Different DC-Link Control Methods with Multilevel Inverter for Low Harmonic and Efficient Power Transfer in Grid-Tied Hydrogen Fuel Cell Systems

Beyzanur GÖNCÜ¹, Ünal YILMAZ²*

¹ Harran University Electrical- Electronics Engineering Department, beyzanurgoncu@gmail.com, Orcid No: 0009-0009-0319-0755
² Harran University Electrical- Electronics Engineering Department, uyilmaz@harran.edu.tr, Orcid No: 0000-0003-3993-9309

ARTICLE INFO

Article history:
Received 6 May 2023
Received in revised form 13 June 2023
Accepted 14 June 2023
Available online 20 June 2023

Keywords:
PEMFC, DC-Link Control, Multilevel Inverter, Grid-Tied Systems

ABSTRACT

In grid-connected power generation systems, dc-link voltage control is needed to prevent energy losses, reduce voltage fluctuations and provide a stable energy flow. In addition, control of the power factor via the voltage source inverter is a process that supports the efficient use of the energy produced. Moreover, the total harmonic distortion (THD) of the current injected into the grid is needed to comply with IEEE-519 harmonic standards (<5%), which will increase the quality of the grid electrical current. In this study, three different methods (cascade pi-based, adaptive neuro fuzzy and artificial neural networks methods) were tested under five different operation scenarios. According to the performance results, the THD in the grid current has been reduced from 8.02% to 3.52% compared to traditional methods, and the power factor regulation performance increased as unity (>0.99).

Introduction

In recent years, increasing technological developments as well as environmental and climatic concerns around the world have led the scientific world to new research in areas such as the use and control of renewable energy sources. Since renewable energy sources are affected by natural phenomena, inevitable performance differences can make power output uncertain and sometimes impossible to use. Considering all these, the PEMFCs are a serious candidate solution, which is highly efficient, noiseless and environmentally friendly as it does not have any moving parts and at the same time providing flexibility in controllable power output [1]. Due to the stated advantages of PEMFCs, there are many existing application areas such as aircraft, spacecraft and automobiles. In addition, especially in recent years, PEMFCs have started to be used in single-phase and three-phase electricity grid integration applications [2], [3]. When the grid-connected power circuit topologies are examined, it is seen that a dc-dc converter is used to regulate the voltage of the dc energy produced by the fuel cells and a power interface unit consisting of dc-ac inverters is used to inject the electrical energy produced as ac into the ac grid. In addition, the total harmonic distortion of the current injected into the grid should be limited to 5% in accordance with IEEE-519 standards. Therefore, the output of dc-ac inverters is equipped with harmonic damping filters (L, LC, LCL etc.) in order to comply with the grid connection standard [4]. Another factor as important as suppressing the harmonic distortion of the current injected into the grid is the control of the active and reactive power injected into the grid. While active power is defined as power capable of doing useful work, reactive power flow adversely affects energy and transmission capacity and can also cause voltage drop. In order to overcome this situation, the power factor should be controlled and the reactive power needs should be adjusted at the distribution level [5].

According to traditional inverter topologies, multi-level inverters consist of cascade submodules that reduce energy losses and electromagnetic interference as it improves waveform quality. Three-level NPC inverters, one of the multi-level inverter topologies, have become interesting because they have low voltage stress in power circuits, lower total harmonic distortion, and high efficiency [6], [7]. The energy obtained from hydrogen fuel cells is converted with the help of a dc-dc converter. Voltage fluctuations and energy losses may occur during this conversion process. Also, the input voltage of the
inverter has to be checked to keep it constant at the specified reference voltage. In this context, for dc-link control, three different control methods (two closed-loop with pi, anfis-based and ann-based) are used in this study. Although pi controller has several advantages such as simple structure and easy implementation, they are known to have a significant time delay problem and poor control performance. On the other hand, while fuzzy logic control is an alternative and effective solution for the analysis of complex, nonlinear and ill-defined systems, artificial neural networks is defined as an intelligent system that has effective advantages such as learning, adaptation, speed. Moreover, adaptive neuro-fuzzy inference system technique has taken its place in the literature as a hybrid research alternative that incorporates efficient solution proposals of fuzzy logic and artificial neural network methods [8], [9]. In this study, a three-phase structure is designed for the grid connection of hydrogen fuel cells. Instead of traditional inverters, NPC three-level inverter and three different dc-link control methods are used for dc-link control. Performance analyses of the proposed system were carried out under different operating conditions, under sudden changing conditions and at different temperatures. The proposed circuit structure consists of power supply (PEM Fuel cell), dc-link, multi-level inverter, LCl, harmonic suppression filter, control structures and is presented in Fig.1. in detail. Matlab/Simulink simulation program was used for the analysis and circuit setup of the proposed system.

