
Introduction 
Morphological sciences have been mostly concerned 
with describing the structural features of organisms. As 
research techniques have been developed today, the 
scope of research in anatomy, which is one of the main 
branches of morphology, has also expanded. The exper-
imental animal models developed based on evolutionary 
relationship of the human and other species have begun 
to be used in research to understand function of organ-
ism and pathology of illness. In vivo and in vitro experi-
mental models are indispensable way for applying meth-
ods that are undesirable to be tested on humans. To be 
aware of these methods is inevitable for researchers who 
continue their careers in the field of anatomy. Here, 
experimental schizophrenia models that can be used to 
reveal brain functions and pathophysiology of the illness 
are discussed. It is aimed to give general information 
about the features of the experimental models; therein 
the references should be considered for the setup of the 
experimental schizophrenia models. 

In this review, we represent the in vivo model of 
schizophrenia for researches on etiopathogenesis, patho-
physiology, drug discovery and behavioral analysis. In 
addition, we briefly indicate the molecular mechanisms 
of the experimental models that mimic schizophrenia-
like symptoms and its behavioral outputs. 

In Vivo Models of Schizophrenia  
(General Characteristics of Schizophrenia)  
Schizophrenia is a serious and complex mental illness that 
has neurodevelopmental origin. It affects approximately 
1% of the general population and is thought to result from 
interplay between genetic and environmental factors. It is 
unclear that how these risk factors collectively contribute 
to pathology. As multiple etiological factors contribute to 
the schizophrenia spectrum, altered symptomatology can 
be observed as the condition progresses. Symptoms of 
schizophrenia is classified primarily into three: positive, 
negative, and cognitive symptoms.[1−3] Positive symptoms 
(hallucinations, delusions, disorganized thought processes, 
disorganized or catatonic behavior, etc.) have an acute 
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onset, respond to antipsychotics and are composed of bio-
chemical dysregulations.[4] Negative symptoms (affective 
flattening, alogia, apathy, anhedonia and asociality, atten-
tion disorders, etc.) respond to antipsychotics weakly, can 
be seen in combination with cognitive and behavioral dis-
orders which also contain abnormal involuntary move-
ments.[1,4] Cognitive symptoms (attention disorders, mem-
ory deficits, executive functioning, etc.) respond poorly to 
drugs and have negative effects on illness processes, quali-
ty of daily life.[1,5] 

Although the pathophysiology of schizophrenia is not 
identified completely, it is well recognized that it has a 
complex structure. As a result, rather than relying on a sin-
gle approach to explain schizophrenia, a combination of 
different approaches such as chemical, environmental, 
genetic, and structural components may be more helpful 
in understanding schizophrenia’s pathogenesis.[3,6] 

Alterations in neurotransmitters are one of the most 
important aspects of schizophrenia pathophysiology.[7,8] 
Reduced plasma dopamine metabolites are a sign of 
dopaminergic dysregulation in patients with a poor prog-
nosis and social impairments. Higher dopamine metabo-
lites, on the other hand, are detected mostly in patients 
with positive symptoms.[9] Glutamatergic hypofunction,[10] 
serotonergic dysregulation (as 5-HT1A receptor overex-
pression),[11] and changes in prefrontal cortex gamma-
aminobutyric acid (GABA) neurotransmission (such as 
GABA-A receptor upregulation) have all been reported in 
the neurotransmitter researches.[12] 

The researches on the brains of schizophrenic subjects 
are focused mainly on temporal cortex, frontal cortex, 
striatum, thalamus, hippocampus.[13−15] In these researches, 
decrease in temporal cortex, hippocampus, amygdala and 
parietal cortex volume are reported. 

