JOURNAL OF UNIVERSAL MATHEMATICS Vol.6 No.2 pp.183-220 (2023) ISSN-2618-5660 DOI: 10.33773/jum.1295736

GENERALIZED TOPOLOGICAL OPERATOR (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -OPERATOR) THEORY IN GENERALIZED TOPOLOGICAL SPACES ($\mathscr{T}_{\mathfrak{g}}$ -SPACES) PART III. GENERALIZED DERIVED (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -DERIVED) AND GENERALIZED CODERIVED (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -CODERIVED) OPERATORS

M. I. KHODABOCUS, N. -UL. -H. SOOKIA, AND R. D. SOMANAH

0000-0003-2252-4342, 0000-0002-3155-0473 and 0000-0001-6202-7610

ABSTRACT. In a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, the \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ can be characterized in the generalized sense by the novel \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ coderived operators \mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{$\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, giving rise to novel generalized \mathfrak{g} -topologies on Ω . In this paper, which forms the third part on the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces, we study the essential properties of \mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{$\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in $\mathscr{T}_{\mathfrak{g}}$ -spaces. We show that (\mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{$\mathfrak{g}}) : \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ is a pair of both dual and monotone \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators that is (\emptyset, Ω), (\cup, \cap)-preserving, and (\subseteq, \supseteq)-preserving relative to \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -(open, closed) sets. We also show that (\mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{$\mathfrak{g}}) : \mathscr{P}(\Omega) \to \mathscr{P}(\Omega) \to \mathscr{P}(\Omega)$ is a pair of weaker and stronger \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators. Finally, we diagram various relationships amongst der_{\mathfrak{g}}, \mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{$\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and present a nice application to support the overall study.</sub></sub></sub></sub></sub>

1. INTRODUCTION

The ordinary and generalized derived operators as well as their duals, called ordinary and generalized coderived operators, respectively, in ordinary $(\mathfrak{a} = \mathfrak{o})$ or generalized $(\mathfrak{a} = \mathfrak{g})$ topological spaces $(\mathfrak{T}_{\mathfrak{a}}, \mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{a}} \cdot derived \text{ and } \mathfrak{T}_{\mathfrak{a}}, \mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{a}} - coderived$ $operators in <math>\mathscr{T}_{\mathfrak{a}}$ -space) can all play very important roles, yielding to nice characterizations in $\mathscr{T}_{\mathfrak{a}}$ -spaces. For instance, ordinary and generalized characterizations of $\mathscr{T}_{\mathfrak{a}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ of a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ can be realized by specifying either the $\mathfrak{T}_{\mathfrak{a}}, \mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{a}}$ -derived operators der_a, \mathfrak{g} -Der_a : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ or the $\mathfrak{T}_{\mathfrak{a}},$ $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{a}}$ -coderived operators cod_a, \mathfrak{g} -Cod_a : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively. In actual fact, $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{a}}$ -(derivedness, coderivedness) are the generalization of $\mathfrak{T}_{\mathfrak{a}}$ -(derivedness,

Date: Received: 2023-05-23; Accepted: 2023-07-28.

²⁰⁰⁰ Mathematics Subject Classification. 54A05; 54D05, 54D65.

Key words and phrases. Generalized topological space ($\mathscr{T}_{\mathfrak{g}}$ -space), generalized sets (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets), generalized derived operator (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator), generalized coderived operator (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator).

coderivedness) in $\mathcal{T}_{\mathfrak{a}}$ -spaces while the latter are the generalization of \mathbb{R} -(derivedness, coderivedness) in \mathbb{R} , respectively.

In contrast to $(\operatorname{der}_{\mathfrak{a}}, \operatorname{cod}_{\mathfrak{a}})$, $(\mathfrak{g}\operatorname{-Der}_{\mathfrak{a}}, \mathfrak{g}\operatorname{-Cod}_{\mathfrak{a}}) : \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ in $\mathscr{T}_{\mathfrak{a}}\operatorname{-spaces}$, $(\operatorname{der}_{\mathbb{R}}, \operatorname{cod}_{\mathbb{R}}) : \mathscr{P}(\mathbb{R}) \times \mathscr{P}(\mathbb{R}) \longrightarrow \mathscr{P}(\mathbb{R}) \times \mathscr{P}(\mathbb{R})$ in \mathbb{R} is the oldest concept. If one year can be specified as the time when $(\operatorname{der}_{\mathbb{R}}, \operatorname{cod}_{\mathbb{R}}) : \mathscr{P}(\mathbb{R}) \times \mathscr{P}(\mathbb{R}) \longrightarrow \mathscr{P}(\mathbb{R}) \times \mathscr{P}(\mathbb{R})$ in \mathbb{R} was first introduced and considered, that year should probably be 1872, the year in which Georg Cantor [1, 2] investigated the convergence of Fourier series. Thereafter, various Mathematicians have introduced and considered some types of $\mathfrak{T}_{\mathfrak{o}}$, $\mathfrak{g}\operatorname{-}\mathfrak{T}_{\mathfrak{o}}$ -operators in $\mathscr{T}_{\mathfrak{o}}$ -spaces and other abstract spaces, and other types left untouched [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Cenzer and Mauldin [6] have discussed some properties of the $\mathfrak{T}_{\mathfrak{o}}$ -derived operator der_ $\mathfrak{o}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{o}}$ -space. Caldas, Jafari and Kovár [5] have studied some properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator θ -D : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (θ -derived operator). Devamanoharan, Missier and Jafari [7] have investigated some properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator D_p : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (p-derived operator). Missier and Raj [17] and Modak [18] have discussed some properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator D_k : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (λ -derived operator) in a $\mathscr{T}_{\mathfrak{o}}$ -space. Rodigo, Theodore and Jansi [22] have investigated some properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator D_k : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (β^* -derived operator). Rajendiran and Thamilselvan [21] have considered the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator g*s*D : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (g^*s^* -derived operator) for the study of g^*s^* -derived sets in a $\mathscr{T}_{\mathfrak{o}}$ -space. Sekar and Rajakumari [25] have studied some properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator D_{\alpha\vert s} = $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (α g*p-derived operator) in a $\mathscr{T}_{\mathfrak{o}}$ -space. Lei and Zhang [16] have presented alternative axiomatic definitions for the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$ -derived operator \mathfrak{g} -space.

In view of the above references, no Mathematician has studied \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces, though few Mathematicians have studied \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces. In this paper, we study a new class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces.

Hereafter, the paper is structured as thus: In § 2, the preliminary and main concepts are described in §§ 2.1 and §§ 2.2, respectively. The main results are reported in § 3. In § 4, the various relationships amongst the $\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived and $\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators in $\mathscr{T}_{\mathfrak{a}}$ -space are diagrammed in §§ 4.1, and a nice application supporting the overall study is presented in §§ 4.2. Finally, the work is concluded in § 5.

2. Theory

2.1. **Preliminary Concepts.** The standard reference for notations and preliminary concepts presented herein is the Ph.D. Thesis of Khodabocus, M. I. [38] (CF. [31, 32, 33, 34, 35, 36, 37]).

The topological structure $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ denotes a $\mathscr{T}_{\mathfrak{a}}$ -space on which no separation axioms are assumed unless otherwise mentioned [36, 37, 38]. By convention, the relation $(\alpha_1, \alpha_2, \ldots) \mathbb{R} \mathscr{A}_1 \times \mathscr{A}_2 \times \cdots$ means $\alpha_1 \mathbb{R} \mathscr{A}_1, \alpha_2 \mathbb{R} \mathscr{A}_2, \ldots$ where $\mathbb{R} = \in, \subset, \supset, \ldots$ The pairs $(I^0_n, I^*_n) \subset \mathbb{Z}^0_+ \times \mathbb{Z}^*_+$ and $(I^0_\infty, I^*_\infty) \sim \mathbb{Z}^0_+ \times \mathbb{Z}^*_+$ are pairs of *finite* and *infinite index sets*, respectively, [37, 38]. The relations $\Gamma \subset \Omega, \ \mathscr{O}_{\mathfrak{a}} \in \mathscr{T}_{\mathfrak{a}}, \ \mathscr{K}_{\mathfrak{a}} \in \neg \mathscr{T}_{\mathfrak{a}} \stackrel{\text{def}}{=} \{\mathscr{K}_{\mathfrak{a}} : \ \mathfrak{l}_{\Omega}(\mathscr{K}_{\mathfrak{a}}) \in \mathscr{T}_{\mathfrak{a}}\}$ and $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ state

that Γ , $\mathscr{O}_{\mathfrak{a}}$, $\mathscr{K}_{\mathfrak{a}}$ and $\mathscr{S}_{\mathfrak{a}}$ are a Ω -subset, $\mathscr{T}_{\mathfrak{a}}$ -open set, $\mathscr{T}_{\mathfrak{a}}$ -closed set and $\mathfrak{T}_{\mathfrak{a}}$ -set, respectively [37, 38]. The operators $\operatorname{int}_{\mathfrak{a}}, \operatorname{cl}_{\mathfrak{a}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ $\mathscr{S}_{\mathfrak{a}} \longrightarrow \operatorname{int}_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}}), \operatorname{cl}_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}})$ are the $\mathfrak{T}_{\mathfrak{a}}$ -interior and $\mathfrak{T}_{\mathfrak{a}}$ -closure operators, respectively [37, 38]. The class $\mathscr{L}_{\mathfrak{a}}\left[\Omega\right] \stackrel{\mathrm{def}}{=} \big\{ \mathbf{op}_{\mathfrak{a},\nu} = \left(\mathrm{op}_{\mathfrak{a},\nu}, \neg \operatorname{op}_{\mathfrak{a},\nu}\right): \ \nu \in I_3^0 \big\}, \, \mathrm{where} \,$

$$\begin{split} & \left\langle \mathrm{op}_{\mathfrak{a},\nu}: \ \nu \in I_3^0 \right\rangle \ = \ \left\langle \mathrm{int}_{\mathfrak{a}}, \ \mathrm{cl}_{\mathfrak{a}} \circ \mathrm{int}_{\mathfrak{a}}, \ \mathrm{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}}, \ \mathrm{cl}_{\mathfrak{a}} \circ \mathrm{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}} \right\rangle, \\ & \left\langle \neg \operatorname{op}_{\mathfrak{a},\nu}: \ \nu \in I_3^0 \right\rangle \ = \ \left\langle \mathrm{cl}_{\mathfrak{a}}, \ \mathrm{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}}, \ \mathrm{cl}_{\mathfrak{a}} \circ \mathrm{int}_{\mathfrak{a}}, \ \mathrm{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}} \circ \mathrm{int}_{\mathfrak{a}} \right\rangle, \end{split}$$

is the class of all possible pairs of compositions of these $\mathfrak{T}_{\mathfrak{a}}$ -operators in $\mathfrak{T}_{\mathfrak{a}}$. Then, $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ is called a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -set if and only if there exist $(\mathscr{O}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}) \in \mathscr{T}_{\mathfrak{a}} \times \neg \mathscr{T}_{\mathfrak{a}}$ and $\mathbf{op}_{\mathfrak{a}} \in \mathscr{L}_{\mathfrak{a}}[\Omega]$ such that the following statement holds:

(2.1)
$$(\exists \xi) [(\xi \in \mathscr{S}_{\mathfrak{a}}) \land ((\mathscr{S}_{\mathfrak{a}} \subseteq \operatorname{op}_{\mathfrak{a}}(\mathscr{O}_{\mathfrak{a}})) \lor (\mathscr{S}_{\mathfrak{a}} \supseteq \neg \operatorname{op}_{\mathfrak{a}}(\mathscr{K}_{\mathfrak{a}})))].$$

The derived class \mathfrak{g} - ν -S $[\mathfrak{T}_{\mathfrak{a}}] = \bigcup_{E \in \{O,K\}} \mathfrak{g}$ - ν -E $[\mathfrak{T}_{\mathfrak{a}}]$ is called the class of all \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -sets of category $\nu \in I_3^0$ (briefly, \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -sets) in $\mathfrak{T}_{\mathfrak{a}}$ [37, 38]. Accordingly, the class of all

 \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -sets [38] are

$$\mathfrak{g}\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right] = \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right] = \bigcup_{(\nu, \mathrm{E}) \in I_{3}^{0} \times \{\mathrm{O},\mathrm{K}\}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right] = \bigcup_{\mathrm{E} \in \{\mathrm{O},\mathrm{K}\}} \mathfrak{g}\text{-}\mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right].$$

Evidently, $S[\mathfrak{T}_{\mathfrak{a}}] = \bigcup_{\substack{(\nu, E) \in \{0\} \times \{O, K\} \\ \mathfrak{T}_{\mathfrak{a}}\text{-sets in } \mathfrak{T}_{\mathfrak{a}} [37, 38].}} \mathfrak{g}_{-\nu-E}[\mathfrak{T}_{\mathfrak{a}}] = \bigcup_{E \in \{O, K\}} E[\mathfrak{T}_{\mathfrak{a}}] \text{ is the class of all }$

Definition 2.1 (\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -Interior, \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -Closure Operators [31, 32]). In a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}}), \text{ the one-valued maps}$

$$\mathscr{G}^{-\mathrm{Cl}_{\mathfrak{a},\nu}} : \mathscr{G}^{(\mathfrak{a})} \xrightarrow{\mathcal{F}} \mathscr{G}^{(\mathfrak{a})} \xrightarrow{\mathcal{F}} \mathscr{G}^{(\mathfrak{a})} \\ \mathscr{S}_{\mathfrak{a}} \longmapsto \bigcap_{\mathscr{K}_{\mathfrak{a}} \in \mathrm{C}^{\mathrm{sup}}_{\mathfrak{g} - \nu - \mathrm{K}[\mathfrak{T}_{\mathfrak{a}}]} [\mathscr{S}_{\mathfrak{a}}]} \mathscr{K}_{\mathfrak{a}}$$

where $C^{\text{sub}}_{\mathfrak{g}-\nu-O[\mathfrak{T}_{\mathfrak{a}}]}[\mathscr{S}_{\mathfrak{a}}] \stackrel{\text{def}}{=} \{\mathscr{O}_{\mathfrak{a}} \in \mathfrak{g}-\nu-O[\mathfrak{T}_{\mathfrak{a}}] : \mathscr{O}_{\mathfrak{a}} \subseteq \mathscr{S}_{\mathfrak{a}}\} \text{ and } C^{\text{sup}}_{\mathfrak{g}-\nu-K[\mathfrak{T}_{\mathfrak{a}}]}[\mathscr{S}_{\mathfrak{a}}] \stackrel{\text{def}}{=} \{\mathscr{K}_{\mathfrak{a}} \in \mathfrak{g}-\nu-K[\mathfrak{T}_{\mathfrak{a}}] : \mathscr{K}_{\mathfrak{a}} \supseteq \mathscr{S}_{\mathfrak{a}}\} \text{ are called } \mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{a}}\text{-interior and } \mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{a}}\text{-closure oper$ ators, respectively. Then, \mathfrak{g} -I $[\mathfrak{T}_{\mathfrak{a}}] \stackrel{\text{def}}{=} \{\mathfrak{g}$ -Int $_{\mathfrak{a},\nu} : \nu \in I_3^0\}$ and \mathfrak{g} -C $[\mathfrak{T}_{\mathfrak{a}}] \stackrel{\text{def}}{=} \{\mathfrak{g}$ -Cl $_{\mathfrak{a},\nu} : \nu \in I_3^0\}$ are the classes of all \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -closure operators, respectively.

Definition 2.2 (\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -Vector Operator [31, 32]). In a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$, the two-valued map

$$(2.5) \qquad \mathfrak{g}\text{-}\mathbf{Ic}_{\mathfrak{a},\nu}:\mathscr{P}(\Omega)\times\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)\times\mathscr{P}(\Omega) \\ (\mathscr{R}_{\mathfrak{a}},\mathscr{S}_{\mathfrak{a}}) \longmapsto (\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu}(\mathscr{R}_{\mathfrak{a}}),\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}(\mathscr{S}_{\mathfrak{a}}))$$

is called a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -vector operator. Then, \mathfrak{g} -IC $[\mathfrak{T}_{\mathfrak{g}}] \stackrel{\text{def}}{=} \{\mathfrak{g}$ -IC $_{\mathfrak{g},\nu} = (\mathfrak{g}$ -Int $_{\mathfrak{g},\nu}, \mathfrak{g}$ -Cl $_{\mathfrak{g},\nu}):$ $\nu \in I_3^0$ is the class of all \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -vector operators.

 $\begin{array}{l} \textit{Remark 2.3. For every } \nu \in I_3^0, \mathfrak{g}\text{-}\mathbf{Ic}_{\mathfrak{a},\nu} = \mathbf{ic}_{\mathfrak{a}} \stackrel{\text{def}}{=} \left(\mathrm{int}_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}} \right) \text{ if based on O} \left[\mathfrak{T}_{\mathfrak{a}} \right] \times \mathrm{K} \left[\mathfrak{T}_{\mathfrak{a}} \right]. \\ \mathrm{Then}, \quad \begin{array}{l} \mathbf{ic}_{\mathfrak{a}} : \quad \mathscr{P} \left(\Omega \right) \times \mathscr{P} \left(\Omega \right) \\ \quad (\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}) \quad \longmapsto \left(\mathrm{int}_{\mathfrak{a}} \left(\mathscr{R}_{\mathfrak{a}} \right), \mathrm{cl}_{\mathfrak{a}} \left(\mathscr{S}_{\mathfrak{a}} \right) \right) \end{array} \right] \text{ is a } \mathfrak{T}_{\mathfrak{a}}\text{-vector operator} \\ \mathrm{in } a \ \mathscr{T}_{\mathfrak{a}}\text{-space } \mathfrak{T}_{\mathfrak{a}} = \left(\Omega, \ \mathscr{T}_{\mathfrak{a}} \right). \end{array}$

Definition 2.4 (Complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -Operator [31, 32]). Let $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ be a $\mathscr{T}_{\mathfrak{a}}$ space. Then, the one-valued map

(2.6)
$$\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a},\mathscr{R}_{\mathfrak{a}}}:\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$$
$$\mathscr{S}_{\mathfrak{a}} \longmapsto \mathfrak{l}_{\mathscr{R}_{\mathfrak{a}}}(\mathscr{S}_{\mathfrak{a}})$$

where $\mathcal{C}_{\mathscr{R}_{\mathfrak{a}}}:\mathscr{P}(\Omega)\longrightarrow\mathscr{P}(\Omega)$ denotes the relative complement of its operand with respect to $\mathscr{R}_{\mathfrak{a}} \in \mathfrak{g}$ -S $[\mathfrak{T}_{\mathfrak{a}}]$, is called a natural complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -operator on $\mathscr{P}(\Omega)$.

For clarity, the notation $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a},\mathscr{R}_{\mathfrak{a}}} = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a}}$ is employed whenever $\mathscr{R}_{\mathfrak{a}} = \Omega$ or $\mathscr{R}_{\mathfrak{a}}$ is understood from the context. When \mathfrak{g} - $Op_{\mathfrak{a},\mathscr{R}_{\mathfrak{a}}}:\mathscr{P}(\Omega)\longrightarrow\mathscr{P}(\Omega)$ is with respect to $\mathscr{R}_{\mathfrak{a}} \in S[\mathfrak{T}_{\mathfrak{a}}]$, the term natural complement $\mathfrak{T}_{\mathfrak{g}}$ -operator is employed and it stand for $\operatorname{Op}_{\mathfrak{a},\mathscr{R}_{\mathfrak{a}}}:\mathscr{P}(\Omega)\longrightarrow\mathscr{P}(\Omega).$

2.2. Main Concepts. The main concepts underlying the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ coderived operators in $\mathscr{T}_{\mathfrak{a}}$ -spaces, $\mathfrak{a} \in {\mathfrak{o}, \mathfrak{g}}$, are now presented.

