
Journal of Engineering Technology and Applied Sciences, 2017 e-ISSN: 2548-0391
Received 6 April 2017, Accepted 30 April 2017 Vol. 2, No. 1, 1-11
Published online 10 June 2017 doi: will be added
  

 
Citation: Yaslan, H . "Numerical Solution of Fractional Riccati Differential Equation via Shifted Chebyshev 
Polynomials of the Third Kind". Journal of Engineering Technology and Applied Sciences 2 (1) 2017 : 1-11 

 
NUMERICAL SOLUTION OF FRACTIONAL 
RICCATI DIFFERENTIAL EQUATION VIA 

SHIFTED CHEBYSHEV POLYNOMIALS OF THE 
THIRD KIND 

 
 

Handan Cerdik Yaslan 

 
Department of Mathematic, Faculty of Arts and Sciences, Pamukkale University, Turkey  

hcerdik@epau.edu.tr 
 
 
Abstract 
In this paper, Chebyshev collocation method is applied to fractional Riccati differential equation (FRDE) 
using the shifted Chebyshev polynomials of the third kind. Approximate analytical solution of FRDE is 
considered as Chebyshev series expansion. The fractional derivative is described in the Caputo sense. 
Using properties of Chebyshev polynomials FRDE with initial condition is reduced to a nonlinear 
system of algebraic equations which solved by the Newton iteration method. The accuracy and 
efficiency of the presented method is illustrated by numerical examples. 
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1. Introduction 

 
Riccati differential equation has a great role in the mathematical modeling of several 
phenomena such as random processes, optimal control and diffusion problems [3, 4]. Recently, 
with the increasing importance of fractional derivative on interdisciplinary applications [6, 7, 
5, 14, 18] fractional Riccati differential equation has attracted much more attention of physicists 
and mathematicians. 
 
Most fractional differential equations do not have exact solutions. Therefore, numerical 
methods have been proposed and investigated to get approximate solutions of Riccati 
differential equations of arbitrary order (FRDE). Jafari and Tajadodi [8] have presented He's 
variational iteration method to obtain the solution of FRDE. A fractional variational iteration 
method described in Riemann-Liouville derivative has been applied to the same problem in 
[16]. A numerical scheme which is combination of finite difference method and 
Pade’variational iteration has been studied by Sweliam et al. [23]. A stochastic technique has  
been developed for the solution of nonlinear Riccati differential equation of fractional order in 
[20]. Khader [9] has presented fractional Chebyshev finite difference method for FRDE. The 
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spectral Laguerre collocation method has been presented by Khader et al. [10] for FRDE. A 
generalized Chebyshev wavelet operational matrix method has been proposed by Balaji [1]. 
New homotopy perturbation method has been presented by Khan et al. [12]. Chebyshev wavelet 
operational matrix of the fractional integration has been used to solve a nonlinear fractional 
differential equations[13]. 
 
In recent decades, the class of Chebyshev polynomials is one of the most useful polynomials in 
numerical analysis. These polynomials are used to solve integral equations and fractional order 
differential equations [23, 9, 1, 13, 24,11, 21, 2]. Let us consider the FRDE of the form: 
 

2( ) ( ) ( ) ( ) ( ) ( ), 0, 0 1D y t a t b t y t c t y t t                                (1) 
 
subject to the initial condition 
 

(0) ,y c                                                                                     (2) 
 
where ( ), ( )a t b t  and ( )c t are given functions, c is an arbitrary constant, D is the Caputo 
fractional derivative operator of order α. Our aim is to obtain an analytical approximate solution 
of Eq.(1) with initial condition (2) in terms of the shifted Chebyshev polynomials of the third 
kind. 
 
Definition 1.1 : For m to be the smallest integer that exceeds the Caputo time-fractional 
derivative operator of order 0  is defined as [19] 
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m d
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    

where 1 , , 0.m m m N x      
 
The linearity property of the Caputo fractional derivative is gives as 
 

( ( ) ( )) ( ) ( ),D f x g x D f x D g x         
where  and  are constants. 
 
The organization of this paper is as follows: In Section 1, properties of Chebyshev polynomials 
of the third kind are given. In Section 3, numerical scheme is given to obtain an analytical 
approximate solution in terms of the shifted Chebyshev polynomials of the third kind of Eq. 
(1). In Section 4, numerical examples are pesented. Also a conclusion is given in Section 5. 
Note that numerical results have been computed by using Matlab programming. 
 

