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Abstract

The use of mobile robots in industrial applications has led
to a demand for autonomous multi-robot systems with
robust and distributed algorithms. A critical objective in
such systems is coverage control, where a team of mobile
robots need to respond to spatiotemporal events in a
bounded region. Here, we address a specific coverage
problem, where a group of mobile robots are tasked with
responding to events by covering specific locations on two
sides of a linear workstation. We formulate the problem as
a game played by the mobile robots with well-designed
player strategies, and we demonstrate that the resulting
framework is a potential game based on equally shared
utilities among the robots. The proposed framework is
distributed and decentralized, allowing for anonymous
identities and constrained sensing capabilities in the robots.
A set of simulation studies verify our approach.
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1 Introduction

The integration of mobile robots in industrial
environments has the potential to greatly improve the
efficiency and productivity of many industrial processes. In
an industrial workspace, the use of mobile robots along with
robot manipulators can enhance the flexibility, robustness,
and resiliency of routine operations [1-3]. Particularly,
mobile manipulators can combine the advantages of ground
robots and manipulators and extend the configuration space
of manipulators by moving their bases in a Cartesian
environment. This additional freedom of motion is being
explored across many applications. In some Industry 4.0
settings, a mobile manipulator is usually tasked with picking
objects from designated locations and placing them at a
given target location autonomously. Additionally, mobile
manipulators can be used for monitoring a predetermined
workspace, allowing remote operators to detect and respond
to events in real time. Mobile manipulators have
demonstrated advantages in terms of precision in attaining
these tasks compared to human workers [3].

An important task of service robots in industrial
environments is to cover a desired workspace with some
performance guarantees. Coverage control involves the
spatial allocation of a set of robots in a workspace to achieve
some desired level of coverage. Many distributed coverage
control schemes have been derived for multi-robot systems;

Oz

Endiistriyel uygulamalarda mobil robotlarin kullanima,
glirbiiz ve dagitik algoritma igeren otonom g¢oklu-robot
sistemlerine bir gereksinim olusturmustur. Bir robot
takimimin  siirli bir alanda uzaysal-zamansal olaylara
cevap vermesi anlamina gelen kapsama kontrolii bu tiir
sistemlerde kritik bir hedeftir. Bu ¢alismada, bir grup
mobil robotun dogrusal bir is istasyonunun iki tarafinda
belirli lokasyonlar1 kapsamakla gorevli oldugu o6zel bir
kapsama problemini ele altyoruz. Problemi iyi kurgulanmis
oyuncu stratejileri ile mobil robotlar arasinda oynanan bir
oyun olarak formalize ediyor ve ortaya ¢ikan yapinin esit
paylagilan fayda temelli bir potansiyel oyun oldugunu
gosteriyoruz. Sunulan yapi, robotlarda anonim kimlikler ve
kisitli algilama yeteneklerine izin veren dagitik ve merkezi
olmayan bir yapidir. Bir grup simiilasyon ¢aligmasi
yaklagimimizi dogrulamaktadir.

Anahtar Ifelimeler: Kapsama kontrolii, Coklu-robot
sistemleri, Ogrenme algoritmalari.

see for instance [4-6] and the references therein. If the
workspace consists of dynamic entities, such as varying
event locations and dynamic obstacles, the robots need to
respond to events reactively, which require a well-designed
perception and decision mechanism on the robots. In such
cases distributed and decentralized algorithms possess
critical benefits over the centralized approaches [4], [7,8].
Unlike centralized approaches, decentralized approaches do
not require all-to-all robot communication or complete
sensing mechanism, resulting in a stable real-time
implementation and seamless integration with fewer sensing
units. Therefore, distributed and decentralized algorithms
can be utilized to achieve coverage control in dynamic
settings efficiently.

Game theory provides a powerful framework for
addressing coverage control problems in a distributed and
decentralized fashion. Game theoretical models allow us to
formally analyze the interactions between robots, and to
design control algorithms that can balance conflicting
objectives such as maximizing coverage while minimizing
the number of robots used [7-9]. Recently, there has been
significant interest in using game theoretical approaches to
address coverage control problems in service robots. One
major challenge in applying game theoretical approaches to
coverage control in service robots is the need to model the
robots’ behavior in a way that reflects their physical
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capabilities and limitations. Service robots have a wide range
of capabilities, ranging from simple robotic arms that
perform repetitive tasks to highly sophisticated autonomous
systems that can navigate complex environments. To design
effective coverage control algorithms for these systems, it is
important to accurately model their capabilities and
limitations, including their sensing, communication, and
mobility capabilities [4-9]. Another important challenge in
game theoretical coverage control for service robots is to
design algorithms that can effectively handle dynamic
environments. To be effective, coverage control algorithms
must be able to adapt to these changing environments,
considering the changing distribution of tasks and the
changing availability of resources [7,8]. Additionally, it is
important to consider the scalability of coverage control
algorithms, as they will often be applied to large-scale
systems with many robots operating in parallel.