Genetic predisposition, because of the strong link with 
schizophrenia etiogenesis, is a crucial issue for most of the 
researches:[16] DISC1,[17] and dystrobrevin binding protein 
1 (DTNBP1), dysbindin,[18] NRG1, ErbB4,[19] GAD, 
BDNF[20,21] are some of the mostly studied genes in the 
schizophrenia researches. Furthermore, environmental 
factors that include physiological, pharmacologic and psy-
chological events have an influence on schizophrenia 
etiopathogenesis.[22] 

In present review, we provide a brief overview of five 
animal models of schizophrenia. Also, we summarized 
common pathways involved in schizophrenia-like brain 
and behavioral abnormalities, which are specific to the ani-
mal model of interest. 

At least twenty animal models of schizophrenia have 
been using in researches, and new ones are created in line 

with purposes of the researches. In this review, we focused 
on prevalently used animal models:  
• pharmacologic animal models,  
• lesion animal models, 
• neurodevelopmental animal models,  
• genetic-epigenetic animal models,  
• combinations of animal models 

Pharmacologic Animal Models  
In 1950’s first animal model of schizophrenia was devel-
oped in the basis of amphetamine. Psychosis that stimulat-
ed with amphetamine is used to mimic positive symp-
toms.[23] Pharmacologic animal models are based on the 
dysregulations in neurotransmitters. However, these mod-
els have constructive validity, they maintain limited infor-
mation about cognition and thought processes.[24−38] 

Serotonergic approach: Serotonergic (5-HT) neu-
rotransmission is reported as an important issue for 
schizophrenia: Indolamines’ (LSD: lyseric acid diethy-
lamide) and phenethylamines’ (mescaline), two main hal-
lucinogenic drugs, effect mechanisms are mentioned to 
be mediated by 5-HT2A receptors.[38] On the other hand 
decrease in 5-HT2A receptor and increase in 5-HT1A 
receptor in the prefrontal cortex[39] are reported, and also 
the neuroendocrine respond to 5-HT2A receptor ago-
nists is found to be weaker in schizophrenic individuals 
then healthy subjects.[40] In dopaminergic and gluta-
matergic animal models and also in human subjects, 
LSD mechanism on startle habituation and pre-pulse 
inhibition (PPI) are shown to act directly via 5-HT2A 
receptor stimulation.[41] Similarly phencyclidine (PCP) 
acts via indirect activation of 5-HT2A receptors and 
impairs PPI.[42] 5-HT5A receptor antagonist ASP5736’s 
(N-(diaminomethylene)-1-(3,5-difluoropyridin-4-yl)-4-
fluoroi-soquinoline-7-carboxamide (2E)-but-2-enedioate) 
therapeutic effects on positive and cognitive symptoms of 
schizophrenic individuals are mentioned as a validity for 
serotonergic approach.[11] 

Dopaminergic approach: In dopaminergic approach, 
it is assumed that dysregulation in dopamine (DA) neuro-
transmission leads to the manifestation of the disorder. 
Positive symptoms are proposed to be thrived as a conse-
quence of hyperactivity in mesolimbic dopaminergic neu-
rons.[25] On the other hand, hypo-dopaminergic processes 
in fronto-cortical areas are proposed to lead negative 
symptoms.[26] 

Locomotor hyperactivity and stereotypic behaviors can 
be induced after a single amphetamine administration in 
the animal models. Repeated amphetamine administration 
may cause impairment in locomotor activity and hyperac-
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tivation in striatum dopaminergic neurotransmission, 
however alterations in social interaction may not observed 
in this animal model of schizophrenia. As a conclusion it is 
claimed that DA based animal models have limited con-
structive validity.[23,27]  

