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1. INTRODUCTION 
 

With the ever-increasing demand for thermal management 

systems due to increasing energy cost and decreasing the 

traditional energy sources, there is a need for more efficient and 

reliable methods for controlling temperature, particularly in 

buildings with the highest energy consumption rates [1]. One 

of the most favorable technologies for thermal management is 

the use of phase change materials (PCMs) that can store and 

release thermal energy during phase transition [2]. However, 

traditional PCMs have some drawbacks, such as low thermal 

conductivity and potential leakage while melting [3,4]. 

Therefore, there is a need for the development of new PCM-

based composites with enhanced properties. Form-stable 

composite PCMs (FSC-PCMs) have emerged as a promising 

alternative to traditional PCMs. FSC-PCMs are materials that 

combine a PCM with a supporting material, such as clay-based 

materials, polymers, biochar or activated carbon [5,6]. The 

properties of FSC-PCMs can be tailored depending on the 

features of the selected supporting material and PCM. For 

example, the type of PCM and supporting material, the 

composition of components, the production route and the 

particle size of the components can all affect the thermal 

properties of the FSC-PCMs. By optimizing these parameters, 

it is possible to develop FSC-PCMs with specific thermal 

properties to suit different applications [7,8]. Therefore, the 

resulting FSC-PCMs materials have improved shape-stability 

and thermal conductivity, making them suitable for various 

applications, including building insulation, electronics cooling, 

temperature management of batteries, transportation of food or 

medical products, textile products, etc [9-12]. 

Activated carbon (AC) is an ideal supporting material for 

creation FSC-PCMs due to its high surface area, porous 

structure, and thermal stability. The AC provides a large 

surface area and porous structure for the PCM to be adsorbed, 

thereby preventing leakage and improving shape-stability. 

Furthermore, relatively high thermal conductivity of AC allows 

for efficient heat transfer between PCMs and the surrounding 

environment. Therefore, recently many researches focused on 

the fabrication and application of FSC-PCMs comprising of 

AC and PCM for thermal management systems [13-15].  

Gu et al [16] assessed the use of carbonized pepper straws 

as a carrier material to load palmitic acid and found that this 

composite had a fusion enthalpy of 95.50 J/g. Zhang et al. [17] 
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created a FSC-PCM of a fatty acid eutectic mix utilizing bio-

carbon from waste corn. This composite, which contained 

about 78% PCMs, reached a fusion enthalpy of 148.30 J/g and 

an 87.5% improvement in thermal conductivity. Xu et al. [18] 

combined paraffin with carbonized orange peels, resulting in a 

leakage-free composite with high thermal stability. Wen et al. 

[19] proposed FSC-PCM using sunflower straw-based carbon 

loaded with melted stearic acid for TES applications. 

In the current study, a novel FSC-PCM was developed by 

impregnating Methyl palmitate (MPt) selected as PCM into the 

pores of AC-derived from wood (ACW), which served as an 

effective framework. Wood is an important source of carbon 

due to its low cost and easy availability [20,21]. To date, there 

have been no investigations on the fabrication and extensive 

investigations of such a leak-resistant ACW/MPt composite in 

the literature. The composite's crystalline/chemical structures 

and surface morphology were analyzed using XRD, FTIR and 

SEM techniques. DSC and TGA analyses were conducted to 

evaluate the composite's TES potential, while its thermal 

reliability and conductivity were also measured. Overall, these 

analytical techniques provided comprehensive insights into the 

properties of the samples and facilitated a detailed assessment 

of their suitability for TES applications. The results indicated 

that the favorable energy storage capacity and thermal 

conductivity of this FSC-PCM make it a promising material for 

thermoregulation applications in different thermal 

management systems.  

 

2. EXPERIMENTAL  
 

2.1. Material 

 

Methyl palmitate (MPt, assay 99%) was purchased from 

Sigma Aldrich Company, while ACW was provided from Rota 

Chemical Company (surface area: 1150 m2/g, density: 0.25-

035 g/cm3, pore volume: 1.3 ml/g). 

 

2.2. Preparation of leakage-free ACW/MPt composite 
 

The leakage-free ACW/MPt composite was prepared using 

the sorption method with vacuum operation. Optimal 

impregnation conditions were achieved through a vacuum 

operation in a vacuum oven maintained at 80 kPa and 50 °C for 

a duration of 3 hours, facilitating the infiltration of liquid MPt 

into the ACW pores. To determine the maximum MPt loading 

capacity of ACW, various amounts (ranging from 30 to 70 

wt%) of MPt was impregnated into its porous network. To 

avoid clumping of the ACW/MPt mixtures, the samples were 

periodically taken out of the oven and stirred every 30 minutes, 

ensuring an even infiltration of MPt throughout the ACW 

matrix. The form-stability of each fabricated composite was 

assessed through leakage tests. For this, each composite was 

heated on filter paper above the melting point of MPt. The 

sample that demonstrated the highest MPt rate without leaching 

out after heating for 2 h was identified as FSC-PCM. The 

leakage-free ACW/MPt was found to have a MPt ratio of 53 

wt% and ACW ratio of 47 wt%, as depicted in the given test 

results in Fig. 1. 