Potential game refers to a type of game where the
collective behavior of the players can be related to a potential
function which is aligned with the unilateral deviation of a
player’s utility when the other players maintain their actions
[9]. In a multi-agent system, since the potential function can
be associated with the collective objective of the system,
each agent’s utility can be designed in such a way that favors
increase of the potential, resulting in the emergence of the
desired collective behavior [10]. Potential games have been
successfully applied to several engineering problems,
including unmanned aerial vehicle (UAV) search-and-rescue
[10], power control in wireless networks [11], and
distributed optimization problems [12]. Recently, state-
based potential games have introduced an additional degree-
of-freedom in the design process, thus enabling us to solve
challenging engineering constraints at the design stage [13].
For instance, state-based potential games are designed for 2D
area coverage in [14-17], where the trade-off between the
energy consumption of the agents and the covered area is
formulated with a game state. Several modifications to the
original coverage algorithms aim to improve the
convergence rate in unknown environments [18].

Many learning algorithms have been introduced to
complete the design process of multi-player potential games,
such as the binary log-linear learning (BLLL) algorithm and
the better reply processes [6], [13]. Remarkably, some
learning algorithms ensure the attainment of the maxima of
the potential function in the steady state, i.e., as time
approaches infinity [19]. Although the short-term behavior
of these algorithms lacks theoretical justifications, this
asymptotic behavior can be well-applied to solve many
engineering problems. It is worth emphasizing that most
learning algorithms allow designing of player strategies in a
distributed and decentralized fashion, enabling real-world
implementations.

We consider the coverage control of service robots (e.g.,
mobile manipulators) in a typical industrial application
scenario. The robots are tasked with responding to events
which can occur on a workstation sporadically, by arriving
at certain locations on both sides of the event location. In
particular, the workstation consists of a linear track with
finite event locations. This scenario is motivated by a variety

of application examples, ranging from the object
loading/unloading  task by  collaborating  mobile
manipulators and drones to the task of event monitoring by
mobile ground robots. We tackle the problem by formulating
it as a game played by mobile robots, where the utilities are
determined based on the achievement of the responses to the
events. We show that the designed game constitutes a
potential game, where the potential function corresponds to
the total success of the robots and is aligned with the
individual robot utilities. Subsequently, we design a BLLL
algorithm among the robots. Finally, we discuss possible
practical constraints that can appear in real-world application
of the proposed algorithm and modifications to the algorithm
to solve these challenges. Several simulation results
demonstrate the effectiveness of the approach and the effect
of using different parameter values on the performance.

The paper is organized as follows. In Section 2, we
provide the system formulation and the method, providing a
brief background about game theory and notations. In
Section 3, we give the simulation results. Finally, Section 4
is on conclusions.

2 Material and method

In this section, we present the problem formulation and
the solution method. We start by defining a generic multi-
robot system (MRS) considered in abstract terms. Then, we
give the main objective of the paper. Finally, the game
theory-based solution method is introduced.

2.1 System modeling

We consider a workspace W, a subset of the two-
dimensional (2D) Cartesian plane 2, with a fixed global
frame X; (Figure 1). Assume that there exist three linear
parallel tracks with finite lengths on the workspace W,
named W,, W,, and Wy, where the subscripts C, L, R denote
the center, the left, and the right tracks. Each track forms a
line segment lying along the Eé’-axis of the frame Z; at a
certain location (Figure 1). We denote the X&-axis and the
Eg-axis by the lateral axis and the longitudinal axis,
respectively.

On the center workspace W¢, a set of events may occur
at certain locations which are located on a set of finite
number of waypoints {wf},i € {1,...,K},K >3, where

wf = [wh, w,]" € R2. For instance, in an industrial
application scenario, these events can include workstations
requiring loading/unloading operations, or human operators
waiting for mobile robot service. The events are detected by
a set of sensors, such as cameras and LIDARSs, which are
mounted underneath a set of vertical-take-off-and-landing
(VTOL) drones. Therefore, we consider N number of drones
D;,i={1,..,N},1 <N <K. In essence, a VTOL drone
agent can move linearly in and rotate around the three
Cartesian axes (x, y, z) in space, which results in six degree-
of-freedom (6-DOF) motion model. For convenience, we
assume that the low-level controller of a drone stabilizes its
altitude, x-axis motion, and the roll, pitch, and yaw angles.
Hence, a drone can move linearly on the waypoints wf, i €
{1, ..., K} along the workspace W, at a constant altitude. We
assume that the drones can move fast and precisely between
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Figure 1. (Top) A sample workplace environment for
N = 2,K = 7. The drones represent the events that occur
on the conveyor belt by moving along the indicated axis
on the belt. The UGVs aim to spend most of their
operation time around these locations by moving on the
orange-colored tracks on both sides of the belt. The
waypoints wf, wE, wR are shown as example. Drone D,
is covered by UGV R,, while drone D, is not covered by
any UGV. (Bottom) The 2D representation of the
workspace given. White dots denote the waypoints, black
rectangles denote UGVs, and the yellow squares denote
the drones.

the waypoints, and their motion dynamics can be ignored,
i.e., the presence of a drone at a waypoint wf at a time step
t indicates that an event occurred at w; at that time step.
Denote the position of drone D; on the longitudinal axis by
yP,ief1,..,N}