Definition 2.5 (\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -*Derived*, \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -*Coderived Operators*). Suppose \mathfrak{g} -Int_{\mathfrak{a},ν}, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, denote the \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -interior and \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ closure operators and, \mathfrak{g} -Op_a : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ denote the absolute complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -operator in a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$. Then, the one-valued maps of the types

 $\sigma(\mathbf{o})$

on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ are called, respectively, a \mathfrak{g} - $\mathfrak{I}_{\mathfrak{a}}$ -derived operator of category ν and a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operator of category ν . The classes \mathfrak{g} -DE $[\mathfrak{T}_{\mathfrak{a}}] \stackrel{\text{def}}{=}$ $\left\{ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a},\nu}: \ \nu \in I_3^0 \right\} \text{ and } \mathfrak{g}\text{-}\mathrm{CD}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{a},\nu}: \ \nu \in I_3^0 \right\} \text{ are called, respectively,} \\ \text{the class of all } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-}\text{derived operators and the class of all } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-}\text{coderived operators.}$

Remark 2.6. If the notations \mathfrak{g} -Der_a $(\xi; \mathscr{S}_{\mathfrak{a}})$ and \mathfrak{g} -Cod_a $(\zeta; \mathscr{S}_{\mathfrak{a}})$, respectively, designate a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived point $\xi \in \mathfrak{T}_{\mathfrak{a}}$ and a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived point $\zeta \in \mathfrak{T}_{\mathfrak{a}}$ of some $\mathscr{S}_{\mathfrak{a}} \in \mathscr{P}(\Omega)$, then

 $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}}) \stackrel{\mathrm{def}}{=} \{\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a}}(\xi;\mathscr{S}_{\mathfrak{a}}): \xi\in\mathfrak{T}_{\mathfrak{a}}\},\$ (2.9)

(2.10)
$$\mathfrak{g}\operatorname{-Cod}_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}}) \stackrel{\mathrm{def}}{=} \{\mathfrak{g}\operatorname{-Cod}_{\mathfrak{a}}(\zeta;\mathscr{S}_{\mathfrak{a}}): \xi \in \mathfrak{T}_{\mathfrak{a}}\},\$$

respectively, denote the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived set and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived set of $\mathscr{S}_{\mathfrak{a}}$ in $\mathfrak{T}_{\mathfrak{a}}$.

It is interesting to view $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a}}, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{a}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ as the components of some so-called \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -vector operator, and the definition follows.

Definition 2.7 (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -*Vector Operator*). Let $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ be a $\mathscr{T}_{\mathfrak{a}}$ -space. Then, an operator of the type

$$(2.11) \qquad \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{a},\nu}: \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega) \longrightarrow \underset{\alpha \in I_{2}^{*}}{\times} \mathscr{P}(\Omega)$$
$$(\mathscr{R}_{\mathfrak{a}},\mathscr{S}_{\mathfrak{a}}) \longmapsto (\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a},\nu}(\mathscr{R}_{\mathfrak{a}}), \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{a},\nu}(\mathscr{S}_{\mathfrak{a}}))$$

on $\times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ ranging in $\times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ is called a \mathfrak{g} - $\mathfrak{T}_\mathfrak{a}$ -vector operator of category ν and, \mathfrak{g} -DC $[\mathfrak{T}_\mathfrak{a}] \stackrel{\text{def}}{=} \{\mathfrak{g}$ -Dc $_{\mathfrak{a},\nu} = (\mathfrak{g}$ -Der $_{\mathfrak{a},\nu}, \mathfrak{g}$ -Cod $_{\mathfrak{a},\nu}) : \nu \in I_3^0\}$ is called the class of all such \mathfrak{g} - $\mathfrak{T}_\mathfrak{a}$ -vector operators.

Of the notations $\mathfrak{T}_{\mathfrak{o}} = (\Omega, \mathscr{T}_{\mathfrak{o}})$ and $\mathfrak{T} = (\Omega, \mathscr{T})$, either the first will be used instead of the second, or both will be used interchangeably.

3. Main Results

The main results of the study of the essential properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -(derived, coderived) operators $(\mathfrak{g}$ -Der $_{\mathfrak{g}}, \mathfrak{g}$ -Cod $_{\mathfrak{g}})$: $\mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ in $\mathscr{T}_{\mathfrak{g}}$ -spaces are presented below.

Theorem 3.1. If \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathbf{dc}_{\mathfrak{g}} \in \mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of $\mathfrak{T}_{\mathfrak{g}}$ -operators $\mathrm{der}_{\mathfrak{g}}$, $\mathrm{cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$- \text{ I. } \left(\forall \mathscr{R} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \subseteq \mathrm{der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \right] \\ - \text{ II. } \left(\forall \mathscr{S} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \supseteq \mathrm{cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right]$$

Proof. Let $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ be a $\mathscr{T}_{\mathfrak{g}}$ -space. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathbf{DC}[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathbf{dc}_{\mathfrak{g}} \in \mathbf{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be given and $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{\alpha}^{*}} \mathscr{P}(\Omega)$ be arbitrary. Then,

$$\begin{array}{rcl} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}:\mathscr{R}_{\mathfrak{g}}&\longmapsto&\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\big)\big)\right\}\\ &\subseteq&\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathrm{cl}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\big)\big)\right\}\longleftrightarrow\det\mathfrak{g}_{\mathfrak{g}}\right)\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}:\mathscr{S}_{\mathfrak{g}}&\longmapsto&\left\{\zeta\in\mathfrak{T}_{\mathfrak{g}}:\ \zeta\in\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cup\{\zeta\}\big)\right\}\\ &\supseteq&\left\{\zeta\in\mathfrak{T}_{\mathfrak{g}}:\ \zeta\in\mathrm{int}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\zeta\}\big)\big)\right\}\longleftrightarrow\mathfrak{oder}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\end{array}$$

Thus, $(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}), \mathrm{cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \subseteq (\mathrm{der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}), \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}))$ for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$. The proof of the theorem is, therefore, complete. \Box

Remark 3.2. If \mathfrak{g} -Der $_{\mathfrak{g}} \preceq \operatorname{der}_{\mathfrak{g}}$ and \mathfrak{g} -Cod $_{\mathfrak{g}} \succeq \operatorname{cod}_{\mathfrak{g}}$ stand for \mathfrak{g} -Der $_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq \operatorname{der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ and \mathfrak{g} -Cod $_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \operatorname{cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$, respectively, then the outstanding facts are: \mathfrak{g} -Der $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is coarser (or, smaller, weaker) than $\operatorname{der}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ or, $\operatorname{der}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is finer (or, larger, stronger) than \mathfrak{g} -Der $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow$ $\mathscr{P}(\Omega); \mathfrak{g}$ -Cod $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is finer (or, larger, stronger) than $\operatorname{cod}_{\mathfrak{g}} :$ $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ or, $\operatorname{cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is coarser (or, smaller, weaker) than \mathfrak{g} -Cod $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$. **Proposition 1.** If \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and \mathfrak{g} -Op $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the natural complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operator of their components in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)) \big[\big(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \big) \\ (3.1) \qquad \land \big(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \big]$$

Proof. Let \mathfrak{g} -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, and let \mathfrak{g} -Op $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the natural complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operator of their components in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, for a $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ taken arbitrarily, it follows that

Thus, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$ for every $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$. For a $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ taken arbitrarily, it follows that

$$\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$$

$$\uparrow$$

$$\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}}\left(\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\cap\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\left\{\xi\}\right)\right)\right\}\right)$$

$$\uparrow$$

$$\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\cup\left\{\xi\}\right)\right\}$$

$$\uparrow$$

$$\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\cup\left\{\xi\}\right)\right\}$$

$$\uparrow$$

$$\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right).$$

Hence, \mathfrak{g} -Cod_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$) $\longleftrightarrow \mathfrak{g}$ -Op_{\mathfrak{g}} $\circ \mathfrak{g}$ -Der_{\mathfrak{g}} $\circ \mathfrak{g}$ -Op_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$) for every $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$. The proof of the proposition is, therefore, complete.

Lemma 3.3. If $(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{DE}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}\mathrm{CD}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}derived$ and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}coderived$ operators $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}$, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, in a $\mathscr{T}_{\mathfrak{g}}\text{-}space \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ then:

$$- \mathrm{I.} \ \mathscr{R}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega) \longrightarrow \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$$
$$- \mathrm{II.} \ \mathscr{R}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega) \longrightarrow \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$$

Proof. Let $(\mathfrak{g}\text{-Der}_{\mathfrak{g}}, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{DE}\,[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}\mathrm{CD}\,[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{derived}$ and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{coderived}$ operators $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be an arbitrary pair such that $\mathscr{R}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}}$ in a $\mathscr{T}_{\mathfrak{g}}\text{-space}$ $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, since $\mathscr{R}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}}$, it results that

$$\begin{array}{rcl} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}:\mathscr{R}_{\mathfrak{g}}&\longmapsto&\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\;\xi\in\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\big)\big)\right\}\\ &\subseteq&\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\;\xi\in\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\big)\right\}\longleftrightarrow\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}:\mathscr{R}_{\mathfrak{g}}&\longmapsto&\left\{\zeta\in\mathfrak{T}_{\mathfrak{g}}:\;\zeta\in\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cup\{\zeta\}\big)\right\}\\ &\subseteq&\left\{\zeta\in\mathfrak{T}_{\mathfrak{g}}:\;\zeta\in\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cup\{\zeta\}\big)\right\}\longleftrightarrow\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\end{array}$$

Hence, for every $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ such that $\mathscr{R}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}}, \ \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ and $\mathfrak{g}\text{-Cod}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. The proof of the lemma is, therefore, complete.

Theorem 3.4. If \mathfrak{g} -DC $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ and \mathfrak{g} -IC $[\mathfrak{T}_{\mathfrak{g}}]$ be given pairs of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and \mathfrak{g} -Int \mathfrak{g} , \mathfrak{g} -Cl $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$- \mathrm{I.} \left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right]$$
$$- \mathrm{II.} \left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right]$$

Proof. Let \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ and \mathfrak{g} -Ic $\mathfrak{g} \in \mathfrak{g}$ -IC $[\mathfrak{T}_{\mathfrak{g}}]$ be given pairs of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and \mathfrak{g} -Int \mathfrak{g} , \mathfrak{g} -Cl $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, and suppose $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

 $\begin{array}{l} -\mathrm{I. \ The \ relation} \ \mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-}\mathrm{K} \left[\mathfrak{T}_{\mathfrak{g}}\right] \ \mathrm{holds. \ Consequently, } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathfrak{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathfrak{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) = \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right). \ \mathrm{But}, \\ \mathscr{S}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-}\mathrm{K} \left[\mathfrak{T}_{\mathfrak{g}}\right] \ \mathrm{holds} \ \mathrm{and} \ \mathrm{consequently}, \ \mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathscr{S}_{\mathfrak{g}} \cup \\ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right). \ \mathrm{Therefore}, \ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathscr{S}_{\mathfrak{g}} \cup \\ \mathscr{G}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right) \ \mathrm{for} \ \mathrm{all} \ \mathscr{S}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega\right). \end{array}$

– II. The relation $\mathscr{S}_{\mathfrak{g}} \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\operatorname{-O}[\mathfrak{T}_{\mathfrak{g}}]$ holds. Therefore, $\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) = \mathfrak{g}\operatorname{-Dod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) = \mathfrak{g}\operatorname{-Dod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) = \mathfrak{g}\operatorname{-Od}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Dod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) = \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathfrak{S}_{\mathfrak{g}}) = \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathfrak{S}) = \mathfrak{g}$

Proposition 2. If $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ be a strong $\mathscr{T}_{\mathfrak{g}}$ -space, then:

$$(3.2) \qquad \qquad \left(\forall \, \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{DC}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left[\mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}} : (\emptyset,\Omega) \longmapsto (\emptyset,\Omega)\right]$$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$ -space, $(\emptyset, \Omega) \longleftrightarrow (\mathfrak{g}$ - $\mathrm{Cl}_{\mathfrak{g}}(\emptyset), \mathfrak{g}$ - $\mathrm{Int}_{\mathfrak{g}}(\Omega)) \in \mathfrak{g}$ - $\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ - $\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]$. Consequently,

 $\left(\emptyset \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\emptyset\right), \Omega \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\Omega\right)\right) \longleftrightarrow \left(\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\emptyset\right), \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\Omega\right)\right) \longleftrightarrow \left(\emptyset, \Omega\right)$

Hence, \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} : (\emptyset, \Omega) \longmapsto (\emptyset, \Omega)$ for any \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$. The proof of the proposition is, therefore, complete. \Box

Remark 3.5. Relative to the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}), \{\xi\} \in \mathscr{P}(\Omega)$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closure unit set of $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ if and only if $\{\xi\}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -unit set or a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived unit set of $\mathscr{S}_{\mathfrak{g}}; \{\xi\} \in \mathscr{P}(\Omega)$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -interior unit set of $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ if and only if, relative to the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}), \{\xi\}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -unit set and a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived unit set of $\mathscr{S}_{\mathfrak{g}}$. Relative to the \mathscr{T} -space $\mathfrak{T} = (\Omega, \mathscr{T}), \{\xi\} \in \mathscr{P}(\Omega)$ is a \mathfrak{g} - \mathfrak{T} -closure unit set of $\mathscr{S} \in \mathscr{P}(\Omega)$ if and only if $\{\xi\}$ is a \mathfrak{T} -unit set or a \mathfrak{g} - \mathfrak{T} -derived unit set of $\mathscr{S}; \{\xi\} \in \mathscr{P}(\Omega)$ is a \mathfrak{g} - \mathfrak{T} -interior unit set of $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ if and only if $\{\xi\}$ is a \mathfrak{T} -unit set and a \mathfrak{g} - \mathfrak{T} -coderived unit set of \mathscr{S} .

Corollary 3.6. If \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod \mathfrak{g} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and, $\{\mathfrak{g}$ -Der $\mathfrak{g}(\xi; \mathscr{R}_{\mathfrak{g}}) : \xi \in \mathfrak{T}_{\mathfrak{g}}\}$ and $\{\mathfrak{g}$ -Cod $\mathfrak{g}(\zeta; \mathscr{R}_{\mathfrak{g}}) : \zeta \in \mathfrak{T}_{\mathfrak{g}}\}$, respectively, be the corresponding collections of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived points of some $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

- I.
$$\left(\exists \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\xi;\mathscr{R}_{\mathfrak{g}}\right)\in\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right)\left[\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\xi;\mathscr{R}_{\mathfrak{g}}\right)\notin\mathscr{R}_{\mathfrak{g}}\right]$$

$$-\text{ II. } \left(\forall \, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\zeta;\mathscr{R}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \left[\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\zeta;\mathscr{R}_{\mathfrak{g}}\right) \in \mathscr{R}_{\mathfrak{g}}\right]$$

Proposition 3. If \mathfrak{g} -DC $_{\mathfrak{g}} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$(3.3) \qquad \left(\forall \mathscr{S} \in \mathscr{P}(\Omega)\right) \left[\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathscr{S}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]$$

Proof. Let g-Dc_g ∈ g-DC [𝔅_g] be a given pair of g-𝔅_g-operators g-Der_g, g-Cod_g : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a \mathscr{T}_{g} -space $𝔅_{g} = (\Omega, \mathscr{T}_{g})$. Then, for all $\mathscr{S} \in \mathscr{P}(\Omega), \mathscr{S}_{g} \cup$ g-Der_g($\mathscr{S}_{g}) \longleftrightarrow$ g-Cl_g(\mathscr{S}_{g}) and $\mathscr{S}_{g} \cap$ g-Cod_g($\mathscr{S}_{g}) \longleftrightarrow$ g-Int_g(\mathscr{S}_{g}). But, for all $\mathscr{S} \in \mathscr{P}(\Omega), \text{g-Cl}_{g}(\mathscr{S}_{g}) \supseteq \mathscr{S}_{g}$ and g-Int_g($\mathscr{S}_{g}) \subseteq \mathscr{S}_{g}$. Hence, for all $\mathscr{S} \in \mathscr{P}(\Omega),$ $\mathscr{S}_{g} \cap \text{g-Cod}_{g}(\mathscr{S}_{g}) \subseteq \mathscr{S}_{g} \subseteq \mathscr{S}_{g} \cup \text{g-Der}_{g}(\mathscr{S}_{g})$. The proof of the proposition is, therefore, complete. □

Corollary 3.7. If \mathfrak{g} -Dc $_{\mathfrak{g}} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ and dc $_{\mathfrak{g}} \in DC [\mathfrak{T}_{\mathfrak{g}}]$ be given pairs of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and der $_{\mathfrak{g}}$, cod $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$,
respectively, in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then the following logical implication holds
for any $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$:

$$(3.4)$$

$$\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathscr{S}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$$

$$\downarrow$$

$$\mathscr{S}_{\mathfrak{g}} \cap \mathrm{cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathscr{S}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \cup \mathrm{der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}).$$

Proposition 4. If \mathfrak{g} -Dc $_{\mathfrak{g}} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets, respectively, in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

- I.
$$\left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)\right) \left[\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathscr{V}_{\mathfrak{g}} \longleftarrow \mathscr{S}_{\mathfrak{g}} \subseteq \mathscr{V}_{\mathfrak{g}}\right]$$

- II. $\left(\forall \mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)\right) \left[\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \supseteq \mathscr{U}_{\mathfrak{g}} \longleftarrow \mathscr{R}_{\mathfrak{g}} \supseteq \mathscr{U}_{\mathfrak{g}}\right]$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathbf{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathbf{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathbf{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \mathfrak{g}$ - $\mathbf{O}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ - $\mathbf{K}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets, respectively, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Suppose $(\mathscr{V}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}) \supseteq (\mathscr{S}_{\mathfrak{g}}, \mathscr{U}_{\mathfrak{g}})$, then

$$\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right),\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right)\supseteq\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right),\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)$$

But $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$ implies $(\mathscr{V}_{\mathfrak{g}}, \mathfrak{g}$ -Cod $_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \supseteq (\mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}}), \mathscr{U}_{\mathfrak{g}})$ and consequently,

$$\left(\mathscr{V}_{\mathfrak{g}}, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \supseteq \left(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right), \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \supseteq \left(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \mathscr{U}_{\mathfrak{g}}\right)$$

Hence, \mathfrak{g} -Der $\mathfrak{g}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathscr{V}_{\mathfrak{g}}$ and \mathfrak{g} -Cod $\mathfrak{g}(\mathscr{R}_{\mathfrak{g}}) \supseteq \mathscr{U}_{\mathfrak{g}}$. The proof of the proposition is, therefore, complete.

Theorem 3.8. If \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$\begin{array}{l} -\mathrm{I.} \ \left(\forall \mathscr{R}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \subseteq \mathscr{R}_{\mathfrak{g}} \ \longleftrightarrow \ \mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{K} \left[\mathfrak{T}_{\mathfrak{g}} \right] \right] \\ -\mathrm{II.} \ \left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \supseteq \mathscr{S}_{\mathfrak{g}} \ \longleftrightarrow \ \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{O} \left[\mathfrak{T}_{\mathfrak{g}} \right] \right] \end{array}$$

Proof. Let \mathfrak{g} -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

- Necessity. Suppose $(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}),\mathscr{S}_{\mathfrak{g}}) \subseteq (\mathscr{R}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}))$ hold, then $\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \longleftrightarrow \mathscr{R}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathscr{S}_{\mathfrak{g}}$. But, $\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]$. Hence, $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]$. The conditions of ITEMS I., II. are, therefore, necessary.

