

2(1 − α)

(2 − α)M(α)
l1 +

2ακ1

(2 − α)M(α)
l1

]n
,

∥χ2n(κ)∥ ≤ ∥In(0)∥
[

2(1 − α)

(2 − α)M(α)
l2 +

2ακ1

(2 − α)M(α)
l2

]n
,

∥χ3n(κ)∥ ≤ ∥Rn(0)∥
[

2(1 − α)

(2 − α)M(α)
l3 +

2ακ1

(2 − α)M(α)
l3

]n
,

∥χ4n(κ)∥ ≤ ∥Vn(0)∥
[

2(1 − α)

(2 − α)M(α)
l4 +

2ακ1

(2 − α)M(α)
l4

]n
.

(21)

This shows that the system solution exists and is continuous. Next, we show that (21) constructs
the solution for the model (10), we proceed as follows:

S(t)− S(0) = Sn(κ)− B1n(κ),

I(t)− I(0) = In(κ)− B2n(κ),

R(t)− R(0) = Rn(κ)− B3n(κ),

V(t)− V(0) = Vn(κ)− B4n(κ).

(22)

Thus, we obtain

∥B1n(κ)∥ =

∥∥∥∥ 2(1 − α)

(2 − α)M(α)
(K1(κ, S)−K1(κ, Sn−1))

+
2α

(2 − α)M(α)

∫ κ

0
(K1(κ, S)−K1(κ, Sn−1))dy

∥∥∥∥
≤ 2(1 − α)

(2 − α)M(α)
∥(K1(κ, S)−K1(κ, Sn))∥

+
2α

(2 − α)M(α)

∫ κ

0
∥(K1(κ, S)−K1(κ, Sn−1))∥dy

≤ 2(1 − α)

(2 − α)M(α)
l1∥S − Sn−1∥+

2ακ

(2 − α)M(α)
l1∥S − Sn−1∥.

(23)
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Repeating the same process as above, we get

∥B1n(κ)∥ ≤
(

2(1 − α)

(2 − α)M(α)
+

2ακ

(2 − α)M(α)

)n+1

ln+1
1 b. (24)

At κ1, we have

∥B1n(κ)∥ ≤
(

2(1 − α)

(2 − α)M(α)
+

2α

(2 − α)M(α)
κ1

)n+1

ln+1
1 b. (25)

From (24), as n → ∞, gives ∥B1n(κ)∥ → 0. Similarly,

∥B2n(κ)∥ → 0, ∥B1n(κ)∥ → 0, ∥B3n(κ)∥ → 0, ∥B3n(κ)∥ → 0.

■
Next, to show the solution is unique, suppose that there exist S1(κ), I1(κ), R1(κ), and V1(κ), then

S(κ)− S1(κ) =
2(1 − α)

(2 − α)M(α)
(K1(κ, S)−K1(κ, S1))

+
2α

(2 − α)M(α)

∫ κ

0
(K1(κ, S)−K1(κ, S1))dy.

(26)

By taking the norm of (26), and from Lemma 1, we get

∥S(κ)− S1(κ)∥ =
2(1 − α)

(2 − α)M(α)
∥K1(κ, S)−K1(κ, S1)∥

+
2α

(2 − α)M(α)

∫ κ

0
∥K1(κ, S)−K1(κ, S1))∥dy

≤ 2(1 − α)

(2 − α)M(α)
l1∥S(κ)− S1(κ)∥

+
2αt

(2 − α)M(α)
l1∥S(κ)− S1(κ)∥.

(27)

It simplifies to

∥S(κ)− S1(κ)∥
(

1 −
2(1 − α)

(2 − α)M(α)
l1 +

2ακ

(2 − α)M(α)
l1

)
≤ 0. (28)

Theorem 2 Given that the following inequality(
1 −

2(1 − α)

(2 − α)M(α)
l1 +

2ακ

(2 − α)M(α)
l1

)
> 0,

holds. Then the solution of model (10) is unique.

Proof Suppose that (28) holds, then

∥S(κ)− S1(κ)∥
(

1 −
2(1 − α)

(2 − α)M(α)
l1 +

2ακ

(2 − α)M(α)
l1

)
≤ 0. (29)
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Hence,

∥S(κ)− S1(κ)∥ = 0,

which leads to

S(κ) = S1(κ).

Repeating the same techniques above can easily drive similar equality for the rest. Hence, we
conclude that the solution is unique. ■

Positivity and boundedness of solution

One of the important characteristics of epidemiological models is that their solutions are both
positive and bounded. In order to ensure this, we establish that all of the state variables are
non-negative for any time κ > 0, which implies that a trajectory starting with a positive initial
condition will stay positive for all κ > 0. Thus, system (10) gives

CFDαS(κ)|S=0 = Ω + ηV + γR ≥ 0,
CFDα I(κ)|I=0 ≥ 0,

CFDαR(κ)|R=0 = βI ≥ 0,
CFDαV(κ)|V=0 = σI ≥ 0.