![Proposed system for grid-connected PEMFC](image)

Overview of the Literature

Meeting the requirements such as low harmonic distortion, high power factor performance and reactive power balancing, dc-link control, low economic cost, optimization of power circuits as much as possible in order to inject the energy produced by fuel cells into the grid with high efficiency and reliability. When the literature studies are examined, it is seen that studies on fuel cells generally focus on control structures, economical optimization methods, power circuit topologies, and grid failures. Literature studies are detailed in table 1. In ref [10], a multilevel inverter is modeled in order to reduce the number of circuit elements and expand the output voltage level. At the same time, the number of switches has been reduced compared to traditional topologies, thus reducing the switching losses. The total harmonic distortion in the load current was measured as 5.46%. The proposed study has been tested both in a simulated environment and in a laboratory environment. In ref [11], a three-level diode clamped inverter is designed for a multi-stack fuel cell. The aim of the proposed study is to provide energy transfer at low total harmonic distortion level and to reach 85% efficiency. For the proposed study, 1.54 MW/1400 Vdc prototype was studied. In Ref [12], an MPPT method is designed to increase the power output by using a FC coupled system ANFIS technique. This designed method provides a significant advantage in reducing the consumption. The proposed FC system was tested with a power rating of 1.9 kW and a dc-dc converter together with an independent system efficiency is 98%. In Ref [13], using the ANFIS method, a concurrently developed control scheme is designed for power transfer between the electrical grid and the battery energy storage system. The proposed scheme allows charging and discharging the battery with bidirectional converter. Simulation studies of the system were carried out on the AC network with a power of 293 W. In Ref [14], a new pulse modulus expansion method with a two-level inverter is proposed. The proposed system provides significant advantages in reducing the harmonics of the inverter connected to the grid, regulating the maximum power output and power factor. In the system, the output current harmonic distortion rate for the two-level inverter is 2.05%, and the harmonic distortion rate for the new PWM scheme is 1.55%.
Table 1. Literature Overview

<table>
<thead>
<tr>
<th>Subject</th>
<th>Objectives</th>
<th>Rated Power</th>
<th>Energy Source</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Structure</td>
<td>Active reactive power control and low THD</td>
<td>6 kW</td>
<td>PEM Fuel Cell</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>Minimize curtailing renewable resources</td>
<td>3.5 MW</td>
<td>SO Fuel Cell</td>
<td>[15]</td>
</tr>
<tr>
<td></td>
<td>Active reactive power control and low THD</td>
<td>1.2 MW</td>
<td>Fuel cell</td>
<td>[16]</td>
</tr>
<tr>
<td></td>
<td>Improve dynamic voltage response, reduce THD, increase power quality</td>
<td>---</td>
<td>SO Fuel Cell</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td>Eliminate input current ripple and reduce THD</td>
<td>1.5 kVA</td>
<td>PEM Fuel Cell</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>Mathematical solution for grid connected fuel cell</td>
<td>≈8 kW</td>
<td>Fuel cell</td>
<td>[19]</td>
</tr>
<tr>
<td></td>
<td>Active reactive power control and THD reduction</td>
<td>6 kW</td>
<td>PEM Fuel Cell</td>
<td>[20]</td>
</tr>
<tr>
<td>Circuit topology</td>
<td>Modular-Multilevel converter and mitigate THD</td>
<td>6 kW</td>
<td>PEM Fuel Cell</td>
<td>[21]</td>
</tr>
<tr>
<td>Feasibility</td>
<td>Optimisation for reducing capital and operating expenses</td>
<td>71 kW</td>
<td>SO Fuel Cell/Hybrid</td>
<td>[22]</td>
</tr>
<tr>
<td></td>
<td>Optimisation for economic profit</td>
<td>---</td>
<td>Fuel cell vehicle to grid</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>Optimisation for economic profit</td>
<td>0.8 kW</td>
<td>SO Fuel Cell/Hybrid</td>
<td>[24]</td>
</tr>
<tr>
<td>Grid Failures</td>
<td>Maximum power extraction method that also performs in case of grid failure mode</td>
<td>≈25 kW</td>
<td>PEM Fuel Cell</td>
<td>[25]</td>
</tr>
<tr>
<td>Both control structure and Circuit topology</td>
<td>dc-link Control, active&reactive power control and low THD</td>
<td>50 kW</td>
<td>PEM Fuel Cell</td>
<td>Proposed</td>
</tr>
</tbody>
</table>