 $\begin{array}{l} -Sufficiency. \ {\rm Conversely, \ suppose \ } (\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}{\rm K}\,[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}{\rm O}\,[\mathfrak{T}_{\mathfrak{g}}] \ {\rm holds. \ Then}, \\ \mathscr{R}_{\mathfrak{g}} \longleftrightarrow \mathfrak{g}\text{-}{\rm Cl}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}}) \ {\rm and} \ \mathscr{S}_{\mathfrak{g}} \longleftrightarrow \mathfrak{g}\text{-}{\rm Int}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}). \ {\rm But}, \ \mathfrak{g}\text{-}{\rm Cl}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}}) \longleftrightarrow \mathscr{R}_{\mathfrak{g}}\cup \mathfrak{g}\text{-}{\rm Der}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}}) \\ {\rm and} \ \mathfrak{g}\text{-}{\rm Int}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}{\rm Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}). \ {\rm Consequently}, \ \mathscr{R}_{\mathfrak{g}} \longleftrightarrow \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}{\rm Der}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}}) \\ {\rm and} \ \mathscr{S}_{\mathfrak{g}} \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}{\rm Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}). \ {\rm Thus}, \ \big(\mathfrak{g}\text{-}{\rm Der}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}}), \mathscr{S}_{\mathfrak{g}}\big) \subseteq \ (\mathscr{R}_{\mathfrak{g}}, \mathfrak{g}\text{-}{\rm Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \big). \\ {\rm The \ conditions \ of \ ITEMS \ I., \ {\rm II. \ are, \ therefore, \ sufficient. \ The \ proof \ of \ the \ theorem \ is, \ therefore, \ complete.} \end{array}$

Proposition 5. Let \mathfrak{g} -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, and let \mathfrak{g} -Dc $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$ holds for some $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$. Then:

$$\begin{array}{l} -\text{ I. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \; \longleftrightarrow \; \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \\ -\text{ II. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \; \longleftrightarrow \; \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \end{array}$$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathbf{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathbf{Der}_{\mathfrak{g}}, \mathfrak{g}$ - $\mathbf{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and, let it be supposed that the condition \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}$ - $\mathbf{O}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ - $\mathbf{K}[\mathfrak{T}_{\mathfrak{g}}]$ holds for some $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \mathsf{X}_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$. Then:

- I. Since $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]$, $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$, where $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}:\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is the $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{interior}$ operator in $\mathfrak{T}_{\mathfrak{g}}$. But,

$$\begin{array}{rcl} \operatorname{\mathfrak{g-Int}}_{\mathfrak{g}}\circ\operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) & \longleftrightarrow & \operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\cap\operatorname{\mathfrak{g-Cod}}_{\mathfrak{g}}\circ\operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \\ & \subseteq & \operatorname{\mathfrak{g-Cod}}_{\mathfrak{g}}\circ\operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \end{array}$$

 $\mathrm{Thus},\,\mathfrak{g}\text{-}\mathrm{Der}_\mathfrak{g}\,(\mathscr{R}_\mathfrak{g})\in\mathfrak{g}\text{-}\mathrm{O}\,[\mathfrak{T}_\mathfrak{g}]\;\longleftrightarrow\;\;\mathfrak{g}\text{-}\mathrm{Der}_\mathfrak{g}\,(\mathscr{R}_\mathfrak{g})\subseteq\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\circ\mathfrak{g}\text{-}\mathrm{Der}_\mathfrak{g}\,(\mathscr{R}_\mathfrak{g}).$

- II. Since \mathfrak{g} -Cod_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$) $\in \mathfrak{g}$ -K [$\mathfrak{T}_{\mathfrak{g}}$], \mathfrak{g} -Cl_{\mathfrak{g}} $\circ \mathfrak{g}$ -Cod_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$) $\subseteq \mathfrak{g}$ -Cod_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$), where \mathfrak{g} -Cl_{$\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closure operator in $\mathfrak{T}_{\mathfrak{g}}$. But,</sub>

$$\begin{array}{rcl} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & \supseteq & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \end{array}$$

Hence, $\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\operatorname{-K}[\mathfrak{T}_{\mathfrak{g}}] \iff \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}} \circ \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. The proof of the proposition is, therefore, complete.

Theorem 3.9. If \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC} [\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$\begin{array}{ccc} - \text{ I. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right) &\longleftrightarrow & \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \\ - \text{ II. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) &\longleftrightarrow & \bigcap_{\mathscr{V}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \end{array}$$

for any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in {\mathop{\textstyle imes}}_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega).$

 $\begin{array}{l} \textit{Proof. Suppose } \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{DC}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ be a pair of } \mathfrak{g}\text{-}\mathfrak{Operators } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}, \ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}: \\ \mathscr{P}\left(\Omega\right) \longrightarrow \mathscr{P}\left(\Omega\right), \text{ and let } (\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}\left(\Omega\right) \text{ be arbitrary in a } \mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{space } \mathfrak{T}_{\mathfrak{g}} = \\ (\Omega, \mathscr{T}_{\mathfrak{g}}). \text{ Then, since } \left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right) \longleftrightarrow \bigcup_{\mathscr{U}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \\ \text{ and } \left(\mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cup \{\xi\} \longleftrightarrow \bigcap_{\mathscr{V}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{V}_{\mathfrak{g}} \cup \{\xi\}\right), \text{ it results that} \end{array}$

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} &: \bigcup_{\mathscr{U}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right) \right) & \longmapsto \quad \bigcup_{\mathscr{U}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right) \right) \\ \\ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} &: \bigcap_{\mathscr{V}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{V}_{\mathfrak{g}} \cup \{\xi\} \right) & \longmapsto \quad \bigcap_{\mathscr{V}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{V}_{\mathfrak{g}} \cup \{\xi\} \right) \end{split}$$

Consequently,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}:\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}} &\longmapsto & \left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\bigg(\bigg(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathscr{U}_{\mathfrak{g}}\bigg)\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\bigg)\right\}\\ &\longleftrightarrow & \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\big)\right\}\\ &\longleftrightarrow & \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \end{split}$$

and

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}:\mathscr{R}_{\mathfrak{g}}\cap\mathscr{S}_{\mathfrak{g}} &\longmapsto & \left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\bigg(\bigg(\bigcap_{\mathscr{V}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathscr{U}_{\mathfrak{g}}\bigg)\cup\{\xi\}\bigg)\right\}\\ &\longleftrightarrow & \bigcap_{\mathscr{V}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\left\{\xi\in\mathfrak{T}_{\mathfrak{g}}:\ \xi\in\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{V}_{\mathfrak{g}}\cup\{\xi\}\big)\right\}\\ &\longleftrightarrow & \bigcap_{\mathscr{V}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{V}_{\mathfrak{g}}) \end{split}$$

Hence, it follows that $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}})$ and $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}})$ are equivalent to $\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$ and $\bigcap_{\mathscr{V}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$, respectively. The proof of the theorem is, therefore, complete.

Corollary 3.10. If \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod \mathfrak{g} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$\begin{split} &-\text{ I. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\right)\subseteq\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\\ &-\text{ II. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cap\mathscr{S}_{\mathfrak{g}}\right)\supseteq\bigcap_{\mathscr{V}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \end{split}$$

for any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in {\mathop{ imes}}_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega).$

Theorem 3.11. If \mathfrak{g} -Dc $_{\mathfrak{g}} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

for any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in X_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega).$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, since $\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ - $\mathrm{Op}_{\mathfrak{g}}(\{\xi\}) \longleftrightarrow (\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ - $\mathrm{Op}_{\mathfrak{g}}(\{\xi\})) \cap \mathfrak{g}$ - $\mathrm{Op}_{\mathfrak{g}}(\{\xi\})$ and $\mathscr{S}_{\mathfrak{g}} \cup \{\xi\} \longleftrightarrow (\mathscr{S}_{\mathfrak{g}} \cup \{\xi\}) \cup \{\xi\}$, it results that

$$(\{\xi\},\{\zeta\}) \subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}})$$

$$\uparrow$$

$$(\{\xi\},\{\zeta\}) \subset \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})) \times \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$$

$$\uparrow$$

$$(\{\xi\},\{\zeta\}) \subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\}),\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$$

holds for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$. Hence, $(\{\xi\}, \{\zeta\}) \subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \longleftrightarrow (\{\xi\}, \{\zeta\}) \subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\}), \mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$. The proof of the theorem is, therefore, complete. \Box

Corollary 3.12. If \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod \mathfrak{g} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$\left(\left\{\xi\right\},\left\{\zeta\right\}\right)\not\subset\mathfrak{g} ext{-}\mathbf{Dc}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\right)$$

Ĵ

(3.6)

$$\left(\left\{\xi\right\},\left\{\zeta\right\}\right) \subset \left(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right),\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)$$

for any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega).$

Proposition 6. If \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$(3.7) \qquad \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \{\xi\}, \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\zeta\}))$$
for any $(\mathscr{R}, \mathscr{L}) \subset \mathcal{V}$

for any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega).$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, since

$$\begin{array}{ll} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\big) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\big(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\big) \cup \big(\{\xi\}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\big) \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big((\mathscr{R}_{\mathfrak{g}}\cup\{\xi\})\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\big) \end{array}$$

it results that

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) & \longleftrightarrow \quad \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \ \xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right\} \\ & \longleftrightarrow \quad \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \ \xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\left(\mathscr{R}_{\mathfrak{g}} \cup \{\xi\}\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right\} \\ & \longleftrightarrow \quad \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \{\xi\}\right) \end{split}$$

Therefore, \mathfrak{g} -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}}$) \longleftrightarrow \mathfrak{g} -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}} \cup \{\xi\}$). Since

$$\begin{array}{rcl} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cup\{\zeta\}\big) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\big(\mathscr{S}_{\mathfrak{g}}\cup\{\zeta\}\big)\cap\big(\{\zeta\}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\zeta\}\big)\big)\big) \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\zeta\}\big)\big)\cup\{\zeta\}\big) \end{array}$$

it follows that

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longleftrightarrow & \left\{\zeta \in \mathfrak{T}_{\mathfrak{g}}: \ \zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cup \left\{\zeta\right\}\right)\right\} \\ & \longleftrightarrow & \left\{\zeta \in \mathfrak{T}_{\mathfrak{g}}: \ \zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\left\{\zeta\right\}\right)\right) \cup \left\{\zeta\right\}\right)\right\} \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\left\{\zeta\right\}\right)\right) \end{array}$$

Therefore, \mathfrak{g} -Cod $_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}$ -Cod $_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op $_{\mathfrak{g}}(\{\zeta\}))$. Hence, it follows that \mathfrak{g} -Dc $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}$ -Dc $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \{\xi\}, \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op $_{\mathfrak{g}}(\{\zeta\}))$. The proof of the proposition is, therefore, complete.

Proposition 7. If \mathfrak{g} -Dc $_{\mathfrak{g}} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and $(\{\xi\}, \{\zeta\}) \subset \mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}}$ be a pair of $\mathfrak{T}_{\mathfrak{g}}$ -unit sets in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$(3.8) \left(\{\xi\}, \{\zeta\} \right) \not\subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}} \right) \iff \left(\{\xi\}, \{\zeta\} \right) \in \mathfrak{g}\text{-}\mathrm{O} \left[\mathfrak{T}_{\mathfrak{g}} \right] \times \mathfrak{g}\text{-}\mathrm{K} \left[\mathfrak{T}_{\mathfrak{g}} \right]$$
for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P} \left(\Omega \right).$

 $\begin{array}{l} \textit{Proof. Suppose } \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{DC}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ be a pair of } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\operatorname{operators } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}, \, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}:\\ \mathscr{P}\left(\Omega\right) \longrightarrow \mathscr{P}\left(\Omega\right), \text{ and let } \left(\{\xi\}, \{\zeta\}\right) \subset \mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}} \text{ be a pair of } \mathfrak{T}_{\mathfrak{g}}\text{-}\operatorname{unit sets in}\\ a \ \mathscr{T}_{\mathfrak{g}}\text{-}\operatorname{space} \ \mathfrak{T}_{\mathfrak{g}} = \left(\Omega, \ \mathscr{T}_{\mathfrak{g}}\right). \text{ Suppose } \left(\{\xi\}, \{\zeta\}\right) \not\subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \text{ for an arbitrary}\\ (\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}\left(\Omega\right). \text{ Then, } \left(\{\xi\}, \{\zeta\}\right) \not\subset \mathfrak{g}\text{-}\mathbf{Dc}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \text{ implies } \left(\{\xi\}, \{\zeta\}\right) \not\subset\\ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \times \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cup \{\xi\}\right). \text{ Consequently, it follows that the}\\ \text{relation } \left(\{\xi\}, \{\zeta\}\right) \subset \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \times \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cup \{\xi\}\right) \\ \text{holds. But, } \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \leftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \{\xi\}\right) \text{ and on the other}\\ \text{hand, } \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{G}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \{\xi\}\right) \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ and } \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \in \\\\ \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}\right]. \text{ Therefore, } \left\{\{\xi\}, \{\zeta\}\right\}\right) \subset{}\left(\mathscr{W}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}\right) \text{ holds for some }\left(\mathscr{W}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}\right) \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \end{aligned}{}$

 \mathfrak{g} -K $[\mathfrak{T}_{\mathfrak{g}}]$ and consequently, $(\{\xi\}, \{\zeta\}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$. Hence, $(\{\xi\}, \{\zeta\}) \not\subset \mathfrak{g}$ -Dc $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \longleftrightarrow (\{\xi\}, \{\zeta\}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$. The proof of the proposition is, therefore, complete.

Theorem 3.13. If \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$-\mathrm{I.} \left(\forall \mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega) \right) \left[\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \right) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \right] \\ -\mathrm{II.} \left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega) \right) \left[\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right) \supseteq \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right]$$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathbf{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

Hence, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}).$

Thus, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \supseteq \mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. The proof of the theorem is, therefore, complete.

Proposition 8. If \mathfrak{g} -Dc $_{\mathfrak{g}} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$- \mathrm{I.} \ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) - \mathrm{II.} \ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$$

for any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in X_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega).$

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

– I. Since \mathfrak{g} -Cl_g($\mathscr{U}_{\mathfrak{g}}$) $\longleftrightarrow \mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}$ -Der_g($\mathscr{U}_{\mathfrak{g}}$) holds for any $\mathscr{U}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$, setting $\mathscr{U}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}$ -Der_g($\mathscr{R}_{\mathfrak{g}}$) yields

 $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \longleftrightarrow (\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}))$ But,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\big) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\cup\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\\ & \longleftrightarrow & \big(\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\big)\\ & \cup & \big(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\big)\\ & \longleftrightarrow & \big(\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\big)\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\big)\end{array}$$

Thus, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}).$

– II. Since \mathfrak{g} -Int_{\mathfrak{g}} ($\mathscr{V}_{\mathfrak{g}}$) $\longleftrightarrow \mathscr{V}_{\mathfrak{g}} \cap \mathfrak{g}$ -Cod_{\mathfrak{g}} ($\mathscr{V}_{\mathfrak{g}}$) holds for any $\mathscr{V}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$, setting $\mathscr{V}_{\mathfrak{g}} = \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ -Cod_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$) yields

$$\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)\longleftrightarrow\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)$$

But,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big) &\longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\cap\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\\ &\longleftrightarrow & \big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)\\ &\cap & \big(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)\\ &\longleftrightarrow & \big(\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})\big)\end{array}$$

Hence, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. The proof of the proposition is, therefore, complete. \Box

Corollary 3.14. If \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod \mathfrak{g} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$\begin{split} &-\text{I. } \left(\forall \mathscr{R}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \right] \\ &-\text{II. } \left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P} \left(\Omega \right) \right) \left[\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \supseteq \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right] \end{split}$$

Proposition 9. If \mathfrak{g} -Dc $\mathfrak{g} \in \mathfrak{g}$ -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der \mathfrak{g} , \mathfrak{g} -Cod \mathfrak{g} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then the following logical implications holds:

$$\begin{split} \big(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,\big(\mathscr{R}_{\mathfrak{g}}\big)\big) &\subseteq \mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,\big(\mathscr{R}_{\mathfrak{g}}\big)\big) \\ & \wedge\big(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\big) = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,\big(\mathscr{R}_{\mathfrak{g}}\big)\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,\big(\mathscr{S}_{\mathfrak{g}}\big)\big) \end{split}$$

(3.9)

$$\begin{split} &\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\subseteq\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\\ &-\text{II. For any }\left(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\right)\in {\textstyle \times_{\alpha\in I_{2}^{\ast}}}\mathscr{P}\left(\Omega\right), \end{split}$$

- I. For any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{\alpha}^{*}} \mathscr{P}(\Omega),$

$$\begin{split} \big(\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\big(\mathscr{S}_\mathfrak{g}\cap\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{S}_\mathfrak{g})\big) \supseteq \mathscr{S}_\mathfrak{g}\cap\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{S}_\mathfrak{g})\big) \\ & \wedge\big(\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\big(\mathscr{R}_\mathfrak{g}\cap\mathscr{S}_\mathfrak{g}\big) = \mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{R}_\mathfrak{g})\cap\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{S}_\mathfrak{g})\big) \end{split}$$

Ţ

(3.10)

$$\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})\supseteq \mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$$

Î

Proof. Suppose \mathfrak{g} - $\mathbf{Dc}_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} - $\mathrm{Der}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, and let $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ be arbitrary in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

196

– I. Substitute $\mathscr{S}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$ in $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}) = \bigcup_{\mathscr{U}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$ and then take $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$ into account. Conse-

and then take $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})) \subseteq \mathscr{K}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})$ into account. Consequently,

$$\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}})\big)=\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}})}\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,(\mathscr{U}_{\mathfrak{g}})\subseteq\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\,(\mathscr{R}_{\mathfrak{g}})\,.$$

Thus, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\subseteq\mathscr{R}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)$.

– II. Substitute
$$\mathscr{R}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \text{ in } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\big) = \bigcap_{\mathscr{V}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}})$$

and then take $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \supseteq \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ into account. Consequently,

$$\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\big(\mathscr{S}_\mathfrak{g}\cap\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{S}_\mathfrak{g})\big)=\bigcap_{\mathscr{V}_\mathfrak{g}=\mathscr{S}_\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{S}_\mathfrak{g})}\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{V}_\mathfrak{g})\supseteq\mathscr{S}_\mathfrak{g}\cap\mathfrak{g}\text{-}\mathrm{Cod}_\mathfrak{g}\,(\mathscr{S}_\mathfrak{g})$$

Hence, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. The proof of the proposition is, therefore, complete. \Box

Proposition 10. If \mathfrak{g} -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -DCr $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathbf{dc}_{\mathfrak{g}} \in \mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of $\mathfrak{T}_{\mathfrak{g}}$ -operators der $_{\mathfrak{g}}$, $\mathrm{cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

- I. For any $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$,

- II. For any $(\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$,

Proof. Let \mathfrak{g} -DC $[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathbf{dc}_{\mathfrak{g}} \in \mathrm{DC}[\mathfrak{T}_{\mathfrak{g}}]$ be a given pair of $\mathfrak{T}_{\mathfrak{g}}$ -operators der $_{\mathfrak{g}}$, cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

- I. Since $\mathscr{R}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}}$ implies $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ and $\operatorname{der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \operatorname{der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$, to prove the diagram it suffices to prove that, for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$, $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ implies $\operatorname{der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \operatorname{der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. Suppose $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$, then

$$\begin{aligned} \operatorname{der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) & \longleftrightarrow \quad \operatorname{der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \\ & \subseteq \quad \operatorname{der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & \subseteq \quad \operatorname{der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \operatorname{der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longleftrightarrow \operatorname{der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \end{aligned}$$

Thus, $\operatorname{der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \operatorname{der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$.

