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Abstract 

In this study, a mobile device with Android operating system was used to control a six-wheel differential drive mobile robot. In the literature, it is seen that 
there is no open source and comprehensive study in this matter, so that this study aimed to give a sample work for future applications. The Robot Operating 
System (ROS) framework has been established on the mobile robot and the operations have been implemented on the ROS, while on the Android device, 
the improvements have been made using the ROS libraries. While the camera image and the calculated map information from the mobile robot are 
transferred to the Android device via the ROS, vice versa the data that controls the robot actions are transferred. The Ubuntu operating system on the 
Raspberry Pi 2 microcontroller used on the mobile robot was used with the Indigo version of the ROS. In addition, on the Android device, using the 
accelerometers and touch tones, the control of the robot has been provided in 2 different ways. Thus, it is aimed to ensure mobile robot control effectively 
in teleoperation mode. 
Keywords: Mobile Robot Control, ROS, Android OS, Raspberry Pi Application 

ROS ÜZERİNDEN ANDROID CİHAZ DUYARGALARI YARDIMIYLA MOBİL 
ROBOT KONTROLÜ 

Öz 

Bu çalışmada, üzerinde Android işletim sistemi yüklü bir mobil cihaz yardımıyla 6 tekerlekli diferansiyel sürüşlü bir mobil robotun kontrolü ele alınmıştır. 
Literatürde, bu konuda tam manasıyla açık kaynaklı ve kapsamlı bir çalışma yapılmadığı görüldüğünden, örnek bir çalışma ortaya konmak istenmiştir. 
Mobil robot üzerinde ROS (The Robot Operating System) çatısı kurulmuş ve işlemlerin ROS üzerinden gerçekleştirilmesi sağlanmışken, Android cihaz 
üzerinde ise ROS kütüphanelerinden yararlanılarak geliştirmeler yapılmıştır. Mobil robot üzerinden alınan kamera görüntüsü ve hesaplanan harita bilgisi 
ROS üzerinden Android cihaza aktarılırken, tam tersi yönde robotun sürüşünü kontrol eden veriler aktarılmaktadır. Mobil robot üzerinde kullanılan 
Raspberry Pi 2 mikrodenetleyicisi üzerinde Ubuntu işletim sistemi, ROS’un Indigo sürümüyle birlikte kullanılmıştır. Ayrıca Android cihaz üzerinde 
ivmeölçer ve dokunmatik duyargaları kullanılarak robotun kontrolü kullanıcı seçimine bırakılarak 2 farklı şekilde gerçekleştirilmiştir. Böylece mobil 
robot kontrolünün teleoperation modda efektif bir şekilde gerçekleştirilmesi amaçlanmıştır. 
Anahtar Kelimeler: Mobil Robot Kontrolü, ROS, Android OS, Raspbery Pi Uygulaması 

 

1 Introduction 

The aim of this work was to provide control of an installed 
robot with the ROS framework [1] using accelerometers and 
touch sensors on a mobile device with an Android operating 
system. As an open source, the ROS, which is constantly 
evolving, has demonstrated that the Android environment can 
be used to communicate with each other over a wireless 
connection (Wi-Fi), as well as testing the libraries of ROS that 
have been put the experimental version on market. Images 
taken with a webcam on the robot are transferred to the 
Android device via the ROS nodes and reflected in the user 
interface on the Android device. In addition, the Hokuyo URG-
04LX model laser sensor was used to scan up to 4 meters of 
180° angle, and these scan results were presented to the user 
through the Android device. Using the Laser Scan Matcher 
(LSM) [2] method, the robot position is instantly informed to 
the user and gMapping [3] from the simultaneous localization 
and mapping algorithms (SLAM) is executed by including the 
position information and the generated results are transferred 
to the Android device through the same interface. 

On the wiki pages of the ROS, there are several libraries for 
controlling the mobile robot from the joystick or keyboard [4]. 
The main motivation for achieving this work is that there are 

no instances that can work with other operating systems 
(Windows, iOS, etc.) running on Android or mobile devices. 

Section 2 includes a detailed examination of the robot platform 
along with the equipment used and features of the Android 
device, used method in this project explains in Section 3, 
implementation and experimental results are deal with in 
Section 4, and finally evaluation and conclusion part are given 
in Section 5. 

2 Robot Platform, Hardware and Android Device 

The robot platform, hardware used in this study and device 
with the Android operating system in which the 
communication is established have been investigated in the 
subheadings. 

One of the picture of the robot platform is given in Figure 1. It 
can be seen that the laser sensor, used for SLAM, is placed in 
front of the robot to ensure not obstruct laser sensor’s angle of 
scan.  Camera, used for safe driving, is placed the highest point 
of the robot to enlarge angle of view.  Thus, operator can drive 
mobile robot more effective. There are two button in front of 
the robot to use in emergency situations. That buttons cut the 
power off between battery and the wheels to provide more 
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flexibility in case there will be an emergency. The wheels are 
not fixed to the robot's body to use the robot in rugged terrains. 