Some of the important issues that fuel cells must overcome in order to inject energy into the grid accurately and reliably are the elimination of reactive power and low total harmonic distortion (must comply with IEEE-519 standards). The proposed study consists of two stages. In the first stage, the voltage of the dc energy obtained from PEMFC is increased to the determined reference value with the help of dc-dc converter. In addition, it is controlled by three different dc-link control methods in order to prevent voltage fluctuations and to provide an efficient energy flow. In the second stage, dc energy is converted to ac energy with the help of multi-level inverter. This conversion process; In order to have low harmonic distortion and high power factor, dq- control method is used. Finally, the LCL harmonic suppression filter was designed and energy was supplied to the electricity grid. The three-phase system model is designed with control structures to inject the energy from PEMFCs into the grid. Instead of the traditional inverter model and pi-based dc link control method, a multi-level inverter and three different dc link control algorithms are designed. Thanks to the proposed system, it has been determined that the suppression performance of the current harmonics injected into the grid and the power factor regulation are improved compared to the traditional method. In this case, the energy injected into the grid is more efficient and of higher quality. In order to ensure low voltage fluctuation and efficient energy flow, three different methods have been applied for DC-link control: ANFIS-based, ANN-based and two closed-loop pi-based. The purpose of applying these methods is to perform performance analysis of traditional methods (pi-based) and intelligent methods (ANFIS and ANN-based). To confirm the accuracy of the proposed system and control methods have been tested under different and suddenly changing operating conditions and performance analysis has been carried out under different temperatures. LCL Harmonic suppression filter is designed and applied to the output of the NPC three-level inverter in order to prevent possible electrical faults and to improve the electrical quality.

Material and Methods

Before injecting the dc energy produced by the fuel cells into the grid, power electronics interface circuits are needed. They consist of a dc-dc converter to control the input voltage level of the inverter and then an inverter to convert dc energy to ac energy. Finally, a filter circuit is needed to perform harmonic suppression between the inverter and the grid.

Fuel Cell Stack and DC-Link Control

Fuel Cells are devices that convert the chemical energy they contain into dc electrical energy as a result of electrochemical reactions. Considering its low noise, high power density, high efficiency and low pollution, PEMFC has become one of the most popular fuel cells [16]. The equivalent circuit of the PEM fuel cell is shown in Fig. 2 [2].
The voltage value produced by the fuel cell can be found by following expression.

\[
V_{fc} = V_{oc} - V_R - V_d
\]
(1)

The open-circuit voltage can be found from the following equation.

\[
V_{oc} = K_C \left[V_0 + (T - 298) \frac{-44.43}{T} + \frac{R_C T}{T} \ln \left(\frac{P_{H_2} P_{O_2}}{1/2} \right) \right]
\]
(2)

Resistive and the absolute polarization overvoltages can be calculated with the following equations.

\[
\begin{aligned}
V_R &= i_{FC} \times R \\
V_d &= N \times A \times \ln \left(\frac{i_{FC}}{i_o} \right)
\end{aligned}
\]
(3)

If the expressions in the above equations are defined; \(V_{fc}\) is the output voltage of the fuel cell, \(V_R\) is the voltage loss on the resistor, \(V_d\) is the absolute polarization voltage loss, \(N\) is the number of cells in the fuel cell, \(A\) is the tafel slope and \(i_o\) is the current exchange [2]. The number of cells used in this study was determined as \(N=900\), rated voltage 625 V and rated power 50kW. The current, voltage and power characteristics of the fuel cell used in this study and the relationship between each other are presented in Fig. 3.