- II. Since $\mathscr{U}_{\mathfrak{g}} \supseteq \mathscr{V}_{\mathfrak{g}}$ implies $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}})$ and $\mathrm{cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \supseteq \mathrm{cod}_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}})$, to prove the diagram it suffices to prove that, for any pair $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$, $\mathrm{cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \supseteq \mathrm{cod}_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}})$ implies $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}})$. Suppose $\mathrm{cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \supseteq \mathrm{cod}_{\mathfrak{g}}(\mathscr{V}_{\mathfrak{g}})$, then

$$\begin{array}{rcl} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right) \\ & \supseteq & \mathrm{cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right) \\ & \supseteq & \mathrm{cod}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{V}_{\mathfrak{g}}\right) \end{array}$$

Hence, \mathfrak{g} -Cod_{\mathfrak{g}} ($\mathscr{U}_{\mathfrak{g}}$) $\supseteq \mathfrak{g}$ -Cod_{\mathfrak{g}} ($\mathscr{V}_{\mathfrak{g}}$) for any ($\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}$) $\in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$. The proof of the proposition is, therefore, complete. \Box

We conclude the present section with two corollaries and two axiomatic definitions derived from these two corollaries.

Corollary 3.15. A necessary and sufficient condition for the set-valued map \mathfrak{g} -Der \mathfrak{g} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ to be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is that, for every $(\{\xi\}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_3^*} \mathscr{P}(\Omega)$ such that $\{\xi\} \subset \mathfrak{g}$ -Der $\mathfrak{g}(\mathscr{R}_{\mathfrak{g}})$, it satisfies:

$$\begin{split} &-\text{ I. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\emptyset\right) = \emptyset \\ &-\text{ II. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \\ &-\text{ III. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \\ &-\text{ IV. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right) = \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \end{split}$$

Corollary 3.16. A necessary and sufficient condition for the set-valued map \mathfrak{g} -Cod_{\mathfrak{g}}: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ to be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is that, for each $(\{\zeta\}, \mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_3^*} \mathscr{P}(\Omega)$ such that $\{\zeta\} \subset \mathfrak{g}$ -Cod_{\mathfrak{g}} ($\mathscr{U}_{\mathfrak{g}}$), it satisfies:

$$- \text{ I. } \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\Omega) = \Omega$$
$$- \text{ II. } \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\})$$
$$- \text{ III. } \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \supseteq \mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$$
$$- \text{ IV. } \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cap \mathscr{V}_{\mathfrak{g}}) = \bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}} \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})$$

Hence, in a strong $\mathscr{T}_{\mathfrak{g}}$ -space, for a set-valued map \mathfrak{g} -Der $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ to be characterized as a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -derived operator it must necessarily and sufficiently satisfy a list of *derived set* $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -*derived operator conditions* (ITEMS I.-IV. of COR. 3.15), and similarly, for a set-valued map \mathfrak{g} -Der $\mathfrak{g} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ to be characterized as a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -coderived operator it must necessarily and sufficiently satisfy a list of *derived set* $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -coderived operator conditions (ITEMS V.-VIII. of COR. 3.16).

Some nice Mathematical vocabulary follow. In COR. 3.15, ITEMS I., II., III. and IV. may well be taken as stating that the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator \mathfrak{g} -Der_{\mathfrak{g}}:

198

 $\begin{aligned} \mathscr{P}(\Omega) &\longrightarrow \mathscr{P}(\Omega) \text{ is } \emptyset\text{-grounded (alternatively, } \emptyset\text{-preserving), } \xi\text{-invariant (alternatively, } \xi\text{-unaffected), } \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\text{-intensive and } \cup\text{-additive (alternatively, } \cup\text{-distributive), } \\ \text{respectively. On the other hand, ITEMS I., II., III. and IV. of COR. 3.16, may well \\ \text{be taken as stating that the } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-coderived operator } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \\ \text{ is } \\ \Omega\text{-grounded (alternatively, } \Omega\text{-preserving), } \zeta\text{-invariant (alternatively, } \zeta\text{-unaffected), } \\ \mathfrak{g}\text{-Int}_{\mathfrak{g}}\text{-extensive and } \cap\text{-additive (alternatively, } \cap\text{-distributive}), \\ \text{respectively.} \end{aligned}$

Viewing the derived set $\mathfrak{g}_{-\mathfrak{T}_{\mathfrak{g}}}$ -derived operator conditions (ITEMS I.-IV. of COR. 3.15 above) as $\mathfrak{g}_{-\mathfrak{T}_{\mathfrak{g}}}$ -derived operator axioms, the axiomatic definition of the concept of a $\mathfrak{g}_{-\mathfrak{T}_{\mathfrak{g}}}$ -derived operator, then, can be defined as a set-valued map \mathfrak{g}_{-} -Der_{\mathfrak{g}} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ satisfying a list of $\mathfrak{g}_{-\mathfrak{T}_{\mathfrak{g}}}$ -derived operator axioms. The axiomatic definition of the concept of a $\mathfrak{g}_{-\mathfrak{T}_{\mathfrak{g}}}$ -derived operator in $\mathscr{T}_{\mathfrak{g}}$ -spaces follows.

Definition 3.17 (Axiomatic Definition: \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Derived Operator). A set-valued map of the type \mathfrak{g} -Der_{\mathfrak{g}} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is called a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ if and only if, for any $(\{\xi\}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_3^*} \mathscr{P}(\Omega)$ such that $\{\xi\} \subset \mathfrak{g}$ -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}}$), it satisfies each \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator axiom in AX [\mathfrak{g} -DE [$\mathfrak{T}_{\mathfrak{g}}$]; \mathbb{B}] $\stackrel{\text{def}}{=} \{Ax_{\mathrm{DE},\nu}(\mathfrak{g}\text{-Der}_{\mathfrak{g}}): \nu \in I_4^*\}$, where $Ax_{\mathrm{DE},\nu}: \mathfrak{g}$ -DE [$\mathfrak{T}_{\mathfrak{g}}$] $\longrightarrow \mathbb{B} \stackrel{\text{def}}{=} \{0,1\}, \nu \in I_4^*$, is defined as thus:

$$\begin{aligned} &-\operatorname{Ax}_{\mathrm{DE},1}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\emptyset\right) = \emptyset \\ &-\operatorname{Ax}_{\mathrm{DE},2}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) = \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\operatorname{-Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \\ &-\operatorname{Ax}_{\mathrm{DE},3}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \\ &-\operatorname{Ax}_{\mathrm{DE},4}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right) = \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \end{aligned}$$

Thus, a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator \mathfrak{g} -Der $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is a \emptyset -grounded $(\operatorname{Ax}_{\operatorname{DE},1}), \xi$ -invariant $(\operatorname{Ax}_{\operatorname{DE},2}), \mathfrak{g}$ -Cl $_{\mathfrak{g}}$ -intensive $(\operatorname{Ax}_{\operatorname{DE},3})$ and \cup -additive $(\operatorname{Ax}_{\operatorname{DE},4})$ \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -set-valued set map forming a generalization of the $\mathfrak{T}_{\mathfrak{g}}$ -set-valued set map der $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in the strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, provided

holds for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in X_{\alpha \in I_2^*} \mathscr{P}(\Omega).$

Theorem 3.18. Let $\operatorname{AX}[\mathfrak{g}\text{-}\operatorname{DE}[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] \stackrel{\text{def}}{=} \{\operatorname{Ax}_{\operatorname{DE},\nu} : \nu \in I_4^*\}$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}derived$ operator axioms in a strong $\mathscr{T}_{\mathfrak{g}}\text{-}space \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and, let $\operatorname{Ax}_{\operatorname{DE}, I}$:

 $\mathfrak{g}\text{-}\mathrm{DE}\left[\mathfrak{T}_{\mathfrak{g}}\right]\longrightarrow\mathbb{B} \text{ such that, for any } (\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}})\in {\color{black}{\times_{\alpha\in I_{2}^{\ast}}}}\mathscr{P}\left(\Omega\right),$

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \\ (3.13) & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\left(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right)\right) \setminus \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\emptyset\right) \end{aligned}$$

Then, $\operatorname{Ax}_{\operatorname{DE},\operatorname{I}}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{DE},\nu}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) = 1.$

Proof. Let $\operatorname{AX}[\mathfrak{g}\text{-}\operatorname{DE}[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] = \{\operatorname{Ax}_{\operatorname{DE},\nu} : \nu \in I_{4}^{*}\}\$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -derived operator axioms in a strong $\mathscr{T}_{\mathfrak{g}}\text{-space }\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})\$ and, let $\operatorname{Ax}_{\operatorname{DE},\mathrm{I}} : \mathfrak{g}\text{-}\operatorname{DE}[\mathfrak{T}_{\mathfrak{g}}] \longrightarrow \mathbb{B}$ such that, for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$,

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\right)\right)\setminus\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\emptyset\right)\end{aligned}$$

Suppose $Ax_{DE,I}(\mathfrak{g}\text{-}Der_{\mathfrak{g}}) = 1$ holds. Then:

- CASE I. If
$$(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) = (\emptyset, \emptyset)$$
, then
 $\operatorname{Ax}_{\operatorname{DE}, \operatorname{I}}(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}) \stackrel{\operatorname{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\emptyset \cup \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\emptyset))$
 $\cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\emptyset,\emptyset} (\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}))\right)$
 $= (\emptyset \cup \emptyset \cup \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\emptyset \cup \emptyset)) \setminus \mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}(\emptyset)$

Consequently, \mathfrak{g} -Der_{\mathfrak{g}} $\circ \mathfrak{g}$ -Der_{\mathfrak{g}} (\emptyset) , \mathfrak{g} -Der_{\mathfrak{g}} $(\emptyset) = \emptyset$. Therefore, \mathfrak{g} -Der_{\mathfrak{g}} $(\emptyset) = \emptyset \iff Ax_{DE,1}$ (\mathfrak{g} -Der_{\mathfrak{g}}) and thus, $Ax_{DE,I} \longrightarrow Ax_{DE,1}$.

- CASE II. If $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ be arbitrary such that $\mathscr{S}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op_g ($\{\xi\}$) and $\{\xi\} \subset \mathfrak{g}$ -Der_g ($\mathscr{R}_{\mathfrak{g}}$), then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \right) \\ & = \left(\mathscr{R}_{\mathfrak{g}}\cup\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \\ & \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right)\right)\setminus\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\emptyset\right) \end{aligned}$$

Since the relation $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \subseteq \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ holds, implying $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \cup (\mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) = \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$, and $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\emptyset) = \emptyset$ by virtue of $\operatorname{Ax}_{\operatorname{DE},1}$, the above expression reduces to

$$\operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \cup \operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \operatorname{\mathfrak{g-Op}}_{\mathfrak{g}}(\{\xi\})) = \operatorname{\mathfrak{g-Der}}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \left(\mathscr{R}_{\mathfrak{g}} \cap \operatorname{\mathfrak{g-Op}}_{\mathfrak{g}}(\{\xi\})\right))$$

Clearly, \mathfrak{g} -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}} \cup (\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op_{\mathfrak{g}} ({ ξ }))) \longleftrightarrow \mathfrak{g} -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}}$). Consequently, it results that \mathfrak{g} -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op_{\mathfrak{g}} ({ ξ })) $\subseteq \mathfrak{g}$ -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}}$). But,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) & \subseteq & \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \ \xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right\} \\ & \longleftrightarrow & \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \ \xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right\} \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \end{array}$$

Consequently, \mathfrak{g} -Der $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op $_{\mathfrak{g}}(\{\xi\})) \supseteq \mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$. Therefore, it results that \mathfrak{g} -Der $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) = \mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op $_{\mathfrak{g}}(\{\xi\})) \stackrel{\text{def}}{\longleftrightarrow} \operatorname{Ax}_{\operatorname{DE},2}(\mathfrak{g}$ -Der $_{\mathfrak{g}})$ holds and hence, $\operatorname{Ax}_{\operatorname{DE},1} \longrightarrow \operatorname{Ax}_{\operatorname{DE},2}$.

– CASE III. If $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ such that $\mathscr{S}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}}\left(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{R}_{\mathfrak{g}}\right)\right) \setminus \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\emptyset\right) \end{aligned}$$

Consequently, $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$, since $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathfrak{g})$ by virtue of $\operatorname{Ax}_{\operatorname{DE},1}$. But, $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \supseteq \mathfrak{g}\text{-Der}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$. Therefore, $\mathfrak{g}\text{-Der}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \stackrel{\text{def}}{\longleftrightarrow} \operatorname{Ax}_{\operatorname{DE},3}(\mathfrak{g}\text{-Der}_{\mathfrak{g}})$ and thus, $\operatorname{Ax}_{\operatorname{DE},1} \longrightarrow \operatorname{Ax}_{\operatorname{DE},3}$.

– CASE IV. If $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\left(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right)\right) \setminus \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{Y}_{\mathfrak{g}}\right) \end{aligned}$$

By virtue of the relation $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \subseteq \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ or equivalently, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \cup (\mathscr{S}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) = \mathscr{S}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$, together with $\mathrm{Ax}_{\mathrm{DE},1}$, $\mathrm{Ax}_{\mathrm{DE},1}$ reduces to $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}) = \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \xleftarrow{\mathrm{def}}$ $\mathrm{Ax}_{\mathrm{DE},4}(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}})$ and hence, $\mathrm{Ax}_{\mathrm{DE},1} \longrightarrow \mathrm{Ax}_{\mathrm{DE},4}$.

Hence, $\operatorname{Ax}_{\operatorname{DE},\operatorname{I}}(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{DE},\nu}(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}) = 1$ and the proof of the theorem is, therefore, complete. \Box

The proposition given below contains further properties.

Proposition 11. Let $AX[\mathfrak{g}\text{-}DE[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] \stackrel{\text{def}}{=} \{Ax_{DE,\nu} : \nu \in I_4^*\}$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}$ derived operator axioms in a strong $\mathscr{T}_{\mathfrak{g}}\text{-}$ space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and, let $Ax_{DE,II}$:

 $\operatorname{\mathfrak{g-DE}}\left[\operatorname{\mathfrak{T}}_{\operatorname{\mathfrak{g}}}\right] \longrightarrow \mathbb{B} \text{ such that, for any } (\mathscr{R}_{\operatorname{\mathfrak{g}}}, \mathscr{S}_{\operatorname{\mathfrak{g}}}) \in {\mathop{\textstyle \times}_{\alpha \in I_{2}^{\ast}}} \mathscr{P}(\Omega),$

$$(3.14) \qquad \qquad Ax_{\mathrm{DE,II}}\left(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{\longleftrightarrow} \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right)$$
$$= \left(\mathscr{Q}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)$$

Then, $\operatorname{Ax}_{\operatorname{DE},\operatorname{II}}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) = 1 \longrightarrow \bigwedge_{\nu \in I_{4}^{*}} \operatorname{Ax}_{\operatorname{DE},\nu}\left(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}\right) = 1.$

Proof. Let $\operatorname{AX}[\mathfrak{g}\text{-}\operatorname{DE}[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] \stackrel{\text{def}}{=} \{\operatorname{Ax}_{\operatorname{DE},\nu} : \nu \in I_{4}^{*}\}\$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}$ derived operator axioms in a strong $\mathscr{T}_{\mathfrak{g}}\text{-}$ space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})\$ and, let $\operatorname{Ax}_{\operatorname{DE},\operatorname{II}} : \mathfrak{g}\text{-}\operatorname{DE}[\mathfrak{T}_{\mathfrak{g}}] \longrightarrow \mathbb{B}\$ such that, for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega),$

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\right)\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\right)\end{aligned}$$

Suppose $Ax_{DE,II}(\mathfrak{g}\text{-}Der_{\mathfrak{g}}) = 1$ holds. Then:

– CASE I. If $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) = (\emptyset, \emptyset)$, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \xleftarrow{\operatorname{def}} & \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\emptyset,\emptyset} \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\emptyset,\emptyset} \left(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\emptyset \cup \emptyset\right) \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\emptyset \cup \emptyset\right) \end{aligned}$$

Consequently, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\emptyset) \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\emptyset) = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\emptyset)$. But, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\emptyset) \longleftrightarrow \emptyset \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\emptyset) \longrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}(\emptyset) = \emptyset$. Therefore, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\emptyset) = \emptyset \xleftarrow{\mathrm{def}} \operatorname{Ax}_{\mathrm{DE},1}(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}})$ and thus, $\operatorname{Ax}_{\mathrm{DE},\mathrm{II}} \longrightarrow \operatorname{Ax}_{\mathrm{DE},1}$.

– CASE II. If $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary such that $\mathscr{S}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op_g($\{\xi\}$) and $\{\xi\} \subset \mathfrak{g}$ -Der_g($\mathscr{R}_{\mathfrak{g}}$), then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & & \longleftrightarrow \quad \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}(\{\xi\})}\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}(\{\xi\})}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}}\cup\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right) \\ & \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right)\end{aligned}$$

Since the relation $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \subseteq \mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$ holds, implying $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \cup (\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) = \mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$ for any $\mathscr{U}_{\mathfrak{g}} \in \{\mathscr{R}_{\mathfrak{g}}, \ \mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})\}$, $\mathrm{Ax}_{\mathrm{DE,\mathrm{II}}}$ reduces to

$$\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\left(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right)$$

Because $\mathscr{R}_{\mathfrak{g}} \supseteq \mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})$ holds, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup (\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\}))) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$. Consequently, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})) \subseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$. But,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) & \subseteq & \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \ \xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right\} \\ & \longleftrightarrow & \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \ \xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right)\right\} \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\right)\right) \end{array}$$

 $\begin{array}{ll} \operatorname{implying} \ \mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cap \mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}(\{\xi\})\big) \ \supseteq \ \mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\big). & \operatorname{Therefore}, \ \mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\big) = \\ \mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\cap \mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}(\{\xi\})\big) & \stackrel{\mathrm{def}}{\longleftrightarrow} \operatorname{Ax}_{\operatorname{DE},2}\big(\mathfrak{g}\text{-}\operatorname{Der}_{\mathfrak{g}}\big) \text{ and hence, } \operatorname{Ax}_{\operatorname{DE},I} \longrightarrow \operatorname{Ax}_{\operatorname{DE},2}. \end{array}$

– CASE III. If $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in imes_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ such that $\mathscr{S}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}} \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}} \mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{R}_{\mathfrak{g}}\right)\end{aligned}$$

Consequently, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \cup (\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) = \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}),$ implying $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}).$ But, because the relation $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}))$ holds, it results, therefore, that $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \stackrel{\mathrm{def}}{\longleftrightarrow} \mathrm{Ax}_{\mathrm{DE},3}$ ($\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}})$ and thus, $\mathrm{Ax}_{\mathrm{DE},1} \longrightarrow \mathrm{Ax}_{\mathrm{DE},3}.$

– CASE IV. If $(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{DE},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\right) \\ & \cup \left(\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathscr{U}_{\mathfrak{g}}\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ & = \left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\right)\cup\mathfrak{g}\operatorname{-}\operatorname{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\cup\mathscr{S}_{\mathfrak{g}}\right)\end{aligned}$$

Since $\bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \subseteq \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} (\mathscr{U}_{\mathfrak{g}} \cup \mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}))$ holds, Ax_{DE,II}, evidently, reduces to \mathfrak{g} -Der $_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}) = \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}$ -Der $_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) \stackrel{\text{def}}{\longleftrightarrow}$ Ax_{DE,4} (\mathfrak{g} -Der $_{\mathfrak{g}}$) and hence, Ax_{DE,II} \longrightarrow Ax_{DE,4}.