 
Figure 1. Robot platform used in the study. 

2.1 Raspberry Pi 2 

Raspberry Pi 2 (RP2) is a single board and credit card-sized 
computer with a 4-core processor and 1 GB RAM capacity. 
Processing power of RP2 is quite good enough, especially the 
conversion of data from a laser sensor into a map. Ubuntu 14.04 
LTS operating system has been installed on RP2 and used for 
operations such as giving velocity command to the robot, 
camera and laser data retrieval and communication with 
Android device. 

2.2 Arduino Uno 

In this study, Arduino Uno was used to communicate with RP2 
and the shield which control the motors and to read data from 
a sonar sensor, used for measuring distance between obstacles 
and robot’s back. 

2.3 Robot Platform 

The Dagu Wild Thumper 6WD [5] robot platform was chosen 
for this study, because besides all of adaptive properties, it has 
lots of empty areas for electronic cards and batteries and the 
driving strategy of this platform (differential-driven) is more 
proper for us. 

2.4 Hokuyo Laser Range Finder 

The Hokuyo URG-04LX laser sensor is used on the robot 
platform. This laser sensor has a 180° scan angle and it can 
measure up to 4 meters. The laser is used for building a map. 
Mapping method, described in detail in Chapter 3, was 
performed more accurint if the frequency of scans is high. This 
laser sensor is good enough to be used for gMapping. 

Of course, one of the most important reasons for preference is 
compatibility with ROS. 

2.5 RBG Camera 

There is no specific feature that stands out in favor of the web 
camera. The same operations can be done in the same way with 
another camera if network traffic of that camera is not intensive 
(reviewed in chapter 4). Specifically, the model of webcam used 
in this work is Everest ATW-M10 and can display images at 
1280x960 with 30 fps. 

2.6 Battery 

Main text should be written in Cambria font and 9 pt. In special 
cases, e.g. making an emphasis, other types of fonts can also be 
used. 

2.7 Circuit Diagram 

The connection of the hardware elements on the robot platform 
to each other is shown in Figure 2.  

The voltage from the LiPo battery is reduced to 5V with the aid 
of one regulator to feed RP2. The Arduino Uno is connected to 
the Pololu motor drive shield via the USB port on the RP2 and 
the pins on it. The motors of the robot platform are connected 
to the h-bridge, so that the same voltage is applied to the three 
wheels on the left and on the same three wheels on the right. 

Likewise, the 12V voltage required for the Hokuyo laser sensor 
to operate is supplied via a regulator and then connected to the 
RP2 via USB to send the scan data.  RP2 card doesn’t have any 
Wi-Fi antenna. So, an external Wi-Fi dongle is connected to RP2 
to provide a network connection between the robot platform 
and the Android device. 

 
Figure 2. The connection of the hardware elements. 

2.8 Android Device 

During this study, Asus Memopad 7 with Android 5.0 operating 
system, which is shown in Figure 3, is used.  Besides multi touch 
feature, this device has accelerometers sensor. This sensor’s 
data is used for driving the robot with air gesture. 

 
Figure 3. Asus Memopad 7. 

The key features of the used Android device are listed in Table 
1. 

Table 1. Android device features. 

Processor Quad-core 1.2 GHz Cortex-A7 
Memory 1 GB 
Graphic 

Processor 
PowerVR SGX544 

Capacity 8 GB 
Screen Size 7.0" 
Resolution 800 x 1280 pixels 
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3 Methods Used 

The complementary methods for controlling the mobile robot 
on teleoperation mode via Android device are given in 
subheadings. Operator must know where the robot is at a 
certain time to give drive command more accurate. The 
information of robot position is called as odometry. There are a 
lot of odometry extraction method in literature. These can be 
listed as follows. The first one is wheel odometry. This type of 
odometry can produce if only there is encoder on the wheels. 
Compare to other types, this is not good enough to use in 
mapping methods. Another one is visual odometry which are 
extracted from sequential images provided from a camera. The 
third one is obtained from laser scans. In this study, odometry 
information is produced from laser scans using Laser Scan 
Matcher algorithm. 

3.1 Laser Scan Matcher (LSM) 

Laser Scan Matcher is a method that produced odometry 
information as a result of matching the laser scans received in 
consecutive time intervals to each other. It is aimed to increase 
the convergence of the odometry results produced by LSM to 
the mapping algorithm and to gain from the calculation time. 