Since the dc energy produced by fuel cells depends on many parameters, connecting it directly to the inverter may cause voltage drops and irregular energy flow. Therefore, as shown in Fig. 4, a dc-dc converter is used between the inverter and the fuel cell. Due to the low number of circuit elements, easy installation, effective and efficient operation, dc-dc boost converter was used in this study. The rated voltage of the fuel cell, 625V, was applied three different dc-link controlled dc-dc boost converters to keep the output at 800V and to feed the input of the NPC multi-level inverter.
The relationship between the output voltage of the boost converter and the voltage of the fuel cell is presented below.

\[\frac{V_{dc}}{V_{fc}} = \frac{1}{1-D} \]

(4)

\[L_{boost} = \frac{V_{fc}D}{\Delta i_L f_s} \]

(5)

\[C_{boost} = \frac{D}{R(\Delta V_{dc}/V_{dc})f} \]

(6)

\[V_{boost} \] is the output voltage of the dc-dc boost converter, and \(V_{fc} \) is the fuel cell voltage, and \(D \) is expressed as the duty-cycle of the PWM signal feeding the gate of the semiconductor switch (IGBT).

ANFIS Based DC Link Control

ANFIS-based control structure has been designed for current control after dq conversion and consists of 5 different layers. The ANFIS-based control structure is shown in Fig. 5.

\[\begin{align*}
 e(t) &= V_{dc}(ref) - V_{dcLink} \\
 \Delta e(t) &= d(V_{dc}(ref) - V_{dcLink})/dt
\end{align*} \]

(7)

Layer 1: In this layer, membership degrees are generated for the input vectors (ai). (i=1,2,3.)
Layer 2: Three membership functions are created for each input, and a total of 3x3=9 different rules are created. The properties of the input and output membership functions are shown in Fig. 6 (NB means negative, ZE means zero and PB means positive) [26], [27].

\[
Q_i^2 \rightarrow W_i = \min (\mu_{Ai}(e) \cdot \mu_{Bi}(e)) \tag{9}
\]

Layer 3: In this layer, the ratio of the activation level of each rule to all activation levels is calculated.

\[
Q_i^3 \rightarrow \mu_{Ai}(e) = \begin{cases}
0 & e \leq a_i \\
e^{-ai} & ai \leq e \leq bi \\
bi & be \leq e \leq ei \\
e^{-ei} & ei \leq e
\end{cases} \tag{8}
\]

Figure 6. Input and output membership function

Layer 4: In this layer, the contribution of each layer to the total output is calculated with the following function.

\[
Q_i^4 = \bar{W}_i Z_i = \bar{W}_i (ke + m\Delta e + s_i) \tag{11}
\]

Layer 5: In this layer, the sum of the contribution of all rules is calculated.

\[
Q_i^5 = \sum_{i=1}^{2} \bar{W}_i Z_i = \frac{W_1 z_1 + W_2 z_2}{W_1 + W_2} \tag{12}
\]

If the expressions in the above equations are defined: \(e\) represents error, \(\Delta e\) error rate of change with time, \(N\) data number, \(k\), \(m\) and \(s\) design parameters, \(w\) weights, \(z\) output, \(\mu(X)\) membership function and \(Q\) represents layers [26], [27].

ANN Based DC Link Control

In this study, an artificial neural network model is designed to control the dc link voltage. Input layer: It consists of reference voltage (Vref) and dc link (Vdc Link) voltage, while the duty cycle is produced for the PWM signal in the output layer. A hidden layer with 10 neurons is designed between the input layer and the output layer. The designed artificial neural network is presented in detail in Fig. 7 [28].