Thus, $\operatorname{Ax}_{\operatorname{DE},\operatorname{II}}(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{DE},\nu}(\mathfrak{g}\operatorname{-Der}_{\mathfrak{g}}) = 1$ and the proof of the proposition is, therefore, complete. \Box

The corollary stated below is an immediate consequence of the foregoing theorem and proposition.

Corollary 3.19. If \mathfrak{g} -Der $_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then it satisfies the following \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operator axiomatic diagram:

(3.15)

$$Ax_{DE,I} (\mathfrak{g}\text{-}Der_{\mathfrak{g}}) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} Ax_{DE,\nu} (\mathfrak{g}\text{-}Der_{\mathfrak{g}}) = 1$$

$$Ax_{DE,II} (\mathfrak{g}\text{-}Der_{\mathfrak{g}}) = 1$$

Likewise, viewing the derived set $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -coderived operator conditions (ITEMS I.– IV. of COR. 3.16 above) as $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -coderived operator axioms, the axiomatic definition of the concept of a $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -coderived operator, then, can be defined as a set-valued map $\mathfrak{g}-\operatorname{Cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ satisfying a list of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -coderived operator axioms. The axiomatic definition of the concept of a $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ coderived operator in $\mathscr{T}_{\mathfrak{g}}$ -spaces follows.

Definition 3.20 (Axiomatic Definition: \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Coderived Operator). A one-valued map of the type \mathfrak{g} -Cod_{\mathfrak{g}}: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is called a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ if and only if, for any $(\{\zeta\}, \mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_3^*} \mathscr{P}(\Omega)$, it satisfies each \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator axiom in AX[\mathfrak{g} -CD[$\mathfrak{T}_{\mathfrak{g}}$]; \mathbb{B}] $\stackrel{\text{def}}{=} \{Ax_{CD,\nu}(\mathfrak{g}$ -Cod $\mathfrak{g}): \nu \in I_4^*\}$, where $Ax_{CD,\nu}: \mathfrak{g}$ -CD[$\mathfrak{T}_{\mathfrak{g}}$] \longrightarrow $\mathbb{B} \stackrel{\text{def}}{=} \{0, 1\}, \nu \in I_4^*$, is defined as thus:

$$\begin{aligned} &-\operatorname{Ax}_{\mathrm{CD},1}\left(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\right) &\stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\Omega\right) = \Omega \\ &-\operatorname{Ax}_{\mathrm{CD},2}\left(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\right) &\stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) = \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right) \\ &-\operatorname{Ax}_{\mathrm{CD},3}\left(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\right) &\stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \supseteq \mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \\ &-\operatorname{Ax}_{\mathrm{CD},4}\left(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\right) &\stackrel{\mathrm{def}}{\longleftrightarrow} \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right) = \bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}} \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right) \end{aligned}$$

Hence, a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator \mathfrak{g} - $\operatorname{Cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is a Ω -grounded (Ax_{CD,1}), ζ -invariant (Ax_{CD,2}), \mathfrak{g} -Int_{\mathfrak{g}}-extensive (Ax_{CD,3}) and \cap -additive (Ax_{CD,4}) \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -set-valued set map forming a generalization of the $\mathfrak{T}_{\mathfrak{g}}$ -set-valued set map $\operatorname{cod}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, provided

 $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\supseteq\mathscr{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$

holds for any $(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega).$

As above, having introduced an alternative definition defining the notion of a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator in a $\mathscr{T}_{\mathfrak{g}}$ -space axiomatically, it may not be without interest to prove some further propositions based on such axiomatic definition. The theorem follows.

Theorem 3.21. Let $\operatorname{AX}[\mathfrak{g}\text{-}\operatorname{CD}[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] \stackrel{\text{def}}{=} \{\operatorname{Ax}_{\operatorname{CD},\nu} : \nu \in I_4^*\}$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-coderived operator axioms in a } \mathscr{T}_{\mathfrak{g}}\text{-space } \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}) \text{ and, let } \operatorname{Ax}_{\operatorname{CD},\mathrm{I}} : \mathfrak{g}\text{-}\operatorname{CD}[\mathfrak{T}_{\mathfrak{g}}] \longrightarrow \mathbb{B}$ such that, for any $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$,

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & & \longleftrightarrow \quad \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ (3.16) & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\right) \setminus \mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right) \end{aligned}$$

Then, $\operatorname{Ax}_{\operatorname{CD},\operatorname{I}}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{CD},\nu}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) = 1.$

Proof. Let $\operatorname{AX}[\mathfrak{g}\text{-}\operatorname{CD}[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] = \{\operatorname{Ax}_{\operatorname{CD},\nu} : \nu \in I_{4}^{*}\}\$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\operatorname{coderived}$ operator axioms in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})\$ and, let $\operatorname{Ax}_{\operatorname{CD},\mathrm{I}} : \mathfrak{g}\text{-}\operatorname{CD}[\mathfrak{T}_{\mathfrak{g}}] \longrightarrow \mathbb{B}$ such that, for any $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega),$

$$\begin{array}{rcl} \operatorname{Ax}_{\operatorname{CD},\mathrm{I}}\left(\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ & & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\right)\setminus\mathfrak{g}\operatorname{-}\!\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right)\end{array}$$

Suppose $Ax_{CD,I}(\mathfrak{g}\text{-}Cod_{\mathfrak{g}}) = 1$ holds. Then:

$$\begin{array}{l} -\operatorname{CASE I.} \ \operatorname{If} \left(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}\right) = (\Omega, \Omega), \, \operatorname{then} \\ \operatorname{Ax}_{\operatorname{CD}, \mathrm{I}} \left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega \cap \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}} = \Omega, \Omega} \left(\mathscr{W}_{\mathfrak{g}} \cap \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\Omega \cap \Omega \cap \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega \cap \Omega\right)\right) \setminus \mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}} \circ \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right) \end{array}$$

Consequently, \mathfrak{g} -Cod $_{\mathfrak{g}} \circ \mathfrak{g}$ -Cod $_{\mathfrak{g}}(\Omega)$, \mathfrak{g} -Cod $_{\mathfrak{g}}(\Omega) = \mathfrak{g}$ -Cod $_{\mathfrak{g}}(\Omega)$. Thus, \mathfrak{g} -Cod $_{\mathfrak{g}}(\Omega) = \Omega \xrightarrow{\text{def}} Ax_{CD,1}$ (\mathfrak{g} -Cod $_{\mathfrak{g}}$) and hence, $Ax_{CD,I} \longrightarrow Ax_{CD,1}$.

– CASE II. If $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary such that $\mathscr{V}_{\mathfrak{g}} = \mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}$ and $\{\zeta\} \subset \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)\right)\right) \\ & \setminus \mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right) \end{aligned}$$

Since the relation $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \supseteq \mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$ holds, implying $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \cap (\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) = \mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$, and $\operatorname{Ax}_{\operatorname{CD},1}$ implies $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) = \emptyset$, $\operatorname{Ax}_{\operatorname{CD},1}$ reduces to

$$\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)=\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)\right)$$

Clearly, \mathfrak{g} -Cod $\mathfrak{g}(\mathscr{U}_{\mathfrak{g}} \cap (\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\})) \longleftrightarrow \mathfrak{g}$ -Cod $\mathfrak{g}(\mathscr{U}_{\mathfrak{g}})$. Consequently, it results that \mathfrak{g} -Cod $\mathfrak{g}(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}) \supseteq \mathfrak{g}$ -Cod $\mathfrak{g}(\mathscr{U}_{\mathfrak{g}})$. But,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) & \supseteq & \left\{\zeta \in \mathfrak{T}_{\mathfrak{g}}: \ \zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}\right)\right\} \\ & \longleftrightarrow & \left\{\zeta \in \mathfrak{T}_{\mathfrak{g}}: \ \zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\left(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}\right) \cup \{\zeta\}\right)\right\} \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}\right) \end{array}$$

Consequently, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$. Therefore, it follows that the relation $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}) \xleftarrow{\mathrm{def}} \operatorname{Ax}_{\mathrm{CD},2}(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}})$ holds and thus, $\operatorname{Ax}_{\mathrm{CD},1} \longrightarrow \operatorname{Ax}_{\mathrm{CD},2}$.

- CASE III. If $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ such that $\mathscr{V}_{\mathfrak{g}} = \mathscr{U}_{\mathfrak{g}}$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\mathrm{I}}\left(\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\right) & & \longleftrightarrow \quad \mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{U}_{\mathfrak{g}}\right)\right) \setminus \mathfrak{g}\operatorname{-}\!\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\!\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right)\end{aligned}$$

 $\begin{array}{l} \operatorname{Consequently},\,\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\supseteq\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right),\,\mathrm{since}\,\operatorname{Ax}_{\operatorname{CD},1}\,\mathrm{implies}\\ \mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right)=\emptyset. \ \operatorname{But},\,\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\subseteq\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right).\\ \operatorname{Therefore},\,\,\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\supseteq\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\xleftarrow{\mathrm{def}}\,\operatorname{Ax}_{\operatorname{CD},3}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right)\,\,\mathrm{and}\\ \mathrm{thus},\,\operatorname{Ax}_{\operatorname{CD},\mathrm{I}}\longrightarrow\operatorname{Ax}_{\operatorname{CD},3}.\end{array}$

– CASE IV. If $(\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{I}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & & \longleftrightarrow \quad \mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\right) \setminus \mathfrak{g}\operatorname{-}\operatorname{Op}_{\mathfrak{g}}\circ\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\Omega\right)\end{aligned}$$

By virtue of the relation $\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \supseteq \mathscr{U}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$ or equivalently, $\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) \cap (\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})) = \mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$, together with $\operatorname{Ax}_{\operatorname{CD},1}$, $\operatorname{Ax}_{\operatorname{CD},1}$ reduces to $\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cap \mathscr{V}_{\mathfrak{g}}) = \bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}} \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}) \xleftarrow{\operatorname{def}} A_{\operatorname{X}_{\operatorname{CD},4}}$ ($\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}})$ and hence, $\operatorname{Ax}_{\operatorname{CD},4}$.

Thus, $\operatorname{Ax}_{\operatorname{CD},\operatorname{I}}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{CD},\nu}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) = 1$ and the proof of the theorem is, therefore, complete. \Box

The proposition given below contains further properties.

Proposition 12. Let $AX[\mathfrak{g}-CD[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] \stackrel{\text{def}}{=} \{Ax_{CD,\nu} : \nu \in I_4^*\}$ be the class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator axioms in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and, let $Ax_{CD,II}$:

 $\operatorname{\mathfrak{g-CD}}\left[\operatorname{\mathfrak{T}}_{\operatorname{\mathfrak{g}}}\right] \longrightarrow \mathbb{B} \text{ such that, for any } (\mathscr{U}_{\operatorname{\mathfrak{g}}}, \mathscr{V}_{\operatorname{\mathfrak{g}}}) \in \mathop{\textstyle \textstyle \times_{\alpha \in I_2^*}} \mathscr{P}(\Omega),$

Then, $\operatorname{Ax}_{\operatorname{CD},\operatorname{II}}\left(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\right) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{CD},\nu}\left(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}\right) = 1.$

Proof. Let $\operatorname{AX}[\mathfrak{g}\text{-}\operatorname{CD}[\mathfrak{T}_{\mathfrak{g}}];\mathbb{B}] \stackrel{\text{def}}{=} \{\operatorname{Ax}_{\operatorname{CD},\nu}: \nu \in I_4^*\}$ be the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\operatorname{coderived}$ operator axioms in a $\mathscr{T}_{\mathfrak{g}}\text{-}\operatorname{space}\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and further, let $\operatorname{Ax}_{\operatorname{CD},\operatorname{II}}: \mathfrak{g}\text{-}\operatorname{CD}[\mathfrak{T}_{\mathfrak{g}}] \longrightarrow \mathbb{B}$ such that, for any $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$,

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\end{aligned}$$

Suppose $Ax_{CD,II}$ (\mathfrak{g} -Cod \mathfrak{g}) = 1 holds. Then:

- CASE I. If
$$(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) = (\Omega, \Omega)$$
, then
 $\operatorname{Ax}_{\operatorname{CD},\operatorname{II}}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) \stackrel{\operatorname{def}}{\longleftrightarrow} \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\Omega,\Omega} (\mathscr{W}_{\mathfrak{g}} \cap \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})) \right)$
 $\cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\Omega,\Omega} \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}} \cap \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})) \right)$
 $= (\Omega \cap \Omega) \cap \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\Omega \cap \Omega)$

Consequently, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) = \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega)$. But, the relation $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) \longleftrightarrow \Omega \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}(\Omega) = \Omega$ holds. Therefore, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) = \Omega \xleftarrow{\mathrm{def}} \operatorname{Ax}_{\mathrm{CD},1}(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}})$ and hence, $\operatorname{Ax}_{\mathrm{CD},\mathrm{II}} \longrightarrow \operatorname{Ax}_{\mathrm{CD},1}$.

– CASE II. If $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary such that $\mathscr{V}_{\mathfrak{g}} = \mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}$ and $\{\zeta\} \subset \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & & \longleftrightarrow \quad \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}}\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & & = \left(\mathscr{U}_{\mathfrak{g}}\cap\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)\right)\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)\right)\end{aligned}$$

Since the relation $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})) \supseteq \mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})$ holds, implying $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})) \cap (\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})) = \mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})$ for any $\mathscr{W}_{\mathfrak{g}} \in$

 $\{\mathscr{U}_{\mathfrak{g}}, \mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}\}, Ax_{CD,II} \text{ reduces to}$

$$\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}}\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)=\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\left(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\right)\right)$$

Because $\mathscr{U}_{\mathfrak{g}} \subseteq \mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}$ holds, $\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cap (\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\})) \longleftrightarrow \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$. Consequently, $\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}) \supseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}})$. But,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) & \supseteq & \left\{\zeta \in \mathfrak{T}_{\mathfrak{g}}: \ \zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}\right)\right\} \\ & \longleftrightarrow & \left\{\zeta \in \mathfrak{T}_{\mathfrak{g}}: \ \zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left((\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}) \cup \{\zeta\}\right)\right\} \\ & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}} \cup \{\zeta\}\right) \end{array}$$

 $\begin{array}{l} \text{implying the relation } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\big)\subseteq\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{U}_{\mathfrak{g}}). \ \text{Therefore, } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{U}_{\mathfrak{g}})=\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\big)\xleftarrow{\mathrm{def}}\operatorname{Ax_{\mathrm{CD},2}}\big(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big) \ \text{and hence, } \operatorname{Ax_{\mathrm{CD},I}}\longrightarrow\operatorname{Ax_{\mathrm{CD},2}}. \end{array}$

– CASE III. If $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ such that $\mathscr{V}_{\mathfrak{g}} = \mathscr{U}_{\mathfrak{g}}$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{U}_{\mathfrak{g}}}\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{U}_{\mathfrak{g}}\right)\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{U}_{\mathfrak{g}}\right)\end{aligned}$$

 $\begin{array}{l} \operatorname{Consequently},\,\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\cap\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)=\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\\ \operatorname{implying}\,\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right)\supseteq \mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right). \text{ But, because the relation }\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\supseteq \mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\right) \text{ holds, it results, therefore,}\\ \operatorname{that}\,\,\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right)\supseteq \mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right) \stackrel{def}{\longleftrightarrow}\operatorname{Ax}_{\mathrm{CD},3}\left(\mathfrak{g}\text{-}\operatorname{Cod}_{\mathfrak{g}}\right) \text{ and thus,}\\ \operatorname{Ax}_{\mathrm{CD},\mathrm{II}}\longrightarrow\operatorname{Ax}_{\mathrm{CD},3}.\end{array}$

– CASE IV. If $(\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ be arbitrary, then

$$\begin{aligned} \operatorname{Ax}_{\operatorname{CD},\operatorname{II}}\left(\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{\longleftrightarrow} & \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & \cap \left(\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right)\right)\right) \\ & = \left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\cap\mathfrak{g}\operatorname{-}\operatorname{Cod}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}\right)\end{aligned}$$

Since $\bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}})) \supseteq \bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}} (\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}))$ holds, Ax_{CD,II}, evidently, reduces to $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}) = \bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}) \stackrel{\text{def}}{\longleftrightarrow}$ Ax_{CD,4} ($\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}$) and hence, Ax_{CD,II} \longrightarrow Ax_{CD,4}.

Thus, $\operatorname{Ax}_{\operatorname{CD},\operatorname{II}}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) = 1 \longrightarrow \bigwedge_{\nu \in I_4^*} \operatorname{Ax}_{\operatorname{CD},\nu}(\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}) = 1$ and the proof of the proposition is, therefore, complete. \Box

The corollary stated below is an immediate consequence of the foregoing theorem and proposition.

208

Corollary 3.22. If \mathfrak{g} -Cod_{\mathfrak{g}}: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then it satisfies the following \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operator axiomatic diagram:

(3.18)

$$Ax_{CD,I} \left(\mathfrak{g}\text{-}Cod_{\mathfrak{g}} \right) = 1 \longrightarrow \bigwedge_{\nu \in I_{4}^{*}} Ax_{CD,\nu} \left(\mathfrak{g}\text{-}Cod_{\mathfrak{g}} \right) = 1$$

$$Ax_{CD,II} \left(\mathfrak{g}\text{-}Cod_{\mathfrak{g}} \right) = 1$$

The proven lemma presented below will be helpful in proving the theorem following it.