Glutamatergic approach: Despite the amphetamine 
model, through the glutamatergic approach cognitive 
deficits, negative and positive symptoms, can be mimicked 
in the same animal model.[28−30] N-methyl-D-aspartate 
receptor (NMDAR) inhibitors like PCP, dizocilpine and 
kethamine are reported to induce schizophrenia like symp-
toms (hallucination, delusion, etc.) in healthy sub-
jects.[28,29,31,32] Especially PCP is mentioned as an effective 
inducer of positive symptoms together with its influence 
on negative and cognitive symptoms.[28,33] PCP treatment 
to animals can mimic several behavioral and neurochemi-
cal abnormalities reported in schizophrenic patients, 
including hyperlocomotion, impairments in pre-pulse 
inhibition,[41] social interaction, working memory, and 
cognition.[35,36] Chronic PCP administration has been 
linked to a decrease in social contact. The acute treatment 
of haloperidol and clozapine are reported to reverse social 
interaction in the same study. As a result of those findings 
researchers concluded that this model mimics social with-
drawal which is a negative symptom of schizophrenia.[33,39] 
The effects of PCP on gene expression in the brain are 
explored, and the expression levels of 146 genes (associat-
ed with apoptosis, neurological disorders, and schizophre-
nia-related genes) are found to be altered. Analyzing the 
signalization pathways reveal an increase in calcium sig-
naling and long-term synaptic potentiation. These find-
ings also support the use of PCP injection as a schizophre-
nia animal model.[37]  

GABAergic approach: In prefrontal cortex γ-
aminobutyric acid (GABA) neurons receive synaptic inputs 
from dopaminergic terminals, on the other hand they have 
inhibitory control over excitatory outputs of the pyramidal 
neurons, and also they have regulatory effects on develop-
mental alterations that are seen in late adolescence. This 
mechanism makes GABAergic, dopaminergic and gluta-
matergic interactions a considerable issue in schizophrenia 
researches.[43,44] 

Increase in GABA-A receptor expression[45] and 
decrease in glutamic acid decarboxylase 67 (GAD67) 
expression in prefrontal cortex[46] reflect GABAergic alter-
ations that consist in pathophysiology of schizophrenia. 
After a decrease in calcium flux as a result of NMDAR 
hypofunction, GAD67 downregulation has been reported 
as a result of interneurons’ response to NMDAR antago-
nism.[47] The decrease in PPI after injection of the GABA-
A receptor antagonist picrotoxin to the rat medial pre-

frontal cortex[48] and the decrease in parvalbumin-contain-
ing GABAergic interneurons after prenatal MAM injec-
tion[49] have both been demonstrated in animal studies. 

Risk factors like early life stress and trauma are shown 
to increase psychosis risk and accomplish subjects more 
vulnerable to hippocampal hyperactivity in their late life 
by impairing developing GABAergic neurons.[50] 
Hippocampal hyperactivity is associated with cognitive 
dysfunction[51] and impairment in perceived reality.[52] In 
schizophrenic individuals hippocampal hyperactivity 
level[52] or glutamatergic dysregulation leads to decrease in 
hippocampal volume which is used to mimic hippocampal 
dysfunction in developmental animal models of 
schizophrenia.[51] 

Lesion Animal Models  
Because of the prefrontal cortex’s executive functions in 
attention, working memory, social interaction and emo-
tional processes, prefrontal cortical lesions are widely used 
in schizophrenia researches.[53] Behavioral experiments 
support the prefrontal cortex’s regulatory role on subcor-
tical DA activity.[54] Increase in amphetamine induced 
stereotypic behavior and continuous hyperexcitability with 
stress exposure are reported after prefrontal cortex lesion 
in adult rats.[55] 

Hippocampal formation plays a key function in pre-
frontal cortex modulation and has direct control over the 
dopaminergic system.[56] Because of these features, lesions 
of hippocampal formation are used in researches: 
Excitotoxic lesions of dorsal and ventral hippocampus are 
found to stimulate different behavioral profiles. Lesions of 
dorsal hippocampus are not found to be effective in 
amphetamine induced locomotor activity.[57] However by 
kainic acid administration, neural loss is reported in dorsal 
hippocampus, and this model is proposed as a neurode-
generative animal model of schizophrenia.[58] On the other 
hand, lesions of ventral hippocampus by DA agonists are 
found to stimulate locomotor activity.[57]  

Because of its importance in filtering sensory informa-
tion, the thalamus is being addressed in researches. 
Abnormalities in corticothalamic limbic system are pro-
posed as a useful target for studying sensorimotor 
deficits.[57] To sum up, although lesion models have face 
and predictive validity, dimensions of lesions and adult 
nature have limiting impacts on construct validity. 