![Feed-Forward Neuron Network Training](image)

The basic element of artificial neural networks can be defined as mathematically and logically modeling the functions of biological neurons. The input layer vector of the designed neuron is \(p = [p_1, p_2, \ldots, p_R]\), and \(w_1, w_2, \ldots, w_j\) are weighted by the elements of the \(W\) weight matrix, respectively. The neuron has bias \(b\), which is arranged by adding up with the weighted inputs of the neuron, forming the net inputs of \(n\) [29].

\[
n = \sum_{j=1}^{R} w_j p_j + p = W_p + b \tag{13}
\]

After the input layer is weighted and added with bias, it is passed through the activation function.

\[
a = f(n) \tag{14}
\]

The tan-sigmoid activation function was used for this study and is presented as follows.

\[
f = \frac{1}{1+e^{-x}} \tag{15}
\]

The following data creation software in matlab simulation program to generate input and target dataset for DC link control.
In this study, pi-based dc-link control method with two closed loops was used. In this control method, three parameters, dc-link voltage, reference voltage value and inductance current, are used. The error rate is found by taking the difference between the reference voltage and the dc link voltage, then the reference current for the inductance current is found by passing the pi control. The error rate is found by taking the difference between the reference current and the inductance current, and the duty cycle of the pwm signal to be produced is determined by passing this error rate again through the pi control. Finally, the determined duty cycle is compared with a triangular signal and the pwm signal is generated for the switching element. It is detailed in Fig. 8.

Expressed mathematically, the first pi control establishes the reference value for the inductance current [30], [31], [32].

\[I_{Lref} = K_p e_1 + K_i \int e_1 dt \]
\[e_1 = V_{DCref} - V_{DCLink} \]

Where;

The error rate for the second closed loop is expressed by the following equation.

\[e_2 = K_p e_2 + K_i \int e_2 dt \]

Where;

\[e_1 = I_{Lref} - I_L \]

Figure 8. Two closed loop dc link control methods based on PI

Three Level NPC Inverter with Control method

After the dc energy produced by PEMFC is controlled by the dc-dc boost converter and given to the dc-link, this dc energy is used as the input voltage of the NPC three-level inverter. The designed inverter and LCL filter convert dc energy into ac energy to inject it into the grid at low harmonic level. Active reactive power control is performed by synchronizing the grid current and voltage and the signals generated from the inverter output with the dq-based control method. The designed NPC three-level converter LCL filter and dq-based control method are presented in Fig. 9.

Matlab Dataset Codes

<table>
<thead>
<tr>
<th>Vinput</th>
<th>randi([400 10 650], 1, 100000);</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voutput</td>
<td>randi([650 10 900], 1, 100000);</td>
</tr>
<tr>
<td>Duty</td>
<td>(Voutput-Vinput)/Voutput;</td>
</tr>
<tr>
<td>Input</td>
<td>[Vinput;Voutput];</td>
</tr>
<tr>
<td>Output</td>
<td>Duty;</td>
</tr>
</tbody>
</table>
Figure 9. Designed NPC Three-Level Inverter (a) DQ based Control Method (b)

The following procedures should be followed to determine the current and voltage equations of the grid-connected NPC three-level inverter and the dq conversion equations of the three-phase system [6], [33]-[34].

Voltage equations can be written as:

\[
\begin{align*}
 u_a &= U \cos(\omega t) \\
 u_b &= U \cos(\omega t - \frac{2\pi}{3}) \\
 u_c &= U \cos(\omega t + \frac{2\pi}{3})
\end{align*}
\]

(21)
If the dq rotating frame is applied as the transform method in the three-phase system (abc), the following equation can be written (the x’s in the equation can be thought of as current or voltage): \(\text{abc} \rightarrow \text{dq} \) transform.

\[
\begin{bmatrix}
X_d \\
X_q
\end{bmatrix} =
\begin{bmatrix}
\cos(wt - 120^\circ) & -\sin(wt - 120^\circ) \\
\cos(wt + 120^\circ) & -\sin(wt + 120^\circ)
\end{bmatrix}
\begin{bmatrix}
X_a \\
X_b \\
X_c
\end{bmatrix}
\] (22)

The current equations can be written as:

\[
i_d = \frac{2}{3}(i_a \cos(wt + 120^\circ) + i_b \cos(wt - 120^\circ))
\] (23)

\[
i_q = -\frac{2}{3}(i_a \sin(wt + 120^\circ) + i_b \sin(wt - 120^\circ))
\] (24)

Similarly, the voltage equations can be written as:

\[
V_d = \frac{2}{3}(V_a \cos(wt + 120^\circ) + V_b \cos(wt - 120^\circ))
\] (25)

\[
V_q = -\frac{2}{3}(V_a \sin(wt + 120^\circ) + V_b \sin(wt - 120^\circ))
\] (26)