 

 
 

Figure 1.  The leakage test result of ACW/MPt samples  

 

2.2. Characterization 
 

In this study, a range of experimental techniques were applied 

to reveal the micro-structure, chemical structure, TES 

properties, and thermal stability of ACW, MPt, and resulting 

ACW/MPt specimens. FTIR (Shimadzu, IRSpirit), DSC 

(Hitachi 7020), SEM (Zeiss LEO 440) and TGA (PerkinElmer) 

analyses were utilized to examine the samples. The thermal 

cycler device (Prime3Techne) was conducted to assess the 

cycling stability of the ACW/MPt. The thermal conductivity of 

the specimens were measured using a thermal conductivity 

meter (Decagon KD2 Pro).  

 

3. RESULTS  
 

3.1. SEM Results 
 

SEM images in Fig. 2 illustrate the morphology of pure ACW 

and the ACW/MPt samples prepared in the study. The SEM 

image of pure ACW reveals the presence of numerous pores, 

predominantly micro-sized, which is consistent with its high 

PCM loading capacity findings. These pores provide abundant 

space for loading MPt and were successfully occupied by the 

MPt, indicating good physical compatibility between the ACW 

and MPt. Additionally, ACW/MPt composite exhibited a 

uniform distribution of MPt embedded within the porous 

network structure of ACW. Consequently, the pores of ACW 

were compacted with the loadage of MPt, leading to a relatively 

smooth surface. Overall, the results suggest that the MPt was 

effectively integrated with ACW. 

 

 
Figure 2.  SEM images of ACW (a) and ACW/MPt (b)  

 

3.2. FTIR Results 
 

The FTIR spectra of MPt, ACW and ACW/MPt were 

demonstrated in Figure 3. The spectrum of MPt exhibited peaks 

at 2910 and 2857 cm-1, which corresponded to CH2 group 

stretching vibrations. Additionally, peaks at 1734 and 1169 cm-
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1 were observed, which were attributed to the carbonyl groups 

and the stretching vibrations of C-O-C, respectively. Peaks at 

1460, 885, and 716 cm-1 were representative of the vibrations 

of the -OH functional group. The FTIR spectra of ACW was 

found to be similar with general carbon-based materials, with 

absorption bands between 1924 and 2285 cm-1. Notably, the 

impregnation of MPt into ACW resulted in negligible changes 

in the position and intensity of the peaks, indicating that the 

MPt retained its phase change and chemical properties in the 

composite structure without the formation of new peaks. 

 

 
Figure 3.  FTIR spectra of MPt, ACW and ACW/MPt  

 

3.3. DSC Results 
 

Figure 4 shows the DSC thermograms for MPt and ACW/MPt, 

while Table 1 presents the TES data for these materials. Three 

measurements were conducted for each sample to calculate the 

mean deviations. The results indicated that the mean deviations 

in phase transition temperatures and enthalpy values were 

±0.17 °C and ±0.82% J/g, respectively. The pure MPt has 

melting and freezing temperatures of 26.97 and 25.15°C, 

respectively, and its fusion and freezing latent heats are 245 and 

-242 J/g, respectively. The melting/freezing temperatures of 

ACW/MPt composite only changed slightly, with 

measurements of 27.59/26.27°C. The measured latent heats of 

ACW/MPt are 129/-127 J/g, respectively. The high surface 

area and porous structure of ACW led to higher latent heat 

capacity of ACW/MPt composite. The fusion and freezing 

enthalpy of ACW/MPt is about 52.65% and 52.47% of the pure 

MPt, respectively, which aligns with the impregnation ratios of 

MPt. Furthermore, the DSC thermogram for ACW/MPt is 

similar to that of MPt, indicating that MPt maintains its TES 

role throughout the phase changes. 

It is worth noting that the fusion enthalpy of the leakage-

free ACW/MPt composite is comparable to that of different 

bio-carbon-based FSC-PCM reported in the literature 

[14,16,22-24]. More specifically, the fusion enthalpy of the 

mentioned leakage-free AC-based composites was reported as 

87.42, 95.5, 84.74, 108.0, and 90.2 J/g, respectively. When 

considering the measured fusion heat of 129 J/g for the 

suggested ACW/MPt composite, it is highly competitive. 

