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Monolayers in Different Orders with Promising Optoelectronic

Properties
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Abstract: Van der Waals (vdW) heterostructures have taken the dominant place in commercialization of
the  optoelectronic  devices.  MoSe2 and  PtS2 are  two-dimensional  semiconductors,  Using  first-principles
computations, the optical and electronic characteristics of trilayer van der Waals (vdW) heterostructures
with  four  distinct  orders  were  investigated.  We  demonstrate  that  all  innovative  heterostructures
investigated are semiconductors. In addition, it should be emphasized that the indirect band gaps of the
ABA, BAA, ABB, and BAB orders (where A is MoSe2 and B is PtS2) are approximately 0.875, 0.68, 0.595, and
0.594  eV,  respectively.  Positively,  the  optical  characteristics  reveal  that  the  trilayer  heterostructures
strongly absorb light with energies ranging from infrared to ultraviolet. Therefore, these heterostructures
can be utilized in optoelectronic devices in these regions. 
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1. INTRODUCTION

Shortly  after  the  discovery  of  graphene,  two-
dimensional  (2D)  materials  became  the  focus  of
material  research  (1).  The  effectiveness  of  using
graphene in  nanotechnology and nanodevices  has
started  a  thorough  investigation  and  study  into
layered low-dimensional materials (2). Graphene has
spurred  substantial  research  into  two-dimensional
(2D) materials such as TMDs (3), silicene (4), MXY
Janus  (5),  germanene  (6),  III-group
monochalcogenides  (7,  8),  phosphorene  (9),  and
stanene (10).

Vertical  heterostructures  comprised  of  transition
metal  dichalcogenides  (TMDs)  monolayers  are
attractive  prospects  for  next-generation
optoelectronic  and  thermoelectric  devices  (11).
These materials are more adaptable as candidates
for  thin,  flexible  device  applications  and  are
beneficial  for  numerous  applications,  including

photovoltaic  devices  (12,  13),  transistors  (14),
Electrochemical Energy Systems (15, 16), lubrication
(17,  18),  lithium-ion  batteries  (16,  19),
optoelectronic nanodevices (20), and thermoelectric
devices  (21).  Transition  metal  dichalcogenide
(TMDs)  semiconductors  and  their  bi-layer/tri-layer
heterostructures have attracted significant attention
because of their rich electronic/photonic properties
such as a high carrier mobility (22), indirect to direct
band  gap  transition  (23),  and  abundance  of
multiexcitons  (24),  as  well  as  importance  for
fundamental research and novel device applications
(25, 26). TMDs monolayers are the most researched
2D semiconductors, with substantial exciton states
and  accessibility  to  the  valley  degree  of  freedom
(27).  TMDs  materials  are  atomically  2D MX2
semiconductors of the type MX2, with M a transition
metal atom (Mo, W, etc.) and X a chalcogen atom
(S, Se, or Te), Many of these materials have been
made  in  the  laboratory,  such  as  MoS2  (28,  29),
MoSe2 (30), GeSe2 (31), PtS2 (32), MoTe2 (33), and
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WS2 (34)...etc. Specifically,  PtS2 and  MoSe2
monolayers,  among  other  TMDs  materials,  have
become a focus of study in recent years due to their
remarkable  features,  which  make  them  ideal
materials  for  transistors  (35,  36),  solar  energy
applications  (37), and  electrocatalysts  (38).  PtS2
monolayer  is  a  semiconducting  material  with  a
bandgap of about 1.7 eV (39). On the other hand,
MoSe2 monolayer is also a semiconducting material
with a bandgap of about 1.5 eV (40).

Moreover,  to  my  knowledge,  no  investigation  into
the  optical  and  band  structure  characteristics  of
trilayer  vdW  heterostructures  has  ever  been
published. We shall thus study these characteristics
of  trilayer  vdW  heterostructures.  The  density
functional  theory  was  utilized  to  examine  the
optoelectronic  characteristics  of  the
heterostructures composed of three monolayers of
PtS2 and MoSe2. Because the orders that form in the
heterostructures may have a significant influence in
determining the properties of the heterostructures,
the  examined  properties  are  studied  with  four
orders  of  trilayer  vdW  heterostructures.  Our
research could lead to a material that could be used
to make optoelectronic devices.