For the grid connection of the three-phase system after the ANFIS controller, instead of the previous \(\text{abc} \rightarrow \text{dq} \) conversion, \(\text{dq} \rightarrow \text{abc} \) conversion is required to generate reference voltages. Therefore, the following equation is used for the conversion process.

\[
\begin{bmatrix}
X_a \\
X_b \\
X_c
\end{bmatrix} =
\begin{bmatrix}
\cos(wt - 120^\circ) & -\sin(wt - 120^\circ) \\
\cos(wt + 120^\circ) & -\sin(wt + 120^\circ)
\end{bmatrix}
\begin{bmatrix}
X_d \\
X_q
\end{bmatrix}
\] (27)

After the three-phase reference voltages (Varef, Vbref, Vcref) are produced, the control process is completed by generating PWM signals for the semiconductor switching elements (IGBT) of the NPC three-level inverter by comparing them with the frequency determined sawtooth signal.

LCL Filter Design

An LCL filter is designed between the three-level NPC inverter and the grid to suppress current harmonics. The equivalent circuit of the three-phase filter designed for each phase is presented in Fig. 10.

The transfer function between the grid current and the inverter voltage is expressed in the following equation [35].

\[
\frac{i_g(s)}{V_{in}(s)} = \frac{1}{L_1 L_2 C s^3 + (L_2 + L_1) s}
\] (28)

In this study, it was calculated as \(L_1 = L_2 = 500 \mu \text{H}, \) \(C = 100 \mu \text{F}. \) The dynamic response of frequency, magnitude and phase according to the inductor and Fig. 11.

![Figure 10. LCL Filter equivalent Circuit](image)

![Figure 11. Bode Diagram of LCL filter](image)

Table 3. Circuit Parameters and electrical characteristics.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{rated}})</td>
<td>50 kW</td>
</tr>
<tr>
<td>(V_{\text{inv}})</td>
<td>625 Vdc</td>
</tr>
<tr>
<td>(V_{\text{bus}})</td>
<td>800 Vdc</td>
</tr>
<tr>
<td>(f_s)</td>
<td>20 kHz</td>
</tr>
<tr>
<td>(K_p1)</td>
<td>0.9</td>
</tr>
<tr>
<td>(K_p2)</td>
<td>0.02</td>
</tr>
<tr>
<td>(K_i)</td>
<td>5</td>
</tr>
<tr>
<td>(f)</td>
<td>50 Hz</td>
</tr>
<tr>
<td>(L_{\text{out}})</td>
<td>1.07 mH</td>
</tr>
<tr>
<td>(C_{\text{out}})</td>
<td>20 mF</td>
</tr>
<tr>
<td>(L_{1})</td>
<td>500 \mu H</td>
</tr>
<tr>
<td>(C_{1})</td>
<td>100 \mu F</td>
</tr>
<tr>
<td>(L_{2})</td>
<td>500 \mu H</td>
</tr>
<tr>
<td>(T_{\text{fuel}})</td>
<td>65°C-70°C</td>
</tr>
</tbody>
</table>

Table 3. Circuit Parameters and electrical characteristics.
Results and Discussion

In this study, 5 different operating conditions were modeled to confirm the accuracy of the proposed system and detailed analysis was performed in all operating conditions. 50kw, 625V PEMFC matlab model was used as energy source in the study. In the first operating condition, no reactive power was requested to the grid and only active power was tried to be injected. In this operating condition, the phase angle between the mains current and voltage is measured as 2.7° and the power factor is >0.99. In the second operating condition, the active power demand was reduced abruptly and it was expected that reactive power would not be injected into the grid. In this operating condition, the phase angle is measured as 2.09° and the power factor is >0.99. In the third operating condition, active power was kept constant and reactive power was expected to be injected into the grid. In this condition, the phase angle was measured as 11.1° and the power factor as >0.98. In the fourth operating condition, more reactive power is expected to be injected into the grid by keeping the active power constant. In this operating condition, the phase angle was measured as 21.12° and the power factor was measured as >0.93. In the fifth operating condition, it was expected that the work would suddenly return to its initial state. In this operating condition, the phase angle is measured as 2.7° and the power factor is >0.99. Three mains currents in five different situations are presented in Fig. 12.