A set of unmanned ground vehicles (UGVs) R;,i =
{1,...,N}, aim to serve the events that occur on the
workspace W, by moving along the workspaces W;, Wy. For
convenience, we impose that [N /2] number of UGVs lie on
the track W,, and the rest of the UGVs lie on the track W,
where [-] is the ceiling function. Denote the sets which
contain the UGVs on the track W, and the UGVs on the track
Wy by §; and S, respectively. On the workspaces W,, W,
define the sets of the waypoints {wt} and {wf}, k€

U
{1,..,K}, where wi=[wi_ wt | eR?> and wf =
k k,x k,y k

[WE,, w,’jy]T € R2. The waypoints have the property that
wi, =wi, =wi,, kef{l,..,K}ie, the waypoints
wf, wk, and wf reside on the same lateral axis for each k €
{1, ..., K} (Figure 1). We say that at any time step t, UGV R;
engages with (or serves) drone D; if drone D; is at the
waypoint w§, and UGV R; is at one of the waypoints wi, wk.
Evidently, a drone (or event) can be covered by at most two
UGVs, one on W, and one on Wy.

We denote by y* the y-axis position of R;,i = {1, ..., N}.
We assume that the UGVs can move on their longitudinal
axes precisely, i.e., their low-level control mechanisms
always keep them on the linear tracks W,, Wy by controlling
their lateral motions and heading angles. Define t €
{0,1, ..., T} as the discrete time index, where T is the final
time. We assume that the UGV motions on the longitudinal
axes take place between two consecutive time steps. That is,
if a UGV R; starts moving from a waypoint at a time step ¢,
then it can reach its destination waypoint until the next time
step t, + 1.

We assume that the UGVs and the drones are equipped
with  ultrawideband (UWB) sensors for distance
measurement and  inter-robot communication.  For
localization purposes, each follower UGV is also equipped
with other sensors, such as monocular/depth cameras. In this
work, assuming that the UGV localization is achieved by
another control layer with sufficient precision, we focus on
the task allocation of the UGVs in the following part.

2.2 Objective

The main goal is to design a path planning algorithm for
the UGV team so that they spend most of their operation time
next to the drones’ locations. This goal is relevant to several
industrial applications; for instance, the UGVs can
collaborate with other robot manipulators in achieving a
common task at the event location, such as object
loading/unloading operation. As an illustration, consider
Figure 1-top, where two drones are hovering on top of
detected events to broadcast event locations, and two UGVs
are aiming to cover the drones by moving to the
neighborhoods of the drones on both sides. Here, the term
coverage is interpreted as moving the UGVs to the drones’
locations laterally. Notably, the UGVs are restricted to move
on the workspaces W,, Wy along the longitudinal axis of the
global frame X (the orange tracks in Figure 1).

It is desired that the drones D;,i = {1, ..., N}, are served
by the UGVsR;,j = {1, ..., N}, where the horizontal location
of a UGV does not affect its efficiency, i.e., the UGVs R; €
S, and the UGVs R; € Sy can serve at the drone event with
the same efficiency. However, if a drone is covered by a
UGV from either the left track W, or the right track Wy, the
involvement of a second UGV with the same drone
contributes to the total efficiency less than the reward gained
by the involvement of the first UGV. Accordingly, define the
utility E;(Y[t], YP) at time step t for drone D;, where Y® =
P, .., y21T,Y = [y4, ..., yu]T, with the following rules:

i) E;(Y[t],YP) = 0 if drone D; is not covered by any
uGv,

ii) E;(Y[t], YP) = p if drone D; is covered by two UGVs,
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iii) E;(Y[t],YP) = 2p if drone D; is covered by one
UGV.

Here, p > 0 denotes the reward gained by engagement of a
UGV with a drone and can take any value.

Furthermore, UGV motions should be scheduled so that
no two UGVs collide with each other, i.e., at any time step ¢
it must be satisfied that y;[t] # y;[t] for all i,j€
{1,..,N},i # j. Considering these requirements, the main
goal is summarized as follows:

Objective 1: Given the MRS defined thus far, design a
reactive path planning algorithm for each UGV R;,i =
{1, ..., N}, to solve the following optimization problem:

N
_ D
m;{axz E; (Y, Y?) 1)
i=1
st.y; #y;foralli,j € {1,..,N},i#].

The objective function in Equation (1) aims to maximize
the coverage of the drones such that each drone is desired to
be covered by one UGV only while avoiding collisions
among the UGVs. Thus, the maximum value corresponds to
the case that N drones are covered by N distinct UGVs. An
important property of this optimization objective is that the
UGV identities remain anonymous, i.e., identities of the
UGVs do not affect the objective function’s value.
Accordingly, the UGV allocations that lead to the maximum
value in Equation (1) is not unique. We examine the
optimality of the UGV allocations in Section 2.3 in detail.

2.3 The proposed approach

A common approach for addressing Objective 1 involves
designing an optimization-based path planning framework
among the UGVs. This method can be achieved by having
the UGVs create an optimal path planning algorithm when
the drones are at rest, and then adjusting the optimization
process as the drones begin to move. This two-step process
can be repeated continuously to accommodate ongoing
operations. However, such methods usually require a
centralized computational unit which acquires the real-time
information from all agents, performs the computation, and
broadcasts the solution to all agents. This structure would
require a very large communication bandwidth and long-
range sensory devices.