Lesions of ventral hippocampus are developed to 
mimic pathological conditions including ventricular 
enlargement and hippocampal atrophy. Abnormal behav-
iors after adolescence are reported to be induced by exci-
tatory toxin ibotenic acid microinjection as a neonatal 
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lesion of ventral hippocampus. This model is shown to be 
resulted in behavioral alterations in different developmen-
tal stages: Spatial and working memory deficits are report-
ed on postnatal day 25, however increase in social with-
drawal and aggression are seen on postnatal day 35. 
Increase in sensitivity to dopaminergic and glutamatergic 
agonists, impairments in PPI and reward mechanisms and 
increase in drug sensitivity are reported around postnatal 
day 56.[13]  

Neurodevelopmental Animal Models  
Weinberger (1986) was the first to propose the neurode-
velopmental hypothesis, stating that brain developmental 
defects that occur early in life increase the chance of clini-
cal symptoms later in life.[13] Neurodevelopmental animal 
models consist of prenatal exploration to environmental 
risk factors or toxic compounds. Based on schizophrenia 
epidemiology neurodevelopmental animal models of 
schizophrenia have construct and face validity.[59,60] 

There are several methods that are used to induce 
inflammation: polyriboinosinic-polyricocytidylic acid 
[poly(I:C)],[61] methylazoxymethanol asetat (MAM)[62] and 
bacterial endotoxin lipopolysaccharide (LPS).[63,64] On the 
other hand multiple environmental stressors can be used 
alone or together to induce molecular processes related 
with schizophrenia: Social isolation,[65] maternal separa-
tion,[66] water stress.[55] 

Usage of two different stress factors in different devel-
opmental stages are proposed to be more effective to 
mimic schizophrenia spectrum, which is also called two-hit 
animal model of schizophrenia:[67] Prenatal LPS adminis-
tration with juvenile stress or prenatal polyI:C with neona-
tal LPS. 

Polyriboinosinic-polyricocytidylic acids [poly(I:C)]: 
Multiple proinflamatuar cytokines are released through 
the binding of poly(I:C) to its receptor, tool-like receptor 
(TLR) 3.[68] This viral compound has several influences on 
rodents: After its prenatal administration pups are report-
ed to have increased locomotor sensitivity to psychostimu-
lants, impaired pre-pulse inhibition and new object recog-
nition, social withdrawal in their late life (in their adoles-
cence or young adulthood). However, spatial memory 
impairments are not reported in researches.[61,69,70] 
Together with those behavioral abnormalities neurochem-
ical alterations like decrease in DA and glutamate levels in 
prefrontal cortex and hippocampus are shown.[70] Increase 
in striatal and accumbal D1 and D2 receptors’ function, 
increase in D2 receptor function in frontal cortex, decrease 
in DA and increase in tyrosine hydroxylase in striatum are 
demonstrated.[71] 

Bacterial endotoxin lipopolysaccharide (LPS): 
Bacterial endotoxin LPS has its action through TLR4 
receptors on macrophages and other immune cells. After 
binding to its receptor, it triggers several signal transduc-
tion cascades like release of proinflamatuar cytokines, acti-
vation of transcription factors (like kappaB) and anti-
inflammatory modulators (cytokines, proteins, etc.).[72] 

Multiple behavioral deficits are also reported as a con-
sequence of LPS administration: increase in locomotor 
activity, decrease in sociality, impairment in PPI and mem-
ory, anxiety like behaviors.[69]  

It is demonstrated that LPS administration leads to 
dysregulation of dopaminergic signalization: Increase in 
accumbal and striatal DA, decrease in striatal and frontal 
DA, decrease in frontal 3,4-dihydroxyphenylasedic acid 
(DOPAC), increase in frontal and decrease in striatal 
homovallinic acid levels.[71,73] 