 

 
Figure 4.  DSC thermograms of MPt and ACW/MPt 

 

To assess the cycling thermal stability of the leakage-free 

ACW/MPt, a thermal cycle test was conducted by subjecting it 

to 750 melting/freezing cycles. The DSC curves for this 

composite before and after 750 thermal cycles are presented in 

Fig. 4. The DSC results revealed that its melting/freezing 

temperatures and enthalpy values hardly changed. These 

findings infer the cycling stability of ACW/MPt, which is 

critical for TES applications. 

 
TABLE I  

DSC DATA OF MPT AND ACW/MPT 

Sample 

Melting 

Temperature 

(°C) 

Fusion 

Enthalpy 

(J/g) 

Freezing 

Temperature 

(°C) 

Freezing 

Enthalpy 

(J/g) 

MPt 26.97 245 25.15 -242 

ACW/MPt 27.59 129 26.27 -127 

ACW/MPt 

(750th 

cycle) 

27.55 128 26.25 -127 

 

3.4. TGA Results 
 

The TGA curves in Figure 5 depict the thermal stability of 

ACW, MPt and ACW/MPt. The results demonstrate that MPt 

remained stable up to a temperature of 174 °C, after which it 

experienced substantial decomposition. ACW exhibited good 

thermal stability, with no signs of major decomposition, except 

for minor weight loss due to the evaporation of water and 

volatile organic substances. It experienced weight loss of 

8.07% at 500 °C. Furthermore, the TGA curve of ACW/MPt 

not only determined its thermal stability, but also verified the 

amount of MPt present into ACW. It experienced similar rapid 

mass losses with pure MPt. Mass losses due to MPt in 

ACW/MPt occurred between 174 and 228 °C, and its 

corresponding mass losses were approximately 60%, which 

closely aligns with MPt impregnation rate and ACW-based 

mass losses. Overall, the decomposition temperature of 

ACW/MPt was significantly higher than its working 

temperature, indicating its high resistance to thermal 

degradation. In light of these findings, it can be concluded that 

ACW/MPt possess considerable strength against thermal 

degradation. 
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Figure 5.  TGA curves of MPt, ACW and ACW/MPt  

 

3.5. Thermal Conductivity Results 
 

Thermal conductivity (TC) is a key factor that significantly 

affects the period of heat charging/discharging of PCM-based 

systems. The TC values of pure MPt, ACW, and the ACW/MPt 

were measured at 0.24, 0.33, and 0.52 W/m.K, respectively, at 

a temperature of 20 °C. Based on this finding, the TC of the 

ACW/MPt composite was 2.16 times higher than that of MPt, 

owing to the carbon skeleton of ACW that provides heat 

transfer channels and heat conduction framework. However, 

the TC of the ACW/MPt composite was found to be slightly 

higher than expected, compared to that of ACW and MPt. 

Although the TC of ACW is not high enough to theoretically 

supply this increase in the TC of MPt, it boosted significantly 

its TC. This is since the majority of the air molecules in the 

pores of ACW, which have much lower TC (0.025 W/m.K), 

were displaced by the MPt. As a result, the TC of ACW/MPt 

could be higher than that of either the MPt or ACW alone. 

Therefore, the used ACW not only provided form-stability for 

MPt as a supporter matrix, but also acted as a doping agent, 

significantly enhancing the low TC of MPt. These findings 

were also reported in previous studies [15,25,26]. 

 

4. CONCLUSION  
 

This study utilized highly porous activated carbon derived from 

wood (ACW) to create novel leakage-free FSC-PCM for 

thermal energy storage (TES). Methyl palmitate (MPt) was 

successfully impregnated into the porous structure of ACW. 

The loading rate of MPt in the leakage-free ACW/MPt was 53 

wt%. The fusion enthalpy of ACW/MPt was 129 J/g with a 

melting temperature of 27.59 °C. The composite had high 

thermal stability up to 174 °C, and admirable cycling stability 

even after 750 melting-freezing cycles. The thermal 

conductivity of ACW/MPt was 2.16 times higher than that of 

the pure MPt. Overall, the used ACW not only allowed for high 

loading of MPt, but also significantly enhanced the thermal 

conductivity of MPt without the need for additional fillers. As 

a result, the leak-free ACW/MPt composite has high potential 

for various TES applications including solar passive thermal 

management of buildings, cooling of electronic 

devices/batteries and textile products etc.  
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