2. Some properties of Chebyshev polynomials of the third kind 
 
The Chebyshev polynomials ( )nV x  of the third kind are orthogonal polynomials of degree n in 

x defined on the [ 1,1]  [15] 
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where  cosx  and  [0, ]  . Also, these polynomials ( )nV x are orthogonal on [ 1,1] with 

respect to the inner product 
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where
1

1

x

x




is weight function corresponding to ( )nV x The polynomials ( )nV x may be 

generated by using the recurrence  
 

1 1( ) 2 ( ) ( ), 1, 2,...,n n nV x xV x V x n     

with 0 1( ) 1, ( ) 2 1.V x V x x    

Shifted Chebyshev polynomials of the third kind *( )nV x of degree n in x on [0,1] is given by 
*( ) (2 1)n nV x V x  . These polynomials are orthogonal on the support interval [0,1] as the 

following inner product: 
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where
1

x

x
 is weight function corresponding to *( )nV x and normalized by the requirement 

that *(1) 1.nV   The polynomials *( )nV x may be generated by using the recurrence relations 

 
* * *

1 1( ) 2(2 1) ( ) ( ), 1,2,...,n n nV x x V x V x n      

 
with * *

0 1( ) 1, ( ) 4 3.V x V x x    

 
The function ( )y x which belongs to the space of square integrable in [0,1] may be expressed 
in terms of shifted Chebyshev polynomials of the third kind as 
 

*

0

( ) ( ),i i
i

y x bV x
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  

where the coeffcients ib  are given by 
1

*
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Consider only the first (N + 1) terms of shifted Chebyshev polynomials of the third kind, so we 
can write 
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Theorem 2.1. [22] Let ( )Ny x be approximated function in terms of shifted Chebyshev 

polynomials of the third kind as given in Eq.(3), suppose then, we obtain: 
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where   is used to denote the smallest integer greater than or equal to   and 
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3. Numerical scheme 

 
Assume that the solution of Eq.(1) with initial condition (2) can be written as 
 

*

0

( ) ( ),
N

i i
i

y t bV t


                                                             (5) 

 
Substituting Eq.(5) into Eq.(1) and using Eq.(4) we have 
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Collocating Eq. (6) at N points , 1,2,..., ,pt p N we have: 
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For suitable collocation points we use roots of shifted Chebyshev polynomial of the third kinds 

*( )NV t . Also, substituting Eq.(5) into the initial condition (2) we can find 

 

0

( 1) (2 1) .
N

i
i

i

b i c


                                                                       (8) 

 
Eq.(7) and Eq.(8) give N + 1 nonlinear algebraic equations. These nonlinear system can be 
solved by using Newton method in the unknown , 0,..., .ib i N  

 
4. Numerical experiments and comparison 

 
Example 4.1. Consider the following fractional Riccati differential equation: 
 

2( ) ( ) 1, 0, 0 1D y t y t t                                                        (9) 
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subject to the initial condition y(0) = 0. The exact solution of Eq.(9) is
2

2
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Let us consider N = 7 for 1  , and we have approximate analytical solution of Eq.(9) as 
follows: 
 

7
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From Eq.(7) we obtain 
27 1 7
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where px are roots of the shifted Chebyshev polynomial *

7 ( )V t , i.e., 

 

1 2 3 4

5 6 7

0.98907380, x 0.90450849,  x 0.75000000, x 0.55226423, 

x 0.34549150, x 0.16543469, x 0.04322727.

x    
  

 

From Eq.(8) we have 
 

0

( 1) (2 1) 0.
N

i
i

i

b i


                                                        (11) 

 
Solving obtained nonlinear system (10)-(11) by Newton method at iteration 4, the unknown 
coeffcients are obtained as follows: 
 

0 1 2 3 4

5 6 7

0.61229667, 0.17166657, b 0.02189092,  b 0.00099910, b 0.000556, 

b 0.00002737, b 0.00000983, b 0.00000148.

b b      
    

 

 
The obtained numerical results by means of the proposed method are shown in Table 1, Table 
2 and Fig. 1. Table 1 shows the approximate solutions of Eq.(9) obtained for 1  . It contains 
the solution ( )oy t obtained by our method for N = 7; 10, the solution ( )vy t which is a 

polynomial with degree 7 obtained by variational iteration method (VIM) [16], the fourth 
component approximate solution ( )hy t  which is a polynomial with degree 7obtained by 

Modiffed Homotopy perturbation method [17], the solution ( )sy t obtained by stochastic 

technique [20]. From the numerical results in Table1, it is clear that the obtained solution by 
our method for N = 7 which is a polynomial with degree 7 is more close to the exact solution 
rather than other methods. For N = 10 the solution ( )oy t is exactly the same with the exact 

solution. 
 