Methilazoxymethanol asetat (MAM): Prenatal 
MAM administration leads to developmental damage in 
fetal brain because of DNA synthesis inhibition during 
mitosis. This abnormal brain development results in mul-
tiple behavioral deficits like impairment in sociality, PPI, 
spatial cognition.[62] In another study increase in accumbal 
DA levels is reported. Increase in ventral tegmental DA 
activity and locomotor sensitivity to amphetamine are 
reversed by the injection of tetrodotoxin to ventral hip-
pocampus.[74] 

Environmental stress: Multiple environmental stress 
factors can be applied in different developmental stages 
acutely or chronically, alone or in combination: Social iso-
lation, restrainer, noise, light, water. Sociality is reported 
to be critical for normal developmental processes of rats; 
they have socially active nature which also has hierarchical 
rules.[59] For this reason any kind of social deprivation can 
resulted in abnormal brain development which also leads 
to locomotor hyperactivity, impaired cognition, increased 
anxiety, depressive like behaviors and aggression which are 
also reported as schizophrenia symptoms.[59,65] 

Stress exposure stimulates the release of stress hor-
mones that resulted in dysregulation of several neuro-
chemical compounds: decrease in DA, DOPAC and 
homovallinic acid levels,[75] increase in striatal and accum-
bal, decrease in frontal serotonin levels, increase in corti-
costriatal noradrenaline level which are related to anxiety 
and positive symptoms,[76] downregulation in cortical par-
valbumin containing GABAergic neurotransmission.[65] 

Schizophrenia-like behavioral and neurochemical 
abnormalities that are generated by using environmental 
stressors can be reversed by antipsychotics, and this condi-
tion is proposed to be sufficient for this model’s validity.[77] 
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Genetic Animal Models (Knockout & 
Transgenic)  
Genetic studies are identified several specific genes that are 
associated with schizophrenia disorder.[78−90] Generally, 
twin studies are shown that schizophrenia is a predominant 
genetic disorder, with estimates of heritability risk ranging 
at 50−80%. In researches it is demonstrated that single 
effects of a major gene are unlikely to mimic schizophre-
nia’s complexity; instead, polygenic models consists of 
multiple-risk genes can provide the best expression for 
schizophrenia.[91,92]  

There are several genetic animal models of 
schizophrenia: neurodevelopmental candidate genes (reel-
in, BDNF, GAD37, N-CAM); hyperdopaminergic hypoth-
esis related genes (Akt, PP2A, B-arrestin 2, DARPP-32); 
hypoglutamatergic approach related genes (NMDR resep-
tor subunit 1, calciceurin  knockout); susceptibility genes of 
schizophrenia (COMT, NRG1, Dysbindin, DISC1, RGS-
4, CHRNA7, NPAS3, PRODH2 [22q11]).[2,78−80,93] 

N-methyl-D-aspartat (NMDA) receptor subunits 
importance in schizophrenia neuropathology is reported in 
schizophrenic postmortem brain tissues: decrease in NR1 
subunit expression,[78] deficits in associative learning pro-
cesses are linked with NMDAR dependent plasticity.[79] 
Hyperlocomotion, stereotypic behavior, decrease in social 
interaction, deficits in cognition and abnormal brain devel-
opment, impairment in working memory, anhedonia and 
anxiety,[2,80] impairment in spatial memory, hyperactivity in 
novel environment and depression[81] are reported in NR1 
mutant animal models of schizophrenia. These behavioral 
anomalies are not seen if NR1 subunit deficiency is gener-
ated in adolescence.[2]  

DISC1’s influence on neuronal migration, synaptic 
plasticity, neurogenesis together with its effect on mecha-
nisms in schizophrenia onset, is demonstrated in multiple 
researches.[82−84] Schizophrenia like behavioral deficits are 
reported in genetic models of DISC1: Hyperactivity in 
novel environment, immobility in forced swimming test, 
impairment in pre-pulse inhibition,[85] hyper or hypoloco-
motion, impairment in cognition and alterations in brain 
morphology which are also compatible with schizophrenic 
subjects’ symptoms.[86,87] 