(30)

Since N(κ) = S(κ) + I(κ) + R(κ) is the total human population. Thus, summing up the first three
equations of (10) leads

CFDα
0,κ N(κ) = Ω − µS − µI − ωI − σI − µR ≤ Ω − µS, (31)

then one has

N(κ) ≤
(

N(0)−
Ω
µ

)
Eα(−µκ) +

Ω
µ

.

Thus, we obtain

Θ =

{
(S(κ), I(κ), R(κ)) ∈ R3

+ : 0 ≤ N(κ) ≤ Ω
µ

}
, (32)

which gives the biologically feasible region for the model (10). Therefore, Θ is positively invariant.
Hence, the proposed model (10) is mathematically and epidemiologically well-posed.

5 Sensitivity analysis

We conducted a sensitivity analysis in this section to ascertain the contribution of each parameter to
the basic reproduction number (R0). This strategy determines the extent to which each parameter
value contributes to the R0. Thus,

R0 =
1
µ
(λΩ − (µ + ω + σ + β)) ,
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is the basic reproduction number of model (10); whereas the sensitivity index of the model
parameter is given by the relation

ΓR0
X =

∂R0

∂X
× X

R0
.

The sensitivity analysis presented in Table 3 and Figure 1 examines the impact of various

Table 3. Sensitivity analysis of the parameter values

Parameters Value Sensitivity value

λ 0.011 0.263839
Ω 0.000096275 0.263839
µ 0.00002536 -1.062007
ω 0.0005 -0.956416
σ 15 -2.3985
β 6 -1.1992

Figure 1. Sensitivity analysis of the parameter values

parameters on the R0. The results show that the recruitment and contact rates are the most
sensitive parameters, significantly contributing to the R0 increase. This suggests that increasing
these parameters will increase the R0. On the other hand, the recovery rate is less sensitive,
indicating that an increase in the recovery rate will lead to a decrease in the R0. A response surface
plot has been generated to demonstrate how the behavior of R0 changes when varying the values
of the most sensitive parameters, as shown in Figure 2. Figure 2(a) is the plot of R0 versus the
rate of infection σ among Infected (I) individuals and Environment (V) and recruitment rate Ω.
Figure 2(b) is the plot of R0 versus death rate due to infection ω and recruitment rate Ω. Figure
2(c) is the plot of R0 versus contact rate λ and recovery rate β. Figure 2(d) is the plot of R0 versus
contact rate λ and recruitment rate Ω.
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(a) R0 versus σ and Ω. (b) R0 versus ω and Ω.

(c) R0 versus λ and β. (d) R0 versus λ and Ω.

Figure 2. Behavior of R0 while varying the value of the most sensitive parameters

6 Numerical simulations and discussions

The classical and fractional-order models need numerical techniques to understand the behavior
of the solution trajectories better. Here, we utilized a recent and effective numerical scheme
introduced by [41] to gain insight into the solution trajectories. For a detailed analysis of this
method’s convergence, accuracy, and stability, please refer to [41, 42]. In Table 4, we provided
the numerical values of the parameters used to find the proposed model’s numerical simulations.
Interestingly, as we varied the fractional order, we observed distinct memory effects in each

Table 4. Parameters values

Parameters Value

Ω 15
µ 0.02537
ω 0.004
β 0.0064
σ 0.0910
η 0.075
λ 0.061
γ 0.032

compartment, which were not present in the classical model, as shown in Figure 4. Figures 3 and
4 illustrate the dynamical behavior of each compartment in our study. We observed a decrease in
the number of susceptible individuals as the number of recovered individuals increased over time.
This trend can be attributed to the direct relationship between infectious and recovered individuals.
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Figure 3. Classical dynamical behavior of each state variable
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Figure 4. Caputo-Fabrizio fractional-order dynamical behavior of each state variable



Ahmed et al. | 183

Additionally, there was an increase in the concentration of bacteria, which could be linked to the
contributions of infectious humans to environmental pollution. Human activities have continued
to contaminate the environment, potentially contributing to the exponential increase in bacteria in
the environment.

7 Conclusions

In this paper, we have successfully developed a fractional-order Cholera model to investigate
the transmission dynamics of the disease using the Caputo-Fabrizio derivative and establish
the existence and uniqueness of solutions via fixed point theorems. Furthermore, the sensitivity
analysis of the basic reproduction number has highlighted the significant contributions of the
parameters associated with the model. Specifically, the results indicate that the recruitment and
contact rate are the most sensitive parameters, significantly increasing the R0. We conclude
that these findings provide valuable insights into the factors that contribute to the transmission
dynamics of cholera and can inform public health policies and strategies for controlling the
transmission of the disease.
Moreover, the findings indicate that as the number of infectious individuals in the population
decreases, the number of recovered individuals in the system increases. This suggests a corre-
lation between the decline in the infected population and the rise in the number of individuals
who have successfully recovered from the disease. Moreover, results suggest that the proposed
model provides valuable insights into disease transmission dynamics by utilizing fractional-order
derivatives, thus the policymakers can gain a deeper understanding of disease outbreaks and
devise effective strategies to manage disease outbreaks.
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