The performances of dc link control methods on power factor were compared under five different operating conditions. The order of convergence times from best to worst: two closed-loop-based, ann-based, and amphis-based. The effects of different dc link control methods on power factor are presented in Fig. 13. In the system designed using dc link control methods and three-level NPC inverter in five different situations, the total harmonic distortion values in the grid current were measured and presented in detail in Fig. 14 and Table 4.

Figure 12. Grid Current under five different operating States

Figure 13. Effect of DC Link control methods on power factor
Comparison of the harmonic distortion in the grid current in five different conditions of the system designed using a conventional inverter and a multilevel inverter is presented in Fig. 15. It is seen that the harmonic distortion performance of the multilevel inverter over the conventional inverter is superior in all conditions.
The effects of different dc-link control methods on active and reactive power control in five different operating states are shown in Fig. 16. It was observed that while active power fluctuations were <10w in pi-based closed-loop control, <15w in anfis-based control and <90w in ann control. In addition, detailed analysis results are presented in Table 4.

PEMFC voltage, dc link voltage, power obtained from PEMFC, and duty cycle were analyzed under five different operating conditions. The data obtained by using different dc link control methods were examined. The DC link voltage is expected to be kept constant at 800 V and is used as the input voltage of the inverter. When DC link voltage control performance is compared in terms of convergence times, two closed-loop pi-based control methods show the best performance, while ANFIS-based control method shows the worst performance. In terms of DC link voltage fluctuation, the ANFIS-based control method outperformed the ANN-based control method. DC link voltage ripple, duty cycle, PEMFC power and voltage are detailed in Fig. 17 and Table 4.
Figure 17. DC Link Voltage (a) Fuel Cell Voltage (b) Fuel Cell Power (c) Duty Cycle (d)

The effects of conventional inverter and multilevel inverter on power obtained from PEMFC under suddenly changing temperature (65°C-70°C) and performance conditions are presented in Fig. 18.

Figure 18. PEMFC power under different temperature and operational conditions

The system outputs of the proposed system and the operating conditions are presented in detail in Table 4. Performances of the dc-link control methods in different

Table 4. Detailed presentation of system outputs

<table>
<thead>
<tr>
<th>Operation States</th>
<th>DC Link Voltage Ripple (ΔV)</th>
<th>Power Fluctuation (ΔP)</th>
<th>THD (Grid Current)</th>
<th>PF</th>
<th>Grid Power (Per Phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

301
Conclusion

In this study, efficient and low harmonic energy flow is tried to be provided for grid-connected PEMFC by using multi-level inverter and different dc link control methods (ANFIS, ANN, two closed loop based on pi). The multilevel inverter has outperformed conventional inverters in total harmonic distortion performance and complies with ieee-519 standards (<5%) (Figure 15, Table 4). In addition, the effects of dc link control methods on voltage and power fluctuations and total harmonic distortion are examined and presented in Fig. 10,16,17 and Table 4. In addition, while the minimum level of active and reactive power fluctuations is obtained in the anfis-based control method, the best result is obtained in the pi-based two closed-loop control method when the average power fluctuation performance is taken into account (Table 4). Based on the convergence time, the ANN-based control method performed better than the ampis-based control method (Fig. 17). In addition, this study has shown that even if the two closed-loop dc-link control methods based on pi have more advantageous points, finding the proportional and integral gain values is an effortful process. In addition, although multilevel inverters show higher performance than conventional inverters in terms of THD (%) and power factor, it is obvious that switching losses will be higher since more switching elements are used than conventional inverters. In addition, anfis and ann-based dc link control methods can be used with more input parameters and their performance can be improved with different learning methods. It is obvious that this study is also a candidate to be an alternative application for different renewable energy sources (wind, photovoltaic and etc.), grid connections of electric vehicles (vehicle to grid technology) and different power transfer systems.

Ethics committee approval and conflict of interest statement

“There is no need to obtain permission from the ethics committee for the article prepared” “There is no conflict of interest with any person / institution in the article prepared”

Authors’ Contributions

Göncü B: Study conception and design, visualization, analysis, and interpretation of data, drafting of manuscript

Yılmaz Ü: supervised the project, critical revision

Acknowledgement

This study was supported by Harran University Scientific Research Projects Unit. Project Number: 22232

References