Lemma 3.23. Let \mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{\mathfrak{g}} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators, respectively, in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

- I. $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\Omega) \stackrel{\mathrm{def}}{=} \left\{ \mathscr{K}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}}) \right\} \text{ satisfies the } \mathscr{T}_{\mathfrak{g}}\text{-} closed set axioms for the strong } \mathscr{T}_{\mathfrak{g}}\text{-}space \mathfrak{T}_{\mathfrak{g}},$

- II. $\mathscr{T}_{\mathfrak{g},\mathrm{Cod}}(\Omega) \stackrel{\mathrm{def}}{=} \left\{ \mathscr{O}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}}) \right\} \text{ satisfies the } \mathscr{T}_{\mathfrak{g}}\text{-} open \text{ set axioms for the strong } \mathscr{T}_{\mathfrak{g}}\text{-}space \mathfrak{T}_{\mathfrak{g}}.$

Proof. Let $\mathfrak{g}\text{-Der}_{\mathfrak{g}}$, $\mathfrak{g}\text{-Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-derived}$ and a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -coderived operators, respectively, in a strong $\mathscr{T}_{\mathfrak{g}}\text{-space} \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}\text{-space}$, it satisfies the $\mathscr{T}_{\mathfrak{g}}\text{-open}$ set axioms $\mathscr{T}_{\mathfrak{g}}(\emptyset) = \emptyset$, $\mathscr{T}_{\mathfrak{g}}(\Omega) = \Omega$, $\mathscr{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}}) \subseteq \mathscr{O}_{\mathfrak{g}}$, and $\mathscr{T}_{\mathfrak{g}}(\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{O}_{\mathfrak{g},\nu}) = \bigcup_{\nu \in I_{\infty}^{*}} \mathscr{T}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\nu})$, and it also satisfies the $\mathscr{T}_{\mathfrak{g}}\text{-closed}$ set axioms $\neg \mathscr{T}_{\mathfrak{g}}(\Omega) = \Omega$, $\neg \mathscr{T}_{\mathfrak{g}}(\emptyset) = \emptyset$, $\neg \mathscr{T}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}}) \supseteq \mathscr{K}_{\mathfrak{g}}$, and $\neg \mathscr{T}_{\mathfrak{g}}(\bigcap_{\nu \in I_{\infty}^{*}} \mathscr{K}_{\mathfrak{g},\nu}) = \bigcap_{\nu \in I_{\infty}^{*}} \neg \mathscr{T}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\nu})$. Therefore, to prove ITEM I. and ITEM II., it suffices to show that $\mathscr{T}_{\mathfrak{g},\mathrm{Der}} \longleftrightarrow \neg \mathscr{T}_{\mathfrak{g}}$ and $\mathscr{T}_{\mathfrak{g},\mathrm{Cod}} \longleftrightarrow \mathscr{T}_{\mathfrak{g}}$, respectively. Then:

- I. By the definition of $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega), \Omega \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\Omega)$. Thus, $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\Omega) = \Omega$. By virtue of $\mathrm{Ax}_{\mathrm{DE},1}, \emptyset = \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\emptyset) \longleftrightarrow \emptyset \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\emptyset)$. Hence, $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\emptyset) = \emptyset$. Since $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\Omega) \supseteq \{\mathscr{K}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})\}$, it results that, for every $(\mathscr{K}_{\mathfrak{g}}, \mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\mathscr{K}_{\mathfrak{g}})) \in \mathscr{P}(\Omega) \times \mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\Omega)$, the relation $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\mathscr{K}_{\mathfrak{g}}) \supseteq$ $\mathscr{K}_{\mathfrak{g}}$ holds. Suppose $(\mathscr{K}_{\mathfrak{g},\nu}, \mathscr{K}_{\mathfrak{g},\mu}) \in \times_{\alpha \in I_{2}^{*}} \mathscr{P}(\Omega)$ such that, for each $\eta \in \{\nu,\mu\}$, $\mathscr{K}_{\mathfrak{g},\mu} \supseteq \mathscr{K}_{\mathfrak{g},\nu}$ and, for all $\sigma \in I_{\infty}^{*}$, the relation $\mathscr{K}_{\mathfrak{g},\sigma} \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\sigma})$ holds. Then, $\mathscr{K}_{\mathfrak{g},\mu} \supseteq \mathscr{K}_{\mathfrak{g},\nu}$ implies $\mathscr{K}_{\mathfrak{g},\mu} \longleftrightarrow \mathscr{K}_{\mathfrak{g},\mu} \cup \mathscr{K}_{\mathfrak{g},\nu} \longleftrightarrow \mathscr{K}_{\mathfrak{g},\mu} \cup (\mathscr{K}_{\mathfrak{g},\mu} \cap \mathscr{K}_{\mathfrak{g},\nu})$. By virtue of $\mathrm{Ax}_{\mathrm{DE},4}$, it follows that the relation $\bigcap_{\eta=\nu,\mu} \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\eta}) \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\nu} \cap \mathscr{K}_{\mathfrak{g},\mu}) \cap$ $\mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\nu} \cap \mathscr{K}_{\mathfrak{g},\mu})$. But $\mathscr{K}_{\mathfrak{g},\eta} \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\eta})$ holds for each $\eta \in \{\nu,\mu\}$ implies $\bigcap_{\eta=\nu,\mu} \mathscr{K}_{\mathfrak{g},\eta} \supseteq \bigcap_{\eta=\nu,\mu} \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\eta})$. Thus, $\bigcap_{\eta=\nu,\mu} \mathscr{K}_{\mathfrak{g},\eta} \supseteq \mathfrak{g}-\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\nu} \cap \mathscr{K}_{\mathfrak{g},\mu})$. The condition $\mathscr{T}_{\mathfrak{g},\mathrm{Der}} \longleftrightarrow \neg \mathscr{T}_{\mathfrak{g}}$ is proved and hence, $\mathscr{T}_{\mathfrak{g},\mathrm{Der}} \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ satisfies the $\mathscr{T}_{\mathfrak{g}}$ -closed set axioms for the strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$.

- II. By virtue of $\operatorname{Ax}_{\operatorname{CD},1}$, $\Omega = \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\Omega) \longleftrightarrow \Omega \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\Omega)$. Thus, $\mathscr{T}_{\mathfrak{g},\operatorname{Cod}}(\Omega) = \Omega$. By the definition of $\mathscr{T}_{\mathfrak{g},\operatorname{Cod}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega), \emptyset \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\emptyset)$. Hence, $\mathscr{T}_{\mathfrak{g},\operatorname{Cod}}(\emptyset) = \emptyset$. Since $\mathscr{T}_{\mathfrak{g},\operatorname{Cod}}(\Omega) \subseteq \{\mathscr{O}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}})\}$, it follows that, for every $(\mathscr{O}_{\mathfrak{g}}, \mathscr{T}_{\mathfrak{g},\operatorname{Cod}}(\mathscr{O}_{\mathfrak{g}})) \in \mathscr{P}(\Omega) \times \mathscr{T}_{\mathfrak{g},\operatorname{Cod}}(\Omega)$, the relation $\mathscr{T}_{\mathfrak{g},\operatorname{Cod}}(\mathscr{O}_{\mathfrak{g}}) \subseteq \mathscr{O}_{\mathfrak{g}}$ holds. Let $(\mathscr{O}_{\mathfrak{g},\nu}, \mathscr{O}_{\mathfrak{g},\mu}) \in \times_{\alpha \in I_2^*} \mathscr{P}(\Omega)$ such that, for each $\eta \in \{\nu,\mu\}, \ \mathcal{O}_{\mathfrak{g},\mu} \subseteq \mathscr{O}_{\mathfrak{g},\nu}$ and, for all $\sigma \in I_{\infty}^*$, the relation $\mathscr{O}_{\mathfrak{g},\sigma} \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\sigma})$ holds. Then, $\mathscr{O}_{\mathfrak{g},\nu} \subseteq \mathscr{O}_{\mathfrak{g},\nu}$ implies $\mathscr{O}_{\mathfrak{g},\mu} \longleftrightarrow \mathscr{O}_{\mathfrak{g},\mu} \cap \mathscr{O}_{\mathfrak{g},\nu} \longleftrightarrow (\mathscr{O}_{\mathfrak{g},\mu} \cup \mathscr{O}_{\mathfrak{g},\nu}) \cap$ The theorem is now stated and proved by the aid of the above lemma.

Theorem 3.24. Let \mathfrak{g} -Der_{\mathfrak{g}}, \mathfrak{g} -Cod_{\mathfrak{g}} : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators, respectively, in a unique strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

- I. $\mathscr{T}_{\mathfrak{g},\mathrm{Der}}(\Omega) \stackrel{\mathrm{def}}{=} \{\mathscr{K}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})\} \text{ forms the } \mathscr{T}_{\mathfrak{g}}\text{-}closed \text{ sets for the unique strong } \mathscr{T}_{\mathfrak{g}}\text{-}space \mathfrak{T}_{\mathfrak{g}},$

- II. $\mathscr{T}_{\mathfrak{g},\mathrm{Cod}}(\Omega) \stackrel{\mathrm{def}}{=} \left\{ \mathscr{O}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}}) \right\} \text{ forms the } \mathscr{T}_{\mathfrak{g}}\text{-}open \text{ set axioms for the unique strong } \mathscr{T}_{\mathfrak{g}}\text{-}space } \mathfrak{T}_{\mathfrak{g}}.$

Proof. Let $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}$, $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{derived}$ and a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{coderived}$ operators, respectively, in a strong $\mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{space}\ \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then:

 $\begin{array}{l} & - \mathrm{I.} \ \mathscr{T}_{\mathfrak{g},\mathrm{Der}}\left(\Omega\right) \stackrel{\mathrm{def}}{=} \left\{ \mathscr{K}_{\mathfrak{g}} \in \mathscr{P}\left(\Omega\right): \ \mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{K}_{\mathfrak{g}}\right) \right\} \text{ forms the collection of } \\ & \mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{closed set in the strong} \ \mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{space} \ \mathfrak{T}_{\mathfrak{g}}. \ \mathrm{Suppose} \ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}: \mathscr{P}\left(\Omega\right) \longrightarrow \mathscr{P}\left(\Omega\right) \text{ be the induced } \\ & \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{derived operator, then to show uniqueness it only suffices to prove that } \\ & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}\left(\mathscr{R}_{\mathfrak{g}}\right) \longleftrightarrow \\ & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \text{ holds true for any } \\ & \mathscr{R}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}. \ \mathrm{Let} \ \mathscr{R}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}} \\ & \mathrm{be arbitrary and by hypothesis, let} \ \left(\xi \in \\ \\ & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \land \left(\xi \notin \\ \\ & \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \text{ hold true. Then, uniqueness is shown by proving that such hypothesis is a contradiction. Thus, the following cases present themselves: \end{array}$

- CASE I. Suppose $\xi \notin \mathscr{R}_{\mathfrak{g}}$. Then, $(\xi \notin \mathscr{R}_{\mathfrak{g}}) \land (\xi \notin \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}}))$ by virtue of the supposition and the hypothesis. Consequently, $\xi \notin \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\}))$. Therefore, a $\mathscr{T}_{\mathfrak{g}}$ -open set $\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}$ can be found, satisfying $\xi \in \mathscr{O}_{\mathfrak{g}}$, such that $\mathscr{O}_{\mathfrak{g}} \cap (\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})) = \mathscr{O}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}} = \emptyset$. Clearly, $\mathscr{K}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}})$ is a $\mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{closed}$ set and therefore, it satisfies $\mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})$, implying $(\mathscr{K}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g},\mathrm{Der}}) \land (\mathscr{K}_{\mathfrak{g}} \supseteq \mathscr{R}_{\mathfrak{g}})$ holds true. Consequently, it follows that $\mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$. But, $\xi \in \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$ by hypothesis. Hence, $(\xi \in \mathscr{O}_{\mathfrak{g}}) \land (\xi \in \mathscr{K}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}}))$, a contradiction. The hypothesis is therefore a contradiction.

- CASE II. Suppose $\xi \in \mathscr{R}_{\mathfrak{g}}$. Then, $(\xi \in \mathscr{R}_{\mathfrak{g}}) \wedge (\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}))$ by virtue of the supposition and the hypothesis. Consequently, $\xi \in \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\}))$. Therefore, a $\mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{closed}$ set $\mathscr{K}_{\mathfrak{g}} \in \neg \mathscr{T}_{\mathfrak{g}}$ can be found, satisfying $\xi \in \mathscr{K}_{\mathfrak{g}}$, such that $\mathscr{K}_{\mathfrak{g}} \cap (\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})) = \mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\}) \neq \emptyset$. Then, $\mathscr{K}_{\mathfrak{g}} \supseteq \mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})$ and consequently, $\mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{K}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\{\xi\})) = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$. But, $\xi \notin \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$ by hypothesis. Thus, $(\xi \in \mathscr{K}_{\mathfrak{g}}) \wedge (\xi \notin \mathscr{K}_{\mathfrak{g}})$, a contradiction. The hypothesis is therefore a contradiction. Hence, $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$.

The relation $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$ is now proved. By hypothesis, let $(\xi \notin \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})) \land (\xi \in \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}}))$ hold true. Then, uniqueness is again shown by proving that such hypothesis is a contradiction. Thus, the following cases present themselves:

– CASE I. Suppose $\xi \notin \mathscr{R}_{\mathfrak{g}}$. Clearly, a $\mathscr{T}_{\mathfrak{g}}$ -closed set $\mathscr{K}_{\mathfrak{g}} \in \neg \mathscr{T}_{\mathfrak{g}}$ can be found such that $\mathscr{K}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}$ -Der_{\mathfrak{g}} ($\mathscr{R}_{\mathfrak{g}}$), and consequently, $\mathscr{K}_{\mathfrak{g}} \supseteq \mathfrak{g}$ -Der_{$\mathfrak{g},ind} (<math>\mathscr{R}_{\mathfrak{g}}$). But, by virtue of the supposition and the hypothesis, $(\xi \notin \mathscr{R}_{\mathfrak{g}}) \land (\xi \notin \mathfrak{g}$ -Der_{$\mathfrak{g},ind} (<math>\mathscr{R}_{\mathfrak{g}}$)), implying $\xi \notin \mathfrak{g}$ -Der_{$\mathfrak{g},ind} (<math>\mathscr{R}_{\mathfrak{g}}$), a contradiction. The hypothesis is therefore a contradiction.</sub></sub></sub>

- CASE II. Suppose $\xi \in \mathscr{R}_{\mathfrak{g}}$. Then, $(\xi \in \mathscr{R}_{\mathfrak{g}}) \land (\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}}))$ by virtue of the supposition and the hypothesis. Consequently, $\xi \in \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\{\xi\}))$. Since $\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$ is equivalent to $\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\{\xi\}))$ and, on the other hand, $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\{\xi\}))$ is equivalent to $(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\{\xi\})) \cup \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\{\xi\})) = \mathscr{K}_{\mathfrak{g}}$ for some $\mathscr{T}_{\mathfrak{g}}\text{-closed set}$ $\mathscr{K}_{\mathfrak{g}} \in \neg \mathscr{T}_{\mathfrak{g}}$, it follows that $\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\{\xi\})) \subseteq \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$, implying $\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$. But, by virtue of the supposition and the hypothesis, $(\xi \in \mathscr{R}_{\mathfrak{g}}) \land (\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}}))$, implying $\xi \in \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$, a contradiction. The hypothesis is therefore a contradiction. Thus, $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-Der}_{\mathfrak{g},\mathrm{ind}}(\mathscr{R}_{\mathfrak{g}})$

— II. $\mathscr{T}_{\mathfrak{g},\mathrm{Cod}}(\Omega) \stackrel{\mathrm{def}}{=} \{ \mathscr{O}_{\mathfrak{g}} \in \mathscr{P}(\Omega) : \mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\mathrm{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}}) \}$ forms the collection of $\mathscr{T}_{\mathfrak{g}}$ -open set in the strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. Suppose $\mathfrak{g}\mathrm{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the induced $\mathfrak{g}\mathrm{-}\mathfrak{T}_{\mathfrak{g}}$ -coderived operator, then to show uniqueness it only suffices to prove that $\mathfrak{g}\mathrm{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\mathrm{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ holds true for any $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}$. Let $\mathscr{S}_{\mathfrak{g}} \subseteq$ $\mathfrak{T}_{\mathfrak{g}}$ be arbitrary and by hypothesis, let $(\zeta \in \mathfrak{g}\mathrm{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \land (\zeta \notin \mathfrak{g}\mathrm{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{S}_{\mathfrak{g}}))$ hold true. Then, uniqueness is shown by proving that such hypothesis is a contradiction. Thus, the following cases present themselves:

- CASE I. Suppose $\zeta \notin \mathscr{S}_{\mathfrak{g}}$. By virtue of the supposition and the hypothesis, the relation $(\zeta \notin \mathscr{S}_{\mathfrak{g}}) \land (\zeta \notin \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}}))$, then, holds true. Consequently, $\zeta \notin \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$, implying $\zeta \in \mathfrak{g}\operatorname{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\operatorname{-Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$. Therefore, a $\mathscr{T}_{\mathfrak{g}}$ -closed set $\mathscr{K}_{\mathfrak{g}} \in \neg \mathscr{T}_{\mathfrak{g}}$ can be found, satisfying $\zeta \in \mathscr{K}_{\mathfrak{g}}$, such that $\mathscr{K}_{\mathfrak{g}} \cap \mathfrak{g}\operatorname{-Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\}) = \mathfrak{g}\operatorname{-Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$. Clearly, $\mathscr{O}_{\mathfrak{g}} = \mathfrak{g}\operatorname{-Op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})$ is a $\mathscr{T}_{\mathfrak{g}}$ -open set and therefore, it satisfies $\mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}})$, implying $(\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g},\operatorname{Cod}}) \land (\mathscr{O}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}})$ holds true. Consequently, it follows that $\mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}}) \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. But, $\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ by hypothesis. Hence, $(\zeta \notin \mathscr{O}_{\mathfrak{g}} = \mathfrak{g}\operatorname{-Op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})) \land (\zeta \notin \mathscr{K}_{\mathfrak{g}})$, a contradiction. The hypothesis is therefore a contradiction.

- CASE II. Suppose $\zeta \in \mathscr{S}_{\mathfrak{g}}$. By virtue of the supposition and the hypothesis, the relation $(\zeta \in \mathscr{S}_{\mathfrak{g}}) \land (\zeta \in \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}))$, then, holds true. Consequently, $\zeta \in \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$, implying $\zeta \notin \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$. Therefore, a $\mathscr{T}_{\mathfrak{g}}$ -open set $\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}$ can be found, satisfying $\zeta \in \mathscr{O}_{\mathfrak{g}}$, such that $\mathscr{O}_{\mathfrak{g}} \cup (\mathscr{S}_{\mathfrak{g}} \cup \{\xi\}) = \mathscr{S}_{\mathfrak{g}} \cup \{\xi\}$. Then, $\mathscr{O}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \cup \{\xi\}$ and consequently, $\mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{O}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{I}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{S}_{\mathfrak{g}})$ by hypothesis. Thus, $(\zeta \notin \mathscr{O}_{\mathfrak{g}}) \land (\zeta \notin \mathscr{O}_{\mathfrak{g}})$, a contradiction. The hypothesis is therefore a

contradiction. Hence, \mathfrak{g} -Cod_{\mathfrak{g}} ($\mathscr{S}_{\mathfrak{g}}$) $\supseteq \mathfrak{g}$ -Cod_{\mathfrak{g} ,ind} ($\mathscr{S}_{\mathfrak{g}}$).

The relation $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{S}_{\mathfrak{g}})$ is now proved. By hypothesis, let $(\xi \notin \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \land (\xi \in \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{S}_{\mathfrak{g}}))$ hold true. Then, uniqueness is again shown by proving that such hypothesis is a contradiction. Thus, the following cases present themselves:

- CASE I. Suppose $\zeta \notin \mathscr{G}_{\mathfrak{g}}$. Clearly, a $\mathscr{T}_{\mathfrak{g}}$ -open set $\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}$ can be found such that $\mathscr{O}_{\mathfrak{g}} = \mathscr{G}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{G}_{\mathfrak{g}})$, and consequently, $\mathscr{O}_{\mathfrak{g}} \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{G}_{\mathfrak{g}})$. But, by virtue of the supposition and the hypothesis, $(\zeta \notin \mathscr{G}_{\mathfrak{g}}) \wedge (\zeta \notin \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{G}_{\mathfrak{g}}))$, implying $\zeta \notin \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\mathrm{ind}}(\mathscr{G}_{\mathfrak{g}})$, a contradiction. The hypothesis is therefore a contradiction.

– CASE II. Suppose $\zeta \in \mathscr{S}_{\mathfrak{g}}$. Then, $(\zeta \in \mathscr{S}_{\mathfrak{g}}) \land (\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}}))$ by virtue of the supposition and the hypothesis. Consequently, $\zeta \in \mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$. Since $\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$ is equivalent to $\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$ and, on the other hand, $\mathfrak{g}\operatorname{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\})$ is equivalent to $(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\}) \cap \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}} \cup \{\zeta\}) = \mathscr{O}_{\mathfrak{g}}$ for some $\mathscr{T}_{\mathfrak{g}}$ -open set $\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}$, it follows that $\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}} \cup \{\xi\}) = \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}})$, implying $\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}})$. But, by virtue of the supposition and the hypothesis, $(\zeta \in \mathscr{S}_{\mathfrak{g}}) \land (\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}}))$, implying $\zeta \in \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$, a contradiction. The hypothesis is therefore a contradiction. Hence, $\mathfrak{g}\operatorname{-Cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}\operatorname{-Cod}_{\mathfrak{g},\operatorname{ind}}(\mathscr{S}_{\mathfrak{g}})$. The proof of the theorem is, therefore, complete.