To address the challenges that can be faced with
centralized approaches, we opt for a distributed and
decentralized solution. Our approach is composed of two
layers: Game design and learning algorithm design.

2.3.1 Game design

To overcome the deficiencies imposed by a centralized
approach, we model Objective 1 as a game played by the
UGVs. We design a game-based planning method because it
allows the UGVs to strategically position themselves around
the drones through a well-designed game model. As a
distributed approach, the designed game has the potential to
efficiently allocate the UGVs at event locations.

A hypothetical game consists of three components:
players (who make decisions), actions (from a defined set of

actions), and utilities (rewards). In a repeated game, each
player selects an action from its action set at each time step
based on its utility evaluation. At the end of the selection
procedure, each player receives a reward, referred to as
utility. The repetition of this process over time constitutes a
repeated game.

Potential games refer to a particular type of game where
the strategies of each player correspond to a potential
function that aligns with the changes in every player’s
strategy. The potential function represents the overall
satisfaction of the players and can be used as a design
guideline in several multi-agent system objectives, such as
coverage and resource allocation. We start by defining these
concepts formally.

Definition 1 (Game model): A game consists of a set of
players (%;), a set of actions (a; € A;), and the utilities (U;)
wherei € {1, ...,N}.

Let a_; = (a4, .-, a;_1, Aj41, -, Ay) denote the actions
of all players except player i, where a; € A;, with A;
denoting the action set of player a;,i € {1, ..., N}. Also, let
(a;,a_;) € A represent the joint actions of the players, and
A=A X...X Ay denote the set of joint actions. A
fictitious potential game is defined as follows:

Definition 2 (Potential Game): Define ¢(a): A - R as
the potential function assigned for the action set a =
{a,, ..., ay}. An exact potential game satisfies the following
condition:

¢(ai,a_;) — ¢(ai,a;) = Ui(aj,ay) — Ui(ai',ay)  (2)

forall aj,a;’ € A;, a; # ai’,and forall i € {1, ..., N}.

An important connection between potential games and
coordination control of MRS is Nash equilibrium, which is
defined as follows:

Definition 3 (Nash Equilibrium): Consider a game with
players (%;), a set of actions (a; € A;), and the utilities (U;)
where i € {1, ..., N}. An action profile a* is called a pure
Nash equilibrium if

Ui(ai,aZy) = max Uy(a;, a;), ©)

foralli € {1,..,N}.

Potential games have notable advantages in formulating
MRS objectives. The goal of MRS can be expressed through
a potential function, allowing for player strategy profiles to
be optimized for maximizing this function in a decentralized
fashion. Therefore, we aim to design a potential game to
solve Objective 1 in the following.

We design a game with the following elements:

e Players: The UGVs R;,i = {1, ...,N}.

e Actions: The coordinates of the waypoints wf €
R?, k € {1, ...,K}, for the UGVs in the set ;, and
the coordinates of the waypoints wf € R?, k €
{1, ..., K}, for the UGVs in the set Sj.

e Utilities: In the following, the utility for a UGV R;
is designed to align with the ultimate objective,
which is the maximization of the summation of
E;(Y,YP).
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We now design the utilities of the players. Denoting the
difference in the longitudinal positions of UGV R; and drone
D; by &ij = |yi =¥/ |.i,j € {1, ..., N}, we propose to use the
following utility for UGV R;, in compliance with Objective
1:

N
Ualt]) = Y U/@ltD), @)

=

where Uij(a[t]) denotes the share of UGV R; for engaging
with drone D; for the action set a[t] at time step ¢, defined

by
!a, if ¢;;[t] = 0and ni[t] =0,
U/ Galt]) = Ig, if ;] = 0 and ni[t] = 1, ®)
Lo, if ¢;[t] # 0,

for i,j € {1,..,N}. Here, n}[t] € {0,1}, denotes whether
drone D; is already covered by a UGV and is defined by:

ni[t]
_{1, ifdk €{1,..,N}k # i,k #j,{;[t] = 0 (6)
- 0, 0.W.

where |S| denotes the cardinality of set S. Therefore, the

utility U; (a[t]) denotes the share of a UGV R; from covering
a target D;. More precisely, if a drone D; is not covered by a
UGV except R;, then R;, which satisfies {;; = 0, will get the
reward u; otherwise, UGV R;’s reward will be divided by
half to reduce the incentive to choosing a target which was
already occupied by another UGV. The following
proposition summarizes the properties of the game designed
above.

Proposition 1: The game structure defined by the players
R;, the actions a;[t] € A;, and the utilities U; as described in
this section constitutes a potential game with the potential
function:

OEDIW ™

where D* is the set of all drones covered by at least one UGV
at time t, and n; € {1,2} is the number of the UGVs which
engage with drone D;. Therefore, the designed game has at
least one pure Nash equilibrium.