In multiple studies, it is reported that “dysbindin1”, 
coded by DTNBP1, has an influence in regulation of exo-
cytosis and vesicular genesis during neurotransmitter 
release. In addition, it has a role in dopaminergic and glu-
tamatergic neurotransmissions. On the other hand it is 
shown that DTNP1 associates with prefrontal and cortical 
functions of schizophrenic individuals, whereas episodic 
and working memory of healthy individuals. Decrease in 

dysbindin1 mRNA and protein expressions are reported in 
postmortem brain tissues of schizophrenic subjects.[1,88] 
Sand (Sdy) mice have DTNBP1 homozygote mutations 
that lead to lack of dysbindin1 protein expression.[88] 

Schizophrenia like behavioral alterations as increase in 
locomotor activity, cognitive deficits, decrease in social 
interaction, and impairment in PPI and response adapta-
tion to sensory stimulus are demonstrated.[89] Sdy mice can 
be used to investigate dysbindin’s potential pathways: 
decrease in mGluRI signalization and its association with 
synaptic plasticity are shown. Heterozygote mutants are 
also used in researches.[88]  

Combinations of Animal Models  
To generate an animal model, combination of multiple 
animal models that includes several molecular mechanisms 
is suggested to mimic the complex mechanisms of 
schizophrenia. Animal models consist of multiple parame-
ters can be more useful in understanding mechanisms of 
schizophrenia and generating more effective therapeutic 
strategies.[83,84,90,91] For instance, measuring the adult 
behavioral alterations in dominant-negative N-terminus 
human DISC1 (DN-DISC1) expressing transgenic mice is 
used with the combination of neonatal[83] and prenatal[84] 
poly(I:C) injection. Deficits in hippocampus dependent 
fear memory, working memory, object recognition mem-
ory, decrease in sociality, aggressive behavior are reported 
in neonatal poly(I:C) injected DN-DISC1 mice.[83] To 
determine the efficiency of animal models, behavioral 
alterations are investigated by using four different experi-
mental groups: (1) control group, (2) standard genetic 
group (3), environmental group, (4) gene × environment 
group. Behavioral paradigms are found to be worsening in 
gene × environment group, and these kind of models are 
suggested to be critical for animal model’s validity.[91] 

Behavioral Parameters and Their Testing 
Methods  
Clinical symptoms and related behavioral parameters in 
animal models of schizophrenia: 

Positive symptoms: In animal models hyperlocoma-
tion in novel environment and as a response to stress are 
linked with psychomotor agitation, delusion, hallucination 
and psychosis which are seen in human subjects. 
Stereotypic behaviors, hyperlocomation and vulnerability 
to stress can be investigated by open field test. In animal 
models hyperactivity can be measured and observed as pos-
tural disorders, climbing behavior, stereotypic movements 
(repeated sniffing, licking, etc.). Instead of catatonia, the 
term “catalepsy” is used for animals and can be measured 
by wire grids and bar test. 



Negative symptoms: Anhedonia, lack of motivation 
are seen as an increased immobility in animal models and 
can be measured by forced swimming and sucrose prefer-
ence tests. To identify mood disorders, elevated plus maze, 
light/dark box and open area tests can be used. Social with-
drawal which is seen in schizophrenic individuals can be 
measured by social interaction tests in animal models. 
There are several protocols for social interaction tests: 3-
Chamber social interaction and social novelty preference 
paradigm are commonly used.  

Cognitive disorders: In animal models schizophrenia-
like cognitive deficits can be evaluated by multiple param-
eters, that consist of working memory, long term memory, 
spatial learning memory, executive functions by using cog-
nitive tests: Barnes maze, Radial arm maze, Morris water 
maze, T or Y maze, attentional set shifting task, 5- choice 
serial-reaction time test, radial arm maze. 