The LSM algorithm, which is used in the study and shared codes 
as an open source in the ROS repository, is a point-to-line 
metric Iterative Closest Point (PLICP), an improved version of 
the Iterative Closest Point (ICP) method [2]. 

The ICP algorithm is an iterative method used to calculate 
trans-rotation (rotation 𝑅(𝜃), translation 𝑡) at the {𝑝𝑖}  point 
recorded on the 𝑆𝑟𝑒𝑓  reference surface. From the given set of 
{𝑝𝑖}, the recorded 𝑞 is as given by the trans-rotation value in 
Equation (1). 

𝑝 ⊕ 𝑞 = 𝑝 ⊕ (𝑡, 𝜃) ≜ 𝑅(𝜃)𝑝 + 𝑡 (1) 

The ICP tries to find the value of 𝑞 which minimizes the distance 
between the transformed point 𝑝𝑖   and the Euclidean projection 
to the reflections 𝑆𝑟𝑒𝑓 . The ICP minimization function is like 
that given by (2). Here, ∏{𝑆𝑟𝑒𝑓 , 𝑝}, 𝑆𝑟𝑒𝑓  represents the 
Euclidean projection to the ref. 

min
𝑞

∑ ‖𝑝𝑖 ⊕ 𝑞 − ∏{𝑆𝑟𝑒𝑓 , 𝑝𝑖 ⊕ 𝑞}‖
2

𝑖

 (2) 

There is no closed form solution for Equation (2). Thus, the 

initial 𝑞0 value can be generated based on the trans-rotation 

value as given by the iterative constraint function as in 

Equation (3). 

min
𝑞𝑘+1

∑ ‖𝑝𝑖 ⊕ 𝑞𝑘+1 − ∏{𝑆𝑟𝑒𝑓 , 𝑝𝑖 ⊕ 𝑞𝑘}‖
2

𝑖

 (3) 

Different ICP approaches can be given for different  ∏{𝑆𝑟𝑒𝑓} 
definitions. The PLICP algorithm generates a closed form 
solution to give a nearest linear distance to a given point. While 
the point-dot recording approach converges linearly, PLICP 
converges quadratically and appears to be given by the 
constraint function in Equation (4). 𝑛𝑖

𝑇 value is used as a 
transpose of a given point to the nearest normal line of the 
reference line. 

min
𝑞𝑘+1

∑(𝑛𝑖
𝑇[𝑝𝑖 ⊕ 𝑞𝑘+1 − ∏{𝑆𝑟𝑒𝑓 , 𝑝𝑖 ⊕ 𝑞𝑘}])2

𝑖

 (4) 

The PLICP algorithm can be defined as shown below to denote 
𝑦𝑡−1  reference laser scan, 𝑦𝑡 second laser scan, 𝑞0 initial trans-
rotation value, 𝑖 second laser scan index, 𝑗 reference laser scan 
index and k iteration count. 

 

Algorithm PLICP 

Input: 𝑦𝑡−1, 𝑦𝑡 , 𝑞0 

𝑆𝑟𝑒𝑓 ←  𝑦𝑡−1 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡  

𝑘 ← 0 

𝑟𝑒𝑝𝑒𝑎𝑡 

          𝑝𝑖
𝑤 ← 𝑝𝑖 ⊕ 𝑞𝑘  

          𝑗1
𝑖 , 𝑗2

𝑖 ← 𝑝𝑖
𝑤(𝑗1

𝑖 , 𝑗2
𝑖 ∊ 𝑦𝑡−1)

′
𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡 

          𝐶𝑘 ← 𝑎𝑙𝑙 〈𝑖, 𝑗1
𝑖 , 𝑗2

𝑖 〉 

          𝐶𝑘
′  𝑐𝑙𝑒𝑎𝑟 𝑜𝑢𝑡𝑙𝑖𝑒 

          𝐽(𝑞𝑘+1, 𝐶𝑘) ← ∑ (𝑛𝑖
𝑇[𝑅(𝜃𝑘+1)𝑝𝑖 + 𝑡𝑘+1 − 𝑝𝑗1

𝑖 ])2

𝑖
 

          𝐽′  𝑚𝑖𝑛𝑖𝑚𝑢𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡  𝑞𝑘+1  

          𝑘 ← 𝑘 + 1 

𝑢𝑛𝑡𝑖𝑙(𝑚𝑎𝑘𝑠_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟) 𝑜𝑟 (𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

Output: 𝑞 

3.2 gMapping 

GMapping [3] is one of the Simultaneous Localization and 
Mapping algorithms which are used in a lot of robot research. 
GMapping is a method that uses only the laser distance 
measurement sensor and passes to the mapping steps after 
selecting the optimum starting point with the help of odometry 
information produced by the LSM. 