Proof: To see that Equation (2) holds with ¢(a) of
Equation (7) for all a;,a;' € A;,i € {1,...,n}and all D;,j €
{1, ..., N}, consider a drone D; which is already covered by a
UGV R; whose utility is T at time t. In this case, the potential
due to drone D; is ¢;(a[t]) = u.

If a new UGV Ry, k # i, attempts to cover drone D; as
well at the next time step t + 1, then there are two cases. The

first is that UGV R, was not engaged with another drone at
time t. In this case, since drone D; was already covered by
UGV R;, the shares of UGVs R; and R, would be

U(aft +1]) = Uy(a[t + 1]) ==, while the potential

— 2‘
becomes ¢p(a[t + 1]) = 37“ Thus,

([t +1]) — ¢p(alt) =
= Ux(a[t + 1]) — U, @[tD.

N Sl

(8)

The second case is that UGV R, was engaged with
another drone D, at time t. In this case, there are two
chances: (i) Drone D, was covered by another UGV and (ii)
drone D; was not covered by another UGV. In the first case,
Uy (a[t + 1]) = Ui (a[t]), and the potential does not change,
¢t + 1]) = ¢(a[t]). In the second case, U, (a[t + 1]) —

Ue@[t]) = _7” and it can be shown to be equal to the change

in the potential, i.e., ¢p(a[t + 1]) — ¢p(alt]) = _?u Thus, the
conditions of the potential game are satisfied for the cases
considered above. It can be shown for the other scenarios that
the change in the utility U, is always the same with the
change in the potential ¢. Therefore, the game is a potential
game with the potential function in Equation (7). Since a
potential game has at least one pure Nash equilibrium as
stated in [4], the designed game has this property, as well.
This completes the proof.

Remark 1: Since the UGV identity does not make any
difference in the calculation of the target utilities U’ and the
potential ¢, the game allows anonymous allocation of the
UGVs. The utility design in Equation (4) is called equally
shared utility (ESU).

It is established in potential game theory that the actions
that maximize the potential function lead to Nash
equilibrium, and the players (UGVs) tend to choose those
actions in steady state if suitable learning algorithms are
used. In our problem setup, this means that the UGV team
operate most of the time at equilibrium actions. The
following result characterizes the Nash equilibria for the
designed game.

Proposition 2: A pure Nash equilibrium maximizes the
potential ¢p(a) and corresponds to a distinct allocation of the
UGVs, i.e., a Nash equilibrium is formed when N drones are
covered by N distinct UGVs. The potential corresponding to
a pure Nash equilibrium is ¢(a*) = Nu. Furthermore,
multiple Nash equilibria exist.

Proof: A Nash equilibrium is an equilibrium state where
no UGV wants to change its action unilaterally. It is stated in
[4], [19] that the actions that maximize the potential ¢(a) are
the pure Nash equilibria of the game. It is evident that
¢(@*) = Nu, and the corresponding actions are such that
each UGV covers a drone because in any other case the
potential ¢p(a) < Nt due to the definition of the utilities in
Equation (4). For instance, if two UGVs are covering one
drone while the other (N —2) UGVs are covering the
remaining (N — 2) drones, then ¢(a) = (N — 0.5)T.

Since N = 2, the UGVs can be positioned around the
drones in several distinct configurations. As an example,
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consider the N = 2 case in Figure 2, where two drones are
located at the waypoints w$ and w, while the waypoint w$
is empty. The UGVs R,;,R, can be positioned at the
waypoints wt and wf as a Nash equilibrium. Alternatively,
they can choose the waypoints wl and wf as a Nash
equilibrium. Both allocations maximize the potential,
resulting in ¢ (a*) = 2. Therefore, multiple Nash equilibria
exist based on the UGV allocations. Obviously, the number
of distinct Nash equilibrium action profiles a* increases as N
increases. This completes the proof.

In the following part, we design a learning algorithm that
allocates the UGVs in real time.

L ¢ c R
wi O w§ wy o wy
R L
Wdf o wy wy O W‘f

Figure 2. lllustration of two separate UGV allocations
corresponding to two Nash equilibria for the same drone
setting. White dots denote the waypoints, black rectangles
denote UGVs, and the yellow squares denote the drones.

2.3.2 Learning algorithm design

In an exact potential game where player synchrony is
satisfied, the Binary Log-Linear Learning (BLLL) algorithm
can be used in a decentralized manner. In this part, we
describe an application of the BLLL algorithm for our
objective.

At each time step t, a UGV R; is selected uniformly
randomly from the players set. Then, UGV R; decides on its
action from its action set A;. To operate the game within a
defined workspace by satisfying the collision avoidance
requirement of Objective 1, we employ the concept of the
constrained action sets C;(a;(t —1)) for the one-step
motion primitives of the UGVs.