Conclusion  
There are multiple animal models of schizophrenia 
(Table 1), targeting specific mechanisms of interest. 
Recent researches are focused on the animal models that 
consist of multiple mechanisms and researchers are men-
tioned the requirement for the combination of multiple 
models to mimic this spectrum. 

Animal models can reflect one or more symptoms of 
schizophrenia, however this disorder has much more of 
that. For instance animal model of amphetamine can 
reflect hyperactivity as a response to striatal dopaminer-
gic activity, however other symptoms like cognitive 
deficits can not be observed by this animal model.[27] On 
the other hand in the model of glutamatergic hypofunc-
tion, hyperactivity and worsening in positive symptoms 
are demonstrated.[30] It is shown that prefrontal gluta-
matergic hypofunction leads not only positive symp-
toms, but also negative symptoms together with cogni-
tive deficits.[28,29]  

In researches it is demonstrated that preference of ani-
mals’ strain, developmental stages for any administration 
(like LPS, etc.) or any environmental stressors that will be 
applied, is critical for the studies’ purpose and results.[62] 
For instance after single or repeated PCP administration, 
decrease in sociality is reported,[30] whereas social deficits as 
a response to amphetamine administration is contradicto-
ry. Prenatal administration of MAM and poly (I:C) are 
reported to lead decrease in sociality, however preadoles-
cent administration of MAM also results with social 
deficits.[74] As a response to neonatal lesion of ventral hip-
pocampus, decrease in social interaction together with the 
increase in aggression is shown.[14] Repeated administra-
tion of PCP is found to induce anhedonia like behavior, 
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Table 1  
Results of the measurements (n=55).

Animal model Approaches Clinical symptoms* Schizophrenia like symptoms  Behavioral task 

Pharmacological Serotonergic  
Dopaminergic 
Glutamatergic

Positive
 

GABAergic 

Lesion Hippocampal  
Thalamic 

Neurodevelopmental Poly(I:C) 
LPS 

MAM
Negative

 
Stress 

Genetic Knock out  
Transgenic 

Combined models Env × Env Cognitive 
Env × Gene 

 Gene × Gene  
Gene × Env × Env 

 
 
 
 

*Type of clinical symptom of schizophrenia depends on the animal model that was chosen and developmental stage of the animal model that was formed. Animal model 
may include one, two or all of the symptoms. 5-CSRTT: five card sorting reaction time test; Env: environmental; Gene: genetic; LPS: lipopolysaccharide; MAM: methi-
lazoxymethanol asetat; NP: novelty preference; Poly(I:C): polyriboinosinic-polyricocytidilic acid; PPI: pre-pulse inhibition; SI: social interaction.

Hiperlocomotion 
Climbing behavior 

Stereotypic movements 
Postural disorders

Open field test 
Wire grids  
Bar test 

PPI

Social interaction 
Novelty preference 
Explorative behavior

3-Chamber SI & NP 
Resident intruder 

Social play 
Self grooming

Social cognition 
Memory  

Executive functioning 
Attention

Morris water maze 
Barnes maze 

Radial arm maze 
Latent inhibition 

5-CSRTT 
Attentional set shifting 

T/Y maze



however single administration of PCP is reported to be 
insufficient.[28,39]  

Requirement of generating novel animal models that 
mimic positive, negative and cognitive disorders together 
in one model are demonstrated. That kind of models can 
include multiple molecular mechanisms like the 
schizophrenia spectrum itself. Thus, by using combina-
tion of multiple animal models, all forms of validity can be 
maintained which can also leads to investigation of better 
therapeutic strategies and better understanding of 
schizophrenia’s etiopathogenesis.[94] By this point of view, 
combining the interaction of two or more impact factors, 
as environment × gene, gene × gene, environment × envi-
ronment, environment × gene × environment are pro-
posed to be useful for modeling schizophrenia.[6,95,96] 

As a result, according to their research hypothesis 
researchers need to decide which experimental animal 
model or models to choose. This review aimed to provide 
a perspective to researchers who will conduct research on 
the physiopathology or treatment of schizophrenia. 
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