On the essential properties of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces, the discussion of the present section terminates here.

4. Discussion

4.1. Categorical Classifications. Having classified the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -operators in terms of their categories, namely \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -derived and \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators in $\mathscr{T}_{\mathfrak{a}}$ -spaces, $(\nu, \mathfrak{a}) \in I_3^0 \times \{\mathfrak{o}, \mathfrak{g}\}$, it is proposed here to establish the various relationships amongst the classes of $\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived and $\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators in the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, and to illustrate such relationships through diagrams.

Of the lists of notations $\mathfrak{T}_{\mathfrak{o}} = (\Omega, \mathscr{T}_{\mathfrak{o}})$, $\operatorname{int}_{\mathfrak{o}}, \mathfrak{g}\operatorname{-Int}_{\mathfrak{o}}, \operatorname{cl}_{\mathfrak{o}}, \mathfrak{g}\operatorname{-Cl}_{\mathfrak{o}}, \ldots, \operatorname{der}_{\mathfrak{o}}, \mathfrak{g}\operatorname{-Der}_{\mathfrak{o}}, \operatorname{cod}_{\mathfrak{o}}, \mathfrak{g}\operatorname{-Cod}_{\mathfrak{o}}, \ldots$ and $\mathfrak{T} = (\Omega, \mathscr{T})$, $\operatorname{int}, \mathfrak{g}\operatorname{-Int}, \operatorname{cl}, \mathfrak{g}\operatorname{-Cl}, \ldots, \operatorname{der}, \mathfrak{g}\operatorname{-Der}, \operatorname{cod}, \mathfrak{g}\operatorname{-Cod}, \ldots$, respectively, either the first will be used instead of the second, or both will be used interchangeably.

In a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}}), \mathfrak{g}$ -Int $_{\mathfrak{a},0}(\mathscr{S}_{\mathfrak{a}}) \subseteq \mathfrak{g}$ -Int $_{\mathfrak{a},1}(\mathscr{S}_{\mathfrak{a}}) \subseteq \mathfrak{g}$ -Int $_{\mathfrak{a},3}(\mathscr{S}_{\mathfrak{a}}) \supseteq \mathfrak{g}$ -Int $_{\mathfrak{a},2}(\mathscr{S}_{\mathfrak{a}})$ holds for any $\mathscr{S}_{\mathfrak{a}} \in \mathscr{P}(\Omega)$. Moreover, the relation \mathfrak{g} -Int $_{\nu}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}$ -Int $_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}})$ also holds true for any $(\nu,\mathscr{S}_{\mathfrak{g}}) \in I_{3}^{0} \times \mathfrak{T}_{\mathfrak{g}}$. But, for every $(\nu,\mathscr{S}_{\mathfrak{g}}) \in I_{3}^{0} \times \mathfrak{T}_{\mathfrak{g}}$, the relations \mathfrak{g} -Int $_{\nu}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ -Cod $_{\nu}(\mathscr{S}_{\mathfrak{g}}), \mathfrak{g}$ -Int $_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}$ -Cod $_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}}), \mathfrak{g}$ -Cod $_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}})) \supseteq (\operatorname{cod}(\mathscr{S}_{\mathfrak{g}}), \operatorname{cod}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}))$ hold. Thus, the following diagram, which is to be read horizontally, from left to right

and vertically, from top to bottom, presents itself:

In FIG. 1, we present the relationships between the elements of the collections $\{\mathfrak{g}\text{-}\mathrm{Cod}_{\nu}:\mathscr{S}_{\mathfrak{g}}\longmapsto\mathfrak{g}\text{-}\mathrm{Cod}_{\nu}(\mathscr{S}_{\mathfrak{g}}):\nu\in I_{3}^{0}\}$ in the \mathscr{T} -space $\mathfrak{T}\subset\mathfrak{T}_{\mathfrak{g}}$ and $\{\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\nu}:\mathscr{S}_{\mathfrak{g}}\longmapsto\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}}):\nu\in I_{3}^{0}\}$ in the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}\supset\mathfrak{T}$; FIG. 1 may well be called a $(\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}})$ -valued diagram.

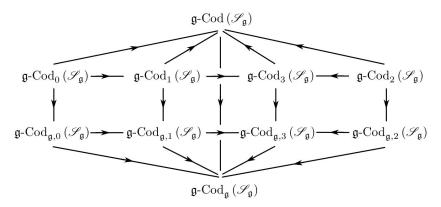


FIGURE 1. Relationships: \mathfrak{g} - \mathfrak{T} -coderived operators in \mathscr{T} -spaces and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces.

In a \mathscr{T} -space $\mathfrak{T} = (\Omega, \mathscr{T})$, the relation $\mathfrak{g}\text{-}\mathrm{Cl}_0(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cl}_1(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cl}_3(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_2(\mathscr{S}_{\mathfrak{g}})$ holds for any $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$. Likewise, in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, the relation $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},0}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},1}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},3}(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},2}(\mathscr{S}_{\mathfrak{g}})$ holds for any $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$. Moreover, the relation $\mathfrak{g}\text{-}\mathrm{Cl}_{\nu}(\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}})$ also holds true for any $(\nu, \mathscr{S}_{\mathfrak{g}}) \in I_3^0 \times \mathfrak{T}_{\mathfrak{g}}$. But, for every $(\nu, \mathscr{S}_{\mathfrak{g}}) \in I_3^0 \times \mathfrak{T}_{\mathfrak{g}}$, the relations $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}})$, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}}) \leftrightarrow \mathscr{S}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}})$ and $(\mathfrak{g}\text{-}\mathrm{Der}_{\nu}(\mathscr{S}_{\mathfrak{g}}), \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}})) \subseteq (\det(\mathscr{S}_{\mathfrak{g}}), \det(\mathscr{S}_{\mathfrak{g}}))$ hold true. Hence, the following diagram, which is to be read horizontally, from left to right and vertically, from

top to bottom, presents itself:

(4.2)

In FIG. 2, we present the relationships between the elements of the collections $\{\mathfrak{g}\text{-}\mathrm{Der}_{\nu}:\mathscr{S}_{\mathfrak{g}}\longmapsto\mathfrak{g}\text{-}\mathrm{Der}_{\nu}(\mathscr{S}_{\mathfrak{g}}):\nu\in I_{3}^{0}\}$ in the $\mathscr{T}\text{-}\mathrm{space}\ \mathfrak{T}\subset\mathfrak{T}_{\mathfrak{g}}\ \mathrm{and}\ \{\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}:\mathscr{S}_{\mathfrak{g}}\longmapsto\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}(\mathscr{S}_{\mathfrak{g}}):\nu\in I_{3}^{0}\}\ \mathrm{in}\ \mathrm{the}\ \mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{space}\ \mathfrak{T}_{\mathfrak{g}}\supset\mathfrak{T};\ \mathrm{FIG}.\ 2\ \mathrm{may}\ \mathrm{well}\ \mathrm{be}\ \mathrm{called}\ \mathrm{a}\ (\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}})\text{-}\mathrm{valued}\ diagram.$

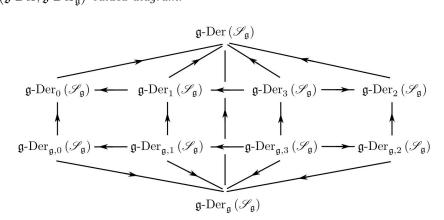


FIGURE 2. Relationships: \mathfrak{g} - \mathfrak{T} -derived operators in \mathscr{T} -spaces and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces.

As in our previous works [33, 34, 35, 36, 37], the manner we have positioned the arrows is solely to stress that, in general, the implications in FIGS 1, 2 and EQS (4.1), (4.2) are irreversible. The various relationships amongst the classes of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators in the $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}}$ are therefore established.

4.2. A Nice Application. In this section, we present a nice application in an attempt to shed lights on some essential properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in a $\mathscr{T}_{\mathfrak{g}}$ -space.

Let the 7-point set $\Omega = \{\xi_{\nu} : \nu \in I_7^*\}$ denotes the underlying set and consider the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, where Ω is 4-element topologized by the choice:

$$\begin{aligned} (4.3) \qquad \mathcal{T}_{\mathfrak{g}}(\Omega) &= \{\emptyset, \{\xi_1\}, \{\xi_1, \xi_3, \xi_5\}, \{\xi_1, \xi_3, \xi_4, \xi_5, \xi_7\}\} \\ &= \{\mathcal{O}_{\mathfrak{g},1}, \mathcal{O}_{\mathfrak{g},2}, \mathcal{O}_{\mathfrak{g},3}, \mathcal{O}_{\mathfrak{g},4}\}; \\ (4.4) \qquad \neg \mathcal{T}_{\mathfrak{g}}(\Omega) &= \{\Omega, \{\xi_2, \xi_3, \xi_4, \xi_5, \xi_6, \xi_7\}, \{\xi_2, \xi_4, \xi_6, \xi_7\}, \{\xi_2, \xi_6\}\} \\ &= \{\mathcal{K}_{\mathfrak{g},1}, \mathcal{K}_{\mathfrak{g},2}, \mathcal{K}_{\mathfrak{g},3}, \mathcal{K}_{\mathfrak{g},4}\}. \end{aligned}$$

Evidently, $\mathscr{T}_{\mathfrak{g}}, \neg \mathscr{T}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ establish the classes of $\mathscr{T}_{\mathfrak{g}}$ -open and $\mathscr{T}_{\mathfrak{g}}$ -closed sets, respectively. Since conditions $\mathscr{T}_{\mathfrak{g}}(\emptyset) = \emptyset, \ \mathscr{T}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\nu}) \subseteq \mathscr{O}_{\mathfrak{g},\nu}$ for every $\nu \in I_4^*$, and $\mathscr{T}_{\mathfrak{g}}(\bigcup_{\nu \in I_4^*} \mathscr{O}_{\mathfrak{g},\nu}) = \bigcup_{\nu \in I_4^*} \mathscr{T}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\nu})$ are satisfied, then $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow$

 $\mathcal{P}(\Omega) \text{ is a } \mathfrak{g}\text{-topology and hence, } \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}) \text{ is a } \mathscr{T}_{\mathfrak{g}}\text{-space. Moreover, it is easily checked that } (\mathscr{O}_{\mathfrak{g},\mu}, \mathscr{K}_{\mathfrak{g},\mu}) \in \mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}] \times \mathfrak{g}\text{-}\nu\text{-}K[\mathfrak{T}] \text{ for each } (\nu,\mu) \in I_{3}^{0} \times I_{4}^{*}. \text{ Thus, } \text{the } \mathscr{T}_{\mathfrak{g}}\text{-open sets forming the } \mathfrak{g}\text{-topology } \mathscr{T}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \text{ and the } \mathscr{T}_{\mathfrak{g}}\text{-closed sets forming the complement } \mathfrak{g}\text{-topology } \neg \mathscr{T}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \text{ of the } \mathscr{T}_{\mathfrak{g}}\text{-space } \mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}) \text{ are, respectively, } \mathfrak{g}\text{-}\mathfrak{T}\text{-open and } \mathfrak{g}\text{-}\mathfrak{T}\text{-closed sets relative to the } \mathscr{T}\text{-space } \mathfrak{T} = (\Omega, \mathscr{T}) = (\Omega, \mathscr{T}_{\mathfrak{g}} \cup \{\Omega\}).$

After calculations, the classes $\mathfrak{g}-\nu$ -O[$\mathfrak{T}_{\mathfrak{g}}$] and $\mathfrak{g}-\nu$ -K[$\mathfrak{T}_{\mathfrak{g}}$], respectively, of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -closed sets of categories $\nu \in \{0,2\}$ then take the following forms:

(4.5)
$$\begin{aligned} \mathfrak{g}_{-\nu}-\mathcal{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] &= \left\{\mathscr{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g}}:\,\mathscr{S}_{\mathfrak{g}}\subseteq\mathscr{O}_{\mathfrak{g},4}\right\};\\ \mathfrak{g}_{-\nu}-\mathcal{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] &= \left\{\mathscr{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g}}:\,\mathscr{S}_{\mathfrak{g}}\supseteq\mathscr{K}_{\mathfrak{g},4}\right\} \quad \forall \nu \in \{0,2\}. \end{aligned}$$

On the other hand, those of categories $\nu \in \{1, 3\}$ take the following forms:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] = \left\{\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \ \mathscr{S}_{\mathfrak{g}} \subseteq \mathscr{K}_{\mathfrak{g},1}\right\};$$

$$(4.6) \qquad \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] = \left\{\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \ \mathscr{S}_{\mathfrak{g}} \supseteq \mathscr{O}_{\mathfrak{g},1}\right\} \quad \forall \nu \in \{1,3\}.$$

Based on the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets in \mathfrak{g} -O-O $[\mathfrak{T}_{\mathfrak{g}}]$, \mathfrak{g} -O-K $[\mathfrak{T}_{\mathfrak{g}}]$, ..., \mathfrak{g} -3-O $[\mathfrak{T}_{\mathfrak{g}}]$, \mathfrak{g} -3-K $[\mathfrak{T}_{\mathfrak{g}}]$, introduce the $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{R}_{\mathfrak{g}} = \{\xi_1, \xi_2, \xi_4\}$, $\mathscr{S}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}} \cup \{\xi_7\}$, $\mathscr{U}_{\mathfrak{g}} = \{\xi_3, \xi_5, \xi_6, \xi_7\}$, and $\mathscr{V}_{\mathfrak{g}} = \mathscr{U}_{\mathfrak{g}} \setminus \{\xi_3\}$; thus, $(\mathscr{S}_{\mathfrak{g}}, \mathscr{U}_{\mathfrak{g}}) \supseteq (\mathscr{R}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}})$. Then, for each $\mathscr{W}_{\mathfrak{g}} \in \{\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\}$ and $\mathscr{Y}_{\mathfrak{g}} \in \{\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}\}$, the following results present themselves:

$$\begin{aligned} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}\big(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi_{\mu}\}\right)\big) &= \left(\mathscr{W}_{\mathfrak{g}}\setminus\{\xi_{\mu}\}\right)\cup\mathscr{K}_{\mathfrak{g},4} \quad \forall \left(\mu,\nu\right)\in I_{7}^{*}\times\left\{0,2\right\},\\ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}\big(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi_{\mu}\}\right)\big) &= \mathscr{W}_{\mathfrak{g}}\setminus\left\{\xi_{\mu}\right\} \quad \forall \left(\mu,\nu\right)\in I_{7}^{*}\times\left\{1,3\right\},\\ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\nu}\big(\mathscr{Y}_{\mathfrak{g}}\cup\left\{\xi_{\mu}\right\}\big) &= \left(\mathscr{Y}_{\mathfrak{g}}\cup\left\{\xi_{\mu}\right\}\right)\setminus\mathscr{K}_{\mathfrak{g},4} \quad \forall \left(\mu,\nu\right)\in I_{7}^{*}\times\left\{0,2\right\},\\ \end{aligned}$$

$$(4.7) \qquad \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\nu}\big(\mathscr{Y}_{\mathfrak{g}}\cup\left\{\xi_{\mu}\right\}\big) &= \mathscr{Y}_{\mathfrak{g}}\cup\left\{\xi_{\mu}\right\} \quad \forall \left(\mu,\nu\right)\in I_{7}^{*}\times\left\{1,3\right\}.\end{aligned}$$

For each $\mathscr{W}_{\mathfrak{g}} \in \{\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\}\ and \, \mathscr{Y}_{\mathfrak{g}} \in \{\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}\},\ the following results also present themselves:$

$$\begin{aligned} & \operatorname{cl}_{\mathfrak{g}} \left(\mathscr{W}_{\mathfrak{g}} \cap \mathfrak{g} - \operatorname{Op}_{\mathfrak{g}} \left(\{ \xi_{\mu} \} \right) \right) &= \mathscr{K}_{\mathfrak{g},3} \quad \forall \left(\mu, \mathscr{W}_{\mathfrak{g}} \right) \in I_{1}^{*} \times \left\{ \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}} \right\}, \\ & \operatorname{cl}_{\mathfrak{g}} \left(\mathscr{W}_{\mathfrak{g}} \cap \mathfrak{g} - \operatorname{Op}_{\mathfrak{g}} \left(\{ \xi_{\mu} \} \right) \right) &= \mathscr{K}_{\mathfrak{g},1} \quad \forall \left(\mu, \mathscr{W}_{\mathfrak{g}} \right) \in \left(I_{7}^{*} \setminus I_{1}^{*} \right) \times \left\{ \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}} \right\}, \\ & \left(4.8 \right) \qquad \operatorname{int}_{\mathfrak{g}} \left(\mathscr{Y}_{\mathfrak{g}} \cup \left\{ \xi_{\mu} \right\} \right) &= \mathscr{O}_{\mathfrak{g},2} \setminus \left\{ \xi_{\mu} \right\} \quad \forall \left(\mu, \mathscr{W}_{\mathfrak{g}} \right) \in I_{7}^{*} \times \left\{ \mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}} \right\}. \end{aligned}$$

Thus, for each $\mathscr{W}_{\mathfrak{g}} \in \{\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\}$ and $\mathscr{Y}_{\mathfrak{g}} \in \{\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}\}$, it follows that:

$$(4.9) \qquad \xi_{\mu} \in \begin{cases} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}\big(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi_{\mu}\}\right)\big) & \forall \left(\mu,\nu\right) \in \{2,6\} \times \{0,2\} \,,\\\\ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu}\big(\mathscr{W}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi_{\mu}\}\right)\big) & \forall \left(\mu,\nu\right) \in I_{7}^{*} \times \{1,3\} \,,\\\\ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\nu}\big(\mathscr{Y}_{\mathfrak{g}}\cup\{\xi_{\mu}\}\big) & \forall \left(\mu,\nu\right) \in I_{7}^{*} \times \{1,3\} \,,\\\\ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\nu}\big(\mathscr{Y}_{\mathfrak{g}}\cup\{\xi_{\mu}\}\big) & \forall \left(\mu,\nu\right) \in \{2,6\} \times \{0,2\} \,.\end{cases}$$

On the other hand, it also follows that:

(4.10)
$$\begin{cases} \xi_{\mu} \in \mathrm{cl}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}} \cap \mathfrak{g} - \mathrm{Op}_{\mathfrak{g}}\left(\{\xi_{\mu}\}\right)\right) & \forall \left(\mu, \mathscr{W}_{\mathfrak{g}}\right) \in \left(I_{7}^{*} \setminus I_{1}^{*}\right) \times \left\{\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right\},\\ \xi_{\mu} \notin \mathrm{int}_{\mathfrak{g}}\left(\mathscr{Y}_{\mathfrak{g}} \cup \left\{\xi_{\mu}\right\}\right) & \forall \left(\mu, \mathscr{W}_{\mathfrak{g}}\right) \in \left(I_{7}^{*} \setminus I_{1}^{*}\right) \times \left\{\mathscr{U}_{\mathfrak{g}}, \mathscr{Y}_{\mathfrak{g}}\right\}.\end{cases}$$