At any time t, the constrained action set C;(a;(t — 1))
for a UGV R; defines the allowable locations which both
reside within the workspace and are collision-free. Assume
that UGV R; € S, resides on the waypoint wi, k € {1, ..., K}
at time step t — 1. We construct the constrained action set
Ci(a;(t — 1)) of UGV R; as follows. Since R; is allowed to
move to only its neighbor waypoints wk, s € {k — 1,k, k +
1}, it can choose among three motion primitives
{wt_,, wk,wk, .} If one of the waypoints wi_,, wE,; is
occluded by another UGV or remains outside of the
workspace W, then that waypoint is discarded from the
constrained action set of R, Thus, C;(a;(t—1)) <
{wk_,, wk, wk,,}. The same design procedure is used for the
UGVs in the set S; by replacing the subscripts and
superscripts L by R. As an example, consider the setting in
Figure 3. The constrained action set of UGV R, is
€1(a,(t — 1)) = {wf, wk, wi} because UGV R, does not
have any neighbor UGV, and it can move to one of its

neighbor waypoints or stay at its current location at the next
time step. The constrained action set of UGV R,
is C,(a,(t — 1)) = {wf} because it resides at the edge of the
workspace W, and its neighbor waypoint w¥ is occluded by
UGV R;. Thus, the only feasible action for UGV R, at time
step ¢ is its current location. Similarly, C5(as(t — 1)) =
{wf, wi}.

L c R
wy Wy 0o wy R
2
R
wkm  wf o w;
Ry Rs
wi wi wf
R
wk wf Wy
R
wk wé we
wg wg we

Figure 3. A sample workspace for the explanation of the
constrained action sets.

After establishing the action set, robot R; chooses its
tentative action @; from the set ¢;(a;(t — 1)) using the
following strategy:

1. T[(ai) = 1/3 for ai [S C’i(ai(t - 1)),
2. n(at-1)=1-(|c(a;(t — )| -1)/3,

where m(a;) denotes the probability of choosing the
action a;. Notably, if all neighbor locations are discarded
(due to occlusion by another UGV or violation of the
workspace boundary condition), then a;(t) = a;(t —1).
Afterwards, R; moves to ad;(t) with the following strategy:

ePU(ai(t).a_;(t-1))

T[(di(t)) =

eBUi(ai,a_i(t-1)) 4 oBUi(alt-1)’
BUi(a(t-1) (9)
e
m(a (- 1) = U@ (1) 3 oAU EE-D)
m(a) =0 Va; € C(a;(t — D)\{ai(t - 1), a0}

where 8 = 0 is the so-called forgetting factor which
adjusts UGV R;’s tendency to choose a suboptimal solution.
Notably, as 8 approaches 0, the UGV tends to select its
tentative action @;(t) or its current action a;(t — 1) with
equal probability, i.e., m(a;(t)) = m(a;(t — 1)) = 1/2. As
B goes to infinity, the UGVs tend to select the optimal action
a* with arbitrarily high probability.

Remark 2: The structure of the players’ strategy in
Equation (9) is designed by observing the form of the
stochastically stable actions of the game. Particularly, if
certain conditions are satisfied by the constrained action sets
Ci(a;(t —1)),i € {1, ..., N}, then the evolution of the game
induces a Markov chain with a unique stationary distribution
characterized by the potential function ¢(a) [4]. Notably, the
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form of Equation (9) is common for finite-player distributed
resource allocation games; see e.g., [4], [7], [8], [13-19].

{u[(a‘.(r),a_‘(t -1)
Uj(ale - 1)) Calculate

uGv i Calculate
selection utilities probabilities
[ n(a(t)) ]
afa;(t — 1))
Stay at N Decide
a;(t—1) motion
Y
Y
Motion Move to
finished? a;(t)

N

Figure 4. Flow diagram of the proposed BLLL algorithm

A flow diagram of the proposed BLLL algorithm is given
in Figure 4. To start the process at each time step t, a UGV
R;, i = {1, ..., N}, is chosen uniformly randomly. Then, UGV
R; chooses an action @; from its constrained action set
Ci(a;(t —1)) and calculates the probabilities (&),
n(a;(t — 1)) based on the utilities U;(@;(t), a_;(t — 1)),
Ui(a(t — 1)). Finally, it decides on its action, i.e., decides
whether to move to @; or stay at a;(t — 1) based on the
probability distribution defined by m(a;), n(ai(t - 1)). If
R; chooses to move to @;, then the decision process stops and
waits for the UGV to finish its motion. This process is
repeated for each time step, leading to a repetitive game.

The main advantage of the proposed game theoretical
framework lies in its practical simplicity. The entire
framework is comprised of two steps: Player selection and
probability distribution calculation by the selected player.
The player selection part is a decision mechanism from a
uniform distribution, and thus it possesses no computational
burden. In the second step, the selected player first calculates
the probability distribution based on the utilities and then
chooses to whether it should move to @;(t) or stay at the
current location. Notably, the required information for this
step is the constrained action set Cj(a;(t —1)) and
parameter nj'- [t], which can be obtained from the neighbors
of the players. Thus, the required information can be
acquired by sensing/communication modules with limited
range onboard of the UGVs. This property makes the
proposed distributed framework favorable compared with
centralized approaches.

If the constrained action sets of the players satisfy the
feasibility and reversibility conditions defined in [4] for all
time steps, then the BLLL algorithm enables the UGVs to
choose actions so that they spend most of their operation time
at optimal locations. This behavior is also referred to as
asymptotic behavior because the UGVs tend to choose
optimal actions for sufficiently large B as time goes to
infinity. However, since the constrained action sets are
designed to satisfy the collision avoidance requirement of
Objective 1, the conditions in [4] may not be satisfied for all
time steps. Nevertheless, the BLLL algorithm showed near
optimal performance in our simulations and resulted in

significant increase in the potential value ¢(a) in the first
few time steps.