GMapping is based on the Rao-Blackwellized Particle Filter 
(RBPF) [6], a multi-particle grid-based method. Each particle 
holds its own belief in the previous position of the robot and 
builds its own map. Each incoming laser scan updates the 
beliefs of the particles. The beliefs of the particles are based on 
the robot position and orientation. In addition, gMapping uses 
its own laser scan mapping method in the optimization step. 
The gMapping algorithm implemented on the ROS and used in 
the scope of the study consists of 6 important steps as shown 
below. 

1. Measurement acquisition: A new laser scan is taken. 
2. Scan Matching: Performed by pairing of previous and 

current laser scans. 

3. Sampling: Previously taken {𝑥𝑡−1
(𝑖)} particles help 

and suggested distribution 𝜋(𝑥𝑡|𝑧1:𝑡, 𝑢0:𝑡)to perform 

best {𝑥𝑡
(𝑖)} particles are calculated. 

4. Weighting: Each particle in (5) as given one 𝑤(𝑖) 
weight is calculated. 

𝑤(𝑖) =
𝑝(𝑥𝑡

(𝑖)|𝑧1:𝑡 , 𝑢0:𝑡)

𝜋(𝑥𝑡
(𝑖)|𝑧1:𝑡 , 𝑢0:𝑡)

 (5) 

5. Re-Sampling: Particles whose weight is below a 
certain threshold value are redrawn from heavy 
particles. 

6. Mapping: Each position example 𝑥𝑡
(𝑖) and all 

observations 𝑝(𝑚𝑡
(𝑖)|𝑥1:𝑡

(𝑖), 𝑧1:𝑡) based on 𝑚𝑡
(𝑖) map 

is calculated. 

The gMapping algorithm produces maps in occupancy grid type 
which supported by the ROS. This type of fusing data from 
different sensor sources can be held in a high resolution grid. 
However, running gMapping in large scale areas, where the 
number of grids is increasing, is considerably more costly than 
small areas. The occupancy rate of a grid  𝑝(𝑥, 𝑦) can be found 
as given by the number of grid points that the grid has in total 
in Equation (6). 

𝑝(𝑥, 𝑦) =
#𝑓𝑢𝑙𝑙

#𝑓𝑢𝑙𝑙 + #𝑒𝑚𝑝𝑡𝑦
 (6) 
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4 Application and Experimental Results 

The Android application and experimental results are 
discussed in this section. 

4.1 Android Application 

The developed Android application interface shows images 
from the camera on the robot in the top half of the screen, and 
map data generated using laser sensor in the bottom half. 
Teleoperating drive can be done with the joystick interface or 
accelerometer, which operates via the touch sensor. The 
maximum speed of the robot is set so that it can be gradually 
changed by four buttons at the bottom of the interface. An 
image of the interface is given in Figure 4. 

 
Figure 4. Android application interface. 

4.2 Application 

The robot platform was driven in the circular path given below 
and it was seen that the robot could successfully map. 

 
Figure 5. The sketch of the labyrinth where the robot was 

tested. 

The video of this experiment is given on the link which can be 
found under Appendix A. As can be seen from the video, the 
operator who has not seen the robot has been able to perform 
the robot's journey successfully using only the touch senses 
given from the interface. 

4.3 Experimental Results  

When the resolution of the image taken from the camera on the 
robot and the Frame Per Second (FPS) values are changed, the 
loads occurring at the processing power and network traffic are 
observed as shown in Table 2. Since the map data is also 
transferred as an image, the load on the system is similar to the 
transfer of the webcam image. 

Table 2. Web camera test chart. 

Resolution FPS 
Processor 
Load (%) 

Network 
Traffic (Kbps) 

240 x 320 30 8.75 110 
240 x 320 15 3.5 45 
480 x 640 30 15 180 
480 x 640 15 12.5 150 

960 x 1280 30 27.5 330 

 

5 Conclusion 

The aim of this work is to provide a two-way communication 
between a mobile robot running on the ROS operating system 
and a mobile device running on the Android operating system. 

As a result of the experiments, it is observed that the mobile 
robot can transmit data to the Android device via the ROS, and 
depending on the size of the transmitted data, the capacity of 
the microcontroller is observed and it is decided at which 
resolution and level the data should be sent for optimum load 
distribution. 

The implementation of an application of ROS Android platform, 
which is still in development by the developers, and the 
successful completion of the problems will be a preliminary 
evaluation for those who want to work in this area and will 
make the development process very easy. 

Moreover, the fact that mobile robot control can be carried out 
so easily via an Android device, which can now be found in 
every home, will save the need for additional control for robots 
to drive and save researchers who want to work in this way. 
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Appendix A 

The experiment’s video link: https://youtu.be/rXAVSb0B5KE 

 

https://youtu.be/rXAVSb0B5KE