The exact solution of (9) for fractional order case is not available, however, approximate 
numerical solutions are available. For comparison the solution  ( )oy t  given by the our method 

for N = 10, reported approximate results of [16], [20] are given in Table 2 for 0.5;0.75.   
 
Figure 1 indicates the solution obtained by our method for N = 5 which is a polynomial with 
degree 5, the solution obtained by variational iteration method (VIM) which is a polynomial 
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with degree 7 [16] and the exact solution when 1  . The results obtained by our method are 
more close to the exact solution. 
 
Table 1. Comparison of results for the solution of the equation in Example 1 for 1.   
 

t ( )ey t  
( ), 7oy t N   ( ), 10oy t N  ( )sy t

 
 

( )hy t  ( )vy t  

0 0 0 0 94.04 10  0 0 

0.1 0.099667 0. 099668 0. 099667 0. 099665 0. 099668 0. 099667 
0.2 0.197375 0. 197375 0. 197375 0. 197400 0. 197375 0. 197375 
0.3 0.291312 0. 291313 0. 291312 0. 291351 0. 291312 0. 291320 
0.4 0. 379948 0. 379949 0. 379948 0. 379954 0. 379944 0. 380005 
0.5 0. 462117 0. 462117 0. 462117 0. 462081 0. 462078 0. 462375 
0.6 0. 537049 0. 537049 0. 537049 0. 537021 0. 536857 0. 537923 
0.7 0. 604367 0. 604368 0. 604367 0. 604390 0. 603631 0. 606768 
0.8 0. 664036 0. 664037 0. 664036 0. 664095 0. 661706 0. 669695 
0.9 0. 716297 0. 716298 0. 716297  0. 709919 0. 728139 
1 0. 761594 0. 761594 0. 761594 0. 76159 0. 746032 0. 784126 

 
Table 2. Comparison of results for the solution Example 1 for fractional order cases 
 

t 
( ), 0.5vy t  

 

( ), 0.75vy t  
 

( ), 0.5vy t  
 

( ), 0.75vy t  
 
 

( ), 0.5oy t  
 

( ), 0.75oy t  
 

0 0. 009493 0. 000798 0 0 0 0 
0.1 0. 289667 0. 165087 0. 086513 0.190102  0. 326538 0. 187449 
0.2 0. 386489 0. 276350 0. 427831 0. 161584 0. 432390 0. 307255 
0.3 0. 441120 0. 356196 0. 405062 0. 500536 0. 505013 0. 402926 
0.4 0. 482348 0. 416916 0. 321523 0. 483479 0. 550349 0. 479914 
0.5 0. 516379 0. 465520 0. 413682 0. 550470 0. 590155 0. 543708 
0.6 0. 544872 0. 506004 0. 515445  0. 610344 0. 621147 0. 596804 
0.7 0. 568545 0. 540629 0. 626403  0. 666961 0. 643440 0. 640819 
0.8 0. 587895 0. 570632 0. 745278  0. 723760 0. 665904 0. 678077 
0.9 0. 603344 0. 596636 0. 870074 0. 783638 0. 682599 0. 709518 
1 0. 615268 0. 618873 0. 998176 0. 848783 0. 698172 0. 736279 
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Figure 1: The behavior of the approximate solutions and the exact solution in Example 1 

for 1.   
 
 
Example 4.2. Consider the following fractional Riccati differential equation: 
 

2( ) 2 ( ) ( ) 1, 0, 0 1D y t y t y t t                                                 (12) 
 
subject to the initial condition y(0) = 0. The exact solution of Eq.(9) is 

  1 2 1
( ) 1 2 tanh 2 log

2 2 1
ey t t

 
      

 when 1.   

Using the suggested method, the obtained numerical results are given in Fig. 2, Fig. 3, Table 3 
and Table 4. Figure 2 indicates the solution ( )oy t of Eq.(12) obtained by our method for N = 7, 

the solution ( )nhy t  which is a polynomial with degree 21 obtained by new homotopy 

perturbation method [12] and the exact solution ( )ey t  for 1  . As shown in Figure 2 the 

approximate solutions ( )oy t and ( )nhy t are in high agreement with the exact solutions in the 

interval [0,1] . After t = 1 while the approximate solution ( )nhy t moves away from the exact 

solution, the approximate solution ( )oy t  shows the same behavior with the exact solution. 