3 Results and discussion

This section presents the evaluation results of the
proposed approach and a detailed discussion about the
results.

3.1 Simulation setup

Several MATLAB simulations were performed for the
derived fictitious game. The simulations used ideal
conditions where the UGV kinematics are ignored, and the
UGVs were assumed to move from a waypoint to a
destination waypoint between two consecutive time steps. A
fictitious game consisting of ten drones and ten UGVs (N =
10) was simulated, and the utilities in Equation (4) and (5)
were used with 1 = 2. Notably, the steady-state properties of
the algorithm are independent from the number of robots, but
the transient characteristics may alter based on the number
of UGVs and their initial conditions. The boundary
conditions were taken as ypin = —10, Ymax = 12 M, i.e.,
the UGVs moved within the boundary y;[t] € [-10,12] m
forall t € {0,1, ..., T¢}. The x-axis separation of the drones
and the UGVs s taken as |x[t] — x)[t]| = 2 m on both
sides of the drones, noting that this parameter does not affect
the algorithm’s performance. The drones were kept
stationary at the positions pP[k] = [0 yP]T m, where y?
ranged from —8 to 10 m with two-meter separation between
two consecutive drones. A sample simulation configuration
is given Figure 5.

Ry

Figure 5. A sample initial configuration used in
simulations. No drone was covered by a UGV at the initial
time step, resulting in ¢ (a(0)) = 0.

1277



NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(4), 1271-1281

S.

Giiler

The UGVs were initiated at random locations with
x;[0] = +2 m and y;[0] varying between y.,i, and ypax.
Remarkably, the UGVs were not engaged with any drone
initially, as seen in Figure 5. The pure Nash equilibria for this
setting results in the maximum potential ¢, = 100 = 20,
which corresponds to the case that each UGV engages with
different drones. If two UGVs engage with one drone, then
we obtain ¢(a) < 10u. For instance, if nine UGVs engage
with nine separate events, and the remaining UGV engages
with an event that was already covered by another UGV, then
the potential would be ¢, = 9.50. Particularly, such cases
occur when some UGVs engage with the same event, and at
least one waypoint exists between two consecutive drones.
For instance, consider the drone placement given in Figure
5, where drone D, is at waypoint w, and the neighbor
waypoints wf,w$ do not include any drone. If two UGVs,
say R, and R, cover drone D,, at a future time step, they
would not want to leave the waypoint w$ because the
tentative actions in their constrained action sets will not
include another drone (and thus the utility of moving will be
less than the utility of staying).

3.2 Results

The forgetting factor g significantly affects the UGVs’
motion behavior. Thus, several experiments were conducted
to analyze the effect of B on the overall performance.
Remarkably, as g approaches zero, the UGVs tend to choose
to move to the selected action @;(t) or stay at current location
a;(t — 1) with equal probability. On the other hand, as 8
goes to infinity, the UGVs tend to find and stay on the actions
which maximize their utilities, at the expense of leaving
some events explored less. We observed that choosing 5 >

0.9 does not change the behavior significantly compared
with 8 = 0.9. Thus, ten simulations were conducted for each
of the B values from the set § = {0.2,0.4,0.6,0.8,0.9}, where
each simulation was run for T; = 1000 time steps. The
potential function ¢ is recorded for each experiment.

Figure 6 presents the distribution of ¢ values over time
such that the shaded region shows the interval between the
minimum and maximum ¢ values, and the red curve shows
the mean value at that time step t. It can be observed from
this figure that, in all simulations, the potential ¢ increases
rapidly after initialization which means that the UGVs
engage with the event locations around their initial locations,
as desired. Another observation is that as 8 approaches zero,
to search for more events that are not in the vicinity of the
UGVs’ initial locations, the UGVs tend to choose the actions
that have small utilities more frequently. This result is
reflected in Figure 6 in the sense that the average potential
remained around ¢ = 11 for § = 0.2, and ¢ = 15 for 8 =
0.4, whereas it could reach its maximum (i.e., ¢ = 20) for
B = 0.6 and § = 0.8 in some simulation runs. On the other
hand, it was observed that the maximum ¢ value was not
achieved in any simulation for § = 0.9. This result mainly
stems from the fact that as 8 increases, a UGV tends to
remain engaged to an event which maximizes its utility
because the utility 7(@;(t)) of choosing action @; becomes
quite small.