Taking the above results into account, the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived operation of \mathfrak{g} -Der $_{\mathfrak{g},\nu}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on the $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{R}_{\mathfrak{g}}$, $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, and the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operation of \mathfrak{g} -Cod $_{\mathfrak{g},\nu}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on the $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{U}_{\mathfrak{g}}$, $\mathscr{V}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, for all $\nu \in I_3^0$, then, produce the following results:

$$(4.11) \qquad \begin{cases} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}\left(\mathscr{W}_{\mathfrak{g}}\right) = \mathscr{K}_{\mathfrak{g},4} & \forall \left(\nu,\mathscr{W}_{\mathfrak{g}}\right) \in \{0,2\} \times \{\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\},\\ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}\left(\mathscr{W}_{\mathfrak{g}}\right) = \mathscr{O}_{\mathfrak{g},1} & \forall \left(\nu,\mathscr{W}_{\mathfrak{g}}\right) \in \{1,3\} \times \{\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\},\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\nu}\left(\mathscr{Y}_{\mathfrak{g}}\right) = \mathscr{O}_{\mathfrak{g},4} & \forall \left(\nu,\mathscr{Y}_{\mathfrak{g}}\right) \in \{0,2\} \times \{\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}\},\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\nu}\left(\mathscr{Y}_{\mathfrak{g}}\right) = \mathscr{K}_{\mathfrak{g},1} & \forall \left(\nu,\mathscr{Y}_{\mathfrak{g}}\right) \in \{1,3\} \times \{\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}\}. \end{cases}$$

Likewise, taking the above results into account, the $\mathfrak{T}_{\mathfrak{g}}$ -derived operation of der_{\mathfrak{g}}: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on the $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{R}_{\mathfrak{g}}$, $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, and the $\mathfrak{T}_{\mathfrak{g}}$ -coderived operation of $\operatorname{cod}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ on the $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{U}_{\mathfrak{g}}$, $\mathscr{V}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, then, also produce the following results:

(4.12)
$$\begin{cases} \operatorname{der}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}) = \mathscr{K}_{\mathfrak{g},2} & \forall \mathscr{W}_{\mathfrak{g}} \in \{\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\}, \\ \operatorname{cod}_{\mathfrak{g}}(\mathscr{Y}_{\mathfrak{g}}) = \mathscr{O}_{\mathfrak{g},2} & \forall \mathscr{Y}_{\mathfrak{g}} \in \{\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}\}. \end{cases}$$

Hence, for each $\mathscr{W}_{\mathfrak{g}} \in \{\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\}$ and $\mathscr{Y}_{\mathfrak{g}} \in \{\mathscr{U}_{\mathfrak{g}}, \mathscr{V}_{\mathfrak{g}}\}$, it results that:

(4.13)
$$\begin{cases} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},0}\left(\mathscr{W}_{\mathfrak{g}}\right) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},1}\left(\mathscr{W}_{\mathfrak{g}}\right) \supseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},3}\left(\mathscr{W}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},2}\left(\mathscr{W}_{\mathfrak{g}}\right),\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},0}\left(\mathscr{Y}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},1}\left(\mathscr{Y}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},3}\left(\mathscr{Y}_{\mathfrak{g}}\right) \supseteq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},2}\left(\mathscr{Y}_{\mathfrak{g}}\right).\end{cases}$$

The (\preceq, \succeq) -relations $\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},0} \succeq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},1} \succeq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},3} \preceq \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},2}$ and $\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},0} \preceq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},1} \preceq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},3} \succeq \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},2}$ are thus verified. Clearly, the following results also hold true:

(4.14)
$$\begin{cases} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g},\nu}\left(\mathscr{W}_{\mathfrak{g}}\right) \subseteq \mathrm{der}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right) & \forall \left(\nu,\mathscr{W}_{\mathfrak{g}}\right) \in I_{3}^{0} \times \left\{\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\right\},\\ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g},\nu}\left(\mathscr{Y}_{\mathfrak{g}}\right) \supseteq \mathrm{cod}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g}}\right) & \forall \left(\nu,\mathscr{Y}_{\mathfrak{g}}\right) \in I_{3}^{0} \times \left\{\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}\right\}.\end{cases}$$

Thus, the (\preceq, \succeq) -relations \mathfrak{g} -Der_{\mathfrak{g},ν} $\preceq der_{\mathfrak{g}}$ and \mathfrak{g} -Cod_{\mathfrak{g},ν} $\succeq cod_{\mathfrak{g}}$, for all $\nu \in I_3^0$, are also verified.

The application in which are presented some essential properties of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces are therefore accomplished and ends here.

If this nice application be explored a step further, other interesting conclusions can be drawn from the study of the essential properties of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -derived and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces.

5. Conclusion

In this paper, we have introduced and studied the essential properties of a new class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces.

Concisely, the definitions of the concepts of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators were presented in as general and unified a manner as possible such that the passage from these concepts to \mathfrak{g} - \mathfrak{T} -derived and \mathfrak{g} - \mathfrak{T} -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces, and also to \mathfrak{T} -derived and $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in \mathscr{T} -spaces, is not impossible. The essential properties of such novel types of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces were discussed in such a manner as to show that much of the fundamental structure of $\mathscr{T}_{\mathfrak{g}}$ -spaces is better considered for \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators \mathfrak{g} -Der $_{\mathfrak{g}}$, \mathfrak{g} -Cod $_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ than for the $\mathfrak{T}_{\mathfrak{g}}$ -derived and $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators der_{\mathfrak{g}}, cod_{\mathfrak{g}}: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively. The axiomatic definitions of the concepts of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces were then presented from a purely mathematical or abstract point of view.

Precisely, the outstanding facts on \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators in $\mathscr{T}_{\mathfrak{a}}$ -spaces, $\mathfrak{a} \in {\mathfrak{o}, \mathfrak{g}}$, are:

 $\begin{array}{l} - & \text{I. If the definitions of } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a}}, \ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{a}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \text{ are based} \\ \text{on } \mathrm{cl}_{\mathfrak{a}}, \ \mathrm{int}_{\mathfrak{a}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \text{ instead of } \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a}}, \ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a}} : \mathscr{P}(\Omega) \longrightarrow \\ \mathscr{P}(\Omega), \ \text{then } \left(\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{a}}, \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{a}}\right) \stackrel{\mathrm{def}}{=} \left(\mathrm{der}_{\mathfrak{a}}, \mathrm{cod}_{\mathfrak{a}}\right), \ \text{and therefore, } \mathrm{der}_{\mathfrak{a}}, \mathrm{cod}_{\mathfrak{a}} : \\ \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \ \text{are called, respectively, a } \mathfrak{T}_{\mathfrak{a}}\text{-}\mathrm{derived} \ \text{and a } \mathfrak{T}_{\mathfrak{a}}\text{-}\mathrm{coderived} \\ \mathrm{operators in } a \ \mathscr{T}_{\mathfrak{a}}\text{-}\mathrm{space} \ \mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}}). \end{array}$

 $\begin{array}{l} & - \text{ II. If } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\precsim der_{\mathfrak{g}} \text{ means } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\subseteq \mathrm{der}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \text{ and } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\succsim \\ & \mathrm{cod}_{\mathfrak{g}} \text{ means } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\supseteq \mathrm{cod}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \text{ then: } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}:\mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right) \\ & \mathrm{is } \ coarser \ (\mathrm{or}, \ smaller, \ weaker) \ \mathrm{than } \ \mathrm{der}_{\mathfrak{g}}:\mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right) \ \mathrm{or}, \ \mathrm{der}_{\mathfrak{g}}: \\ & \mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right) \ \mathrm{is } \ finer \ (\mathrm{or}, \ larger, \ stronger) \ \mathrm{than } \ \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}: \mathscr{P}\left(\Omega\right)\longrightarrow \\ & \mathscr{P}\left(\Omega\right); \ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}: \mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right) \ \mathrm{is } \ finer \ (\mathrm{or}, \ larger, \ stronger) \ \mathrm{than} \\ & \mathrm{cod}_{\mathfrak{g}}: \mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right) \ \mathrm{or}, \ \mathrm{cod}_{\mathfrak{g}}: \mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right) \ \mathrm{is } \ coarser \ (\mathrm{or}, \ smaller, \ smaller, \ weaker) \ \mathrm{than } \ \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}: \mathscr{P}\left(\Omega\right)\longrightarrow \mathscr{P}\left(\Omega\right). \end{array}$

- III. A necessary and sufficient condition for the set-valued map $\mathfrak{g}\text{-Der}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ to be a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}$ derived operator in a strong $\mathscr{T}_{\mathfrak{g}}\text{-}$ space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is that, for every $(\{\xi\}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \times_{\alpha \in I_{3}^{*}} \mathscr{P}(\Omega)$ such that $\{\xi\} \subset \mathfrak{g}\text{-Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}})$, it satisfies: - I. $\mathfrak{g}\text{-Der}_{\mathfrak{g}}(\emptyset) = \emptyset$,

$$- \text{ II. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\{\xi\}\}\big)\big),$$

$$- \text{ III. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \subseteq \mathscr{R}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right),$$

$$- \text{ IV. } \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \cup \mathscr{S}_{\mathfrak{g}}\right) = \bigcup_{\mathscr{U}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}} \mathfrak{g}\text{-}\mathrm{Der}_{\mathfrak{g}}\left(\mathscr{U}_{\mathfrak{g}}\right).$$

 $\begin{array}{l} & - \text{ IV. A necessary and sufficient condition for the set-valued map } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}:\\ \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \text{ to be a } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{coderived operator in a } \mathscr{T}_{\mathfrak{g}}\text{-}\mathrm{space }\mathfrak{T}_{\mathfrak{g}} = \\ & (\Omega,\mathscr{T}_{\mathfrak{g}}) \text{ is that, for each } \left(\{\zeta\},\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}\right) \in \times_{\alpha \in I_{3}^{*}} \mathscr{P}(\Omega) \text{ such that } \{\zeta\} \subset \\ & \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\mathscr{U}_{\mathfrak{g}}), \text{ it satisfies:} \\ & - \text{ I. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}(\Omega) = \Omega, \end{array}$

$$\begin{split} &-\text{II. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big(\mathscr{U}_{\mathfrak{g}}\big) = \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\big(\mathscr{U}_{\mathfrak{g}}\cup\{\zeta\}\big), \\ &-\text{III. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{U}_{\mathfrak{g}})\supseteq \mathscr{U}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{U}_{\mathfrak{g}}), \\ &-\text{IV. } \mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{U}_{\mathfrak{g}}\cap\mathscr{V}_{\mathfrak{g}}) = \bigcap_{\mathscr{W}_{\mathfrak{g}}=\mathscr{U}_{\mathfrak{g}},\mathscr{V}_{\mathfrak{g}}}\mathfrak{g}\text{-}\mathrm{Cod}_{\mathfrak{g}}\,(\mathscr{W}_{\mathfrak{g}}). \end{split}$$

Hence, this study has several advantages. Indeed, the study offers very nice features for the passage from the essential properties of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators to the essential properties of $\mathfrak{T}_{\mathfrak{a}}$ -derived and $\mathfrak{T}_{\mathfrak{a}}$ -coderived operators, respectively, in $\mathscr{T}_{\mathfrak{a}}$ -spaces. Moreover, the study offers \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived structures as $(\Omega, \mathfrak{g}$ -Der $\mathfrak{g})$ which are coarser than $\mathfrak{T}_{\mathfrak{g}}$ -derived structures as $(\Omega, \det \mathfrak{g})$ and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ coderived structures as $(\Omega, \mathfrak{g}$ -Cod $\mathfrak{g})$ which are finer than $\mathfrak{T}_{\mathfrak{g}}$ -coderived structures as $(\Omega, \operatorname{cod}_{\mathfrak{g}})$. Hence, such \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -structures can be considered as a means of handling certain problems in Functional Analysis. Accordingly, our study offers \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -(derived, coderived) structures from which many other novel propositions can be deduced by means of these conditions by purely logical processes. Thus, the construction of a purely deductive theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -derived and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -coderived operators a step further is made possible, and the discussion of this paper ends here.

6. Acknowledgments

The authors would like to express their sincere thanks to Prof. Endre Makai, Jr. (Professor Emeritus of the Mathematical Institute of the Hungarian Academy of Sciences) for his valuable suggestions.

Funding

The authors declared that has not received any financial support for the research, authorship or publication of this study.

The Declaration of Conflict of Interest/ Common Interest

The authors declared no conflict of interest or common interest

The Declaration of Ethics Committee Approval

This study does not be necessary ethical committee permission or any special permission.

The Declaration of Research and Publication Ethics

The authors declared that they comply with the scientific, ethical, and citation rules of Journal of Universal Mathematics in all processes of the study and that they do not make any falsification on the data collected. Besides, the authors declared that Journal of Universal Mathematics and its editorial board have no responsibility for any ethical violations that may be encountered and this study has not been evaluated in any academic publication environment other than Journal of Universal Mathematics.

References

 G. Cantor, Über die Ausdehnung eines Satzes aus der Theorie der Trigonometrischen Reihen, Math. Ann., Vol.5, pp.123-132 (1872).

[2] G. Cantor, Über Unendliche, Lineaere Punktmannigfaltigkeiten, Ibid., Vol.20, No.III, pp.113-121 (1882).

[3] S. Ahmad, Absolutely Independent Axioms for the Derived Set Operator, The American Mathematical Monthly, Vol.73, No.4, pp.390-392 (1966).

[4] A. Baltag and N. Bezhanishvili and A. Özgün and S. Smets, A Topological Apprach to Full Belief, Journal of Philosophical Logic, Vol.48, No.2, pp.205-244 (2019).

[5] M. Caldas and S. Jafari and M. M. Kovár, Some Properties of θ -Open Sets, Divulgaciones Matemáticas, Vol.12, No.2, pp.161-169 (2004).

[6] D. Cenzer and D. Mauldin, On the Borel Class of the Derived Set Operator, Bull. Soc. Math. France, Vol.110, pp.357–380 (1982).

[7] C. Devamanoharan and S. Missier and S. Jafari, ρ -Closed Sets in Topological Spaces, Eur. J. Pure Appl. Math., Vol.5, No.4, pp.554-566 (2012).

[8] M. M. Fréchet, Sur Quelques Points du Calcul Functionnel, Rend. Circ. Matem. Palermo, Vol.22, pp.1-72 (1906).

218

[9] Y. Gnanambal, On Generalized Preregular Closed Sets in Topological Spaces, Indian J. Pure Appl. Math., Vol.28, pp.351-360 (1997).

[10] F. Harary, A Very Independent Axiom System, Monthly, Vol.68, pp.159-162 (1961).

[11] F. R. Harvey, The Derived Set Operator, The American Mathematical Monthly, Vol.70, No.10, pp. 1085-1086 (1963).

[12] E. R. Hedrick, On Properties of a Domain for Which Any Derived Set is Closed, Transactions of the American Mathematical Society, Vol.12, No. 3, pp.285-294 (1911)

[13] D. Higgs, Iterating the Derived Set Function, The American Mathematical Monthly, Vol.90, No.10, pp.693-697 (1983).

[14] H. J. Kowalsky, Topologische Räume, Birkhäuser, Verlag, Basel und Stuttgart, pp.53 (1961).

[15] R. M. Latif, Characterizations and Applications of $\gamma\text{-}Open$ Sets, Soochow Journal of Mathematics, Vol.32, No.3, pp.1-10 (2006).

[16] Y. Lei and J. Zhang, Generalizing Topological Set Operators, Electronic Notes in Theoretical Science, Vol.345, pp.63-76 (2019).

[17] S. P. Missier and V. H. Raj, $g^*\Lambda\text{-}Closed$ Sets in Topological Spaces, Int. J. Contemp. Math. Sciences, Vol.7, No.20, pp.963-974 (2012).

[18] S. Modak, Some Points on Generalized Open Sets, Caspian Journal of Mathematical Sciences (CJMS), Vol.6, No. 2, pp.99-106 (2017).

[19] G. H. Moore, The Emergence of Open Sets, Closed Sets, and Limit Points in Analysis and Topology, Historia Mathematica, Vol.35, No. 3, pp.220-241 (2008).

[20] A. Al-Omari and M. S. M. Noorani, On b-Closed Sets, Bull. Malays. Sci. Soc., Vol.32, No.1, pp.19-30 (2009).

[21] R. Rajendiran and M. Thamilselvan, Properties of g^*s^* -Closure, g^*s^* -Interior and g^*s^* -Derived Sets in Topological Spaces, Applied Mathematical Sciences, Vol. 8, No. 140, pp.6969-6978 (2014).

[22] J. A. R. Rodgio and J. Theodore and H. Jansi, Notions via β^* -Open Sets in Topological Spaces, IOSR Journal of Mathematics (IOSR-JM), Vol.6, No.3, pp. 25-29 (2013).

[23] N. E. Rutt, On Derived Sets, National Mathematics Magazine, Vol. 18, No. 2, pp.53-63 (1943).

[24] K. Sano and M. Ma, Alternative Semantics for Vissier's Propositional Logics, 10th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2013, LNCS 8984, Springer, pp.257-275 (2015).

[25] C. Sekar and J. Rajakumari, A New Notion of Generalized Closed Sets in Topological Spaces, International Journal of Mathematics Trends and Technology (IJMTT), Vol. 36, No. 2, pp.124-129 (2016).

[26] R. Spira, Derived-Set Axioms for Topological Spaces, Portugaliar Mathematica, Vol.26, pp.165-167 (1967).

[27] C. Steinsvold, Topological Models of Belief Logics, Ph.D. Thesis, City University of New York (2007).

[28] J. Tucker, Concerning Consecutive Derived Sets, The American Mathematical Monthly, Vol.74, No.5, pp.555-556 (1967).

[29] J. Dixmier, General Topology, Springer Verlag New York Inc., Vol.18, pp.31-35 (1997).

[30] S. Willard, General Topology, Addison-Wesley Publishing Company, Reading, Massachusetts, Vol.18, pp.31-35 (1970).

[31] M. I. Khodabocus, N. -U. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part II. Generalized Interior and Generalized Closure, Proceedings of International Mathematical Sciences, (2023).

[32] M. I. Khodabocus, N. -U. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure, Proceedings of International Mathematical Sciences, (2023).

[33] M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Connectedness (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Connectedness) in Generalized Topological Spaces ($\mathscr{T}_{\mathfrak{g}}$ -Spaces), Journal of Universal Mathematics, Vol.6, No.1, pp.1-38 (2023).

[34] M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Compactness in Generalized Topological Spaces: Part II. Countable, Sequential and Local Properties, Fundamentals of Contemporary Mathematical Sciences, Vol.3, No.2, pp.98-118 (2022). [35] M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Compactness in Generalized Topological Spaces: Part I. Basic Properties, Fundamentals of Contemporary Mathematical Sciences, Vol.3, No.1, pp.26-45 (2022).

[36] M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Separation Axioms in Generalized Topological Spaces, Journal of Universal Mathematics, Vol.5, No.1, pp.1-23 (2022).

[37] M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory, Vol.36, pp.18-38 (2021).

[38] M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, Réduit, Mauritius (2020).

(M. I. Khodabocus) University of Mauritius, Faculty of Science, Department of Mathematics, Réduit 80837, MAURITIUS

Current address: Université des Mascareignes, Faculty of Sustainable Development and Engineering, Department of Emerging Technologies, Rose Hill Campus, MAURITIUS

Email address, M. I. Khodabocus: ikhodabocus@udm.ac.mu

(N. -Ul. -H. Sookia) UNIVERSITY OF MAURITIUS, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, RÉDUIT 80837, MAURITIUS

Email address, N. -Ul. -H. Sookia: sookian@uom.ac.mu

(R. D. Somanah) DEPARTMENT OF EMERGING TECHNOLOGIES, FACULTY OF SUSTAINABLE DE-VELOPMENT AND ENGINEERING, UNIVERSITÉ DES MASCAREIGNES, ROSE HILL CAMPUS, MAURITIUS Email address, R. D. Somanah: dsomanah@udm.ac.mu