 
Figure 3 indicates the solution ( )oy t of Eq.(12) obtained by our method for 0.5;0.75;1  for 

N = 7 and the exact solution for 1  . 
 
Table 3 indicates the approximate solutions for Eq.(12) obtained for 1  on the [0,1] . It 

presents the solution ( )oy t  obtained by our method for N = 10; the solution ( )cy t which contains 

192 term obtained by Chebyshev wavelets method [13], the solution ( )vy t which is a 

polynomial with degree 7 obtained by fractional variational iteration method [16], the solution 
( )sy t obtained by stochastic technique [20], the solution ( )nhy t which is a polynomial with 

degree 21 obtained by new homotopy perturbation method [12]. From the numerical results in  
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Table 3, it is clear that the obtained numerical solution by using our method is in very good 
agreement with the exact solution when 1  . 
The exact solution of (12) for fractional order case is not available. However, approximate 
numerical solutions are available. Table 4 indicates the approximate solutions for Eq.(12) 
obtained for 0.5   on the [0,1] . It presents the solution ( )oy t obtained by our method for N = 

10; the solution ( )cy t which contains 192 term obtained by Chebyshev wavelets method [13], 

the solution ( )vy t which is a polynomial with degree 7 obtained by fractional variational 

iteration method [16], the solution ( )sy t obtained by stochastic technique [20], the solution 

( )nhy t which is a polynomial with degree 21 obtained by new homotopy perturbation method 

[12]. 
 
Table 3. Comparison of results for the solution of the equation in Example 2 for 1.   
 

t ( )ey t  
( )oy t  ( )cy t  ( )nhy t

 
 

( )sy t  ( )vy t  

0 0 0 0 0 96.58 10  0 

0.1 0. 110295 0. 110295 0. 110311 0. 110295 0. 110328 0. 110266 
0.2 0. 241977 0. 241977 0. 241995 0. 241977 0. 241997 0. 241585 
0.3 0. 395105 0. 395105 0. 395123 0. 395105 0. 395101 0. 393515 
0.4 0. 567812 0. 567812 0. 567829 0. 567812 0. 567797 0.564013 
0.5 0. 756014 0. 756015 0. 756029 0. 756014 0. 756008 0. 749528 
0.6 0. 953566 0. 953566 0. 953576 0. 953566 0. 953580 0. 945155 
0.7 1. 152949 1. 152949 1. 152955 1.152952 1.152973 1.144826 
0.8 1. 346364 1. 346364 1. 346365 1.346427 1.346374 1.341552 
0.9 1. 526911 1. 526911 1. 526909 1.527752 1.526890 1.527690 
1 1. 689498 1. 689498 1. 689494 1.697811 1.689459 1.695238 

 
 
Table 4. Comparison of results for the solution of the equation in Example 2 for 0.5.   
 

t ( )oy t  
( )cy t  ( )sy t  ( )nhy t

 
 

( )vy t  

0 0 0 0.009420 0 0 
0.1 0. 580257 0. 592756 0. 574648 0. 406052 0. 577431 
0.2 0. 921636 0. 9331796 0. 890890 0. 646694 0. 912654 
0.3 1. 168259 1. 1739836 1.090716 0. 879747 1.166253 
0.4 1. 340087 1. 3466546 1.230069 1.109343 1.353549 
0.5 1. 470003 1. 4738876 1.334181 1.328067 1.482633 
0.6 1. 568290 1. 5705716 1.415512 1.524645 1.559656 
0.7 1. 642899 1. 646199 1. 480918 1.687863 1.589984 
0.8 1. 705323 1. 706880 1. 534604 1.809799 1.578559 
0.9 1. 754742 1. 756644 1. 579396 1.890285 1.530028 
1 1. 796803 1. 798220 1. 617332 1.958464 1.448805 
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Figure 2. The behavior of the approximate solutions and the exact solution in Example 2 
for 1.   
 
 

 
Figure 3. The behavior of the approximate solution with different values of   and the exact 
solution in Example 2. 
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5. Conclusion 
 
In this paper, FRDE is reduced to a nonlinear system of algebraic equations by using the shifted 
Chebyshev polynomials of the third. The obtained algebraic equations are solved by using 
Newton method. The solutionis expressed as a truncated Chebyshev series and so it can be 
easily computed for arbitrary values of t using any computer programming in a short time  
without any computational effort. The numerical results show that the algorithm converges as 
the number of N terms is increased. 
The accuracy of the method are shown by some numerical examples. The obtained results are 
compared with the results from the other methods. From the numerical results, it is obvious that 
the proposed method provides better accuracy and efficiency than other methods. 
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