The distributions of the UGV locations in a sample run
for each of the B values in the set 8 = {0.2,0.4,0.6,0.8,0.9}
are presented in Figure 7. It can be observed that when =
0.2, to explore the maximum possible area, the UGVs move
almost uniformly randomly across the y-axis.
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Figure 6. Potential function ¢ values over time for five 8 values. Each graph presents the results of 10 simulations.
In each graph, the orange-colored shaded region shows the interval within the maximum and minimum ¢ values,

and the red curves denote the mean ¢ values calculated at that time step.
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Thus, because of the tendency to exploration, all drone
locations are visited at least once by at least one UGV. As 8
value increases, the UGVs tend to stay at the drone locations
once they are found. Therefore, the UGVs spend more time
at the desired locations for high 8 values as compared to low
B values. However, the behavior observed for high g values
may also lead to missing some drones because the UGVs
tend to show exploitation behavior rather than exploration.
This fact can be seen in the bottom three graphs (i.e., § =
0.6): Although at least eight drones are covered during most
of the simulation time (yellow-colored bars), some drones
were covered for a short duration (dark blue colored bars).
Higher B values are not illustrated for brevity because they
show quite similar behavior with 8 = 0.9.
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Figure 7. The positional distributions of the UGVs for
five different § values. The black crosses indicate the
drones’ locations. Each vertical bar corresponds to a
region of length of 0.5 m. The color bar on the right shows
the color code which indicates the coverage density of a
specific location by a UGV.

Finally, to demonstrate the adaptability of the UGVs to
changing drone positions, all drones are moved to new
locations at specific time steps during the simulation (Figure
8). In this test with 8 = 0.6, the UGVs first found a near
optimal allocation (¢(a) = 16) in around 100 steps. Then,
the drones were repositioned at time stepst = 334 and t =
667, where the potential diminished (¢(a) = 0) because no
drone was covered by a UGV in the new configurations. It
can be observed that the UGVs moved to the new
configurations and increased the potential function swiftly
right after the drones were reconfigured. Although the
maximum potential was not achieved in this test (¢p(a*) =
20), it is worth noting that the proposed algorithm can react
to the varying drone configurations swiftly.

Change in
drone positions

/N

0 200 400 600 800 1000
Time [sec]

Figure 8. The potential ¢(a) for changing drone
configurations. UGVs position themselves to increase
swiftly the potential for the new drone configurations.

3.3 Practical considerations and remedies

The original BLLL algorithm with the players’ actions
satisfying feasibility and reversibility conditions leads to
convergence to pure Nash equilibria and potential
maximization. However, as stated in Section 2, due to the
modification for collision avoidance, the proposed BLLL
algorithm with the proposed constrained action sets lacks
this property. Furthermore, due to the physical constraints on
the motion of the UGVs and possible asynchrony among the
players, one may need to modify the BLLL algorithm. We
discuss such modifications and their effects in this section.

While the UGVs are assumed to be synchronized in the
fictitious game, and a UGV runs the game algorithm at each
time step, this assumption may be difficult to satisfy in real-
world applications because it requires to have a continuous
and flawless communication mechanism among the UGV
team. In other words, to comply with the requirement that
only one player can make decision at a time step, the UGVs
must communicate. As a modification, one can assume that
a UGV can decide marginally without considering the other
UGVs, turning the fictitious game design to a real-time
distributed application. In this modified framework, each
UGV R;,i ={1,..,N} can repeat its game loop once its
previous action (moving to d; or staying at current location)
is completed, without obeying a common synchronized
clock. In this case, the designer must modify the function in
Equation (1), e.g., by increasing the collision avoidance
radius of the UGVs.

Secondly, although the UGVs are assumed to move
between the designated waypoints wy, k € {1, ..., K}, it may
not be feasible to control the UGV motion accordingly.
Evidently, precise UGV motion between waypoints requires
having a low-level motion control mechanism integrated
with a localization module among the robots. Particularly,
the nonholonomic UGV case needs special attention because
the UGV's may be desired to satisfy a certain heading angle
and a docking mechanism at the waypoints. Therefore, one
can assume that the UGVs can choose their actions and stop
when a certain condition on the distance to the new action
satisfies a certain condition. This modification avoids
undesired extra time required to position the UGVs at the
exact action location and enables fast response to the change
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in the targets’ locations. We aim at addressing such
modifications in our future works.

Finally, when transitioning from simulation world to
real-world applications, one needs to consider the sensing
and communication units onboard the UGVs. As a viable
option, ultrawideband (UWB) modules can be used on
drones and UGVs for both distance sensing and inter-robot
communication. However, UWB modules with time-of-
flight mechanism produce additive bounded noise on
distance measurements, and integrating these noise effects
into a repeated game changes the game structure and requires

particular attention. Notably, the design of the utilities U/
needs to be modified to handle measurement noises. For
instance, a small threshold around zero can be used in place
of the condition ¢ ;[t] = 0.

4 Conclusion

We have addressed a particular coverage problem that
can arise in several industrial applications utilizing mobile
unmanned ground vehicles (UGVs). Specifically, we
consider a scenario where a group of UGVs are tasked with
responding to sporadic events at a workplace by covering
specific locations on two sides of the workplace. To address
this challenge, we have formulated the objective as a
coverage game with carefully designed agent utilities. Our
analysis has revealed that the proposed approach constitutes
a potential game with an equally shared utility design, which
enables the use of common learning algorithms, such as the
BLLL. Importantly, the framework has been designed to be
distributed and decentralized, allowing for anonymous agent
identities. Simulation results have demonstrated that the
UGVs effectively operate at optimal locations where the
potential function is maximized, resulting in efficient
coverage of the desired areas.
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