2. COMPUTATIONAL METHODS

In this study, we calculate the optical and electronic
properties of  the trilayer heterostructures by first-
principles calculations using castep code (41), with
the generalized gradient approximations (GGA) (42).
In  the  current  work,  the  exchange-correlation

energy function developed by Perdew,  Burke,  and
Ernzerhof (PBE) has been applied. The interaction of
valence  electrons  is  defined  by  the  ultrasoft
pseudopotential  (43).  The cutoff energy for  plane-
wave  basis  was  taken  to  be  500 eV.  The 4×4×1
supercell is the model system used in this work to
replicate  the  heterostructure,  The  relativistic
treatment follows out via the function of  Koelling-
Harmon. The self-consistent energy tolerance in the
calculations was deemed to be converged at 4×10-6

eV/atom,  while  the  force's  convergence  threshold
was established at 1.5×10-2 eV/Å. A vacuum gap of
25 Å along the perpendicular direction to the surface
was utilized to exclude the interaction between two
adjacent  layers.  To  compute  the  geometry
optimization  and  optical  characteristics,
respectively, the Brillouin zone is integrated with a
12×12×1  and  30×30×1  Monkhorst-Pack  k-point
mesh (44).

3. RESULTS AND DISCUSSION

3.1. Structural and Electronic Properties
Fig.  1  shows the geometrical  atomic structures of
MoSe2 and PtS2 monolayers from various angles. At
equilibrium, MoSe2 and PtS2 monolayers correspond
to the space group P-6m2 and P-3m1, respectively.
the lattice constant of the single-layer MoSe2 is a =
b = 3.29 Å, c = 18.25 Å  and the length of Mo-Se (d)
is 2.522 Å,  while the lattice constant of the single-
layer PtS2 is a = b = 3.58 Å, c = 17.56 Å and the
length of Pt-S (d) is  2.418 Å,  These results are in
good  agreement  with  previous  experimental  and
theoretical data (45-49).

Figure 1: The top (a), side (b), and front(c) views of MoSe2 and PtS2 monolayers.

The  three-layer  heterostructures  include  four
different  arrangements  where  the  monolayers  are
arranged  perpendicular  in  the  z-direction.  These

arrangements are; ABA, AAB, ABB, and BAB (where
A is MoSe2 and B is PtS2) as shown in Fig. 2. The
calculated interlayer distances (h), lattice constants
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(a),  bond lengths  (d),  formation energy,  and bind
energy  have  been  summarized  in  Table  1.  These
values  are  comparable  with  the  mean  value  of
monolayers  MoSe2  and  PtS2.  Our  findings  suggest
that  the  arrangement  of  trilayer  heterostructures
has a significant effect on structural properties. The

formation  and  bind  energies  were  calculated  to
identify  the  stability  of  ABA,  BAA,  ABB,  and  BAB
orders. Manifestly, all the formed orders are stable
due  to  their  possessing  formation  energies  with
negative values.

Table 1: The computed structural and electronic properties of trilayer heterostructures.

Orders a=b(Å) h1(Å) h2(Å) DMo-Se
(Å)

DPt-S
(Å)

Formation
energy(eV)

binding
energy
(eV)

ABA 3.387 3.928 4.258 2.544 2.385 -20.43 0.47
BAA 3.385 4.005 3.976 2.729 2.385 -20.41 0.49
ABB 3.491 4.391 4.240 2.570 2.4 -18.33 0.57
BAB 3.489 4.388 4.104 2.571 2.4 -18.31 0.58

Figure 2: Atomic structures of trilayer heterostructures by different orders where A and B are MoSe2 and
PtS2, respectively.

The  calculations  of  band  structure  show  that  the
MoSe2 monolayer has a direct bandgap (1.489 eV)
lying  at  ᴦ  point  and  is  very  comparable  with
previous experimental  data (50, 51). On the other
hand, the PtS2 monolayer having the properties of a
semiconductor with indirect bandgap (1.776 eV), the
conduction band minimum (CBM), and valence band
maximum (VBM) placed in the ᴦ-M and K-ᴦ paths,
respectively,  as  exhibited  in  Fig.  3.  This  result  is
found to be in a very good agreement with previous
reports (46, 52).

Figure 4 shows the phonon dispersion of the trilayer
heterostructures. We note that the BAA order is the
most  dynamically  stable,  as  it  is  devoid  of  any
negative values, unlike the ABA order, which shows
one  branch  that  shows  negative  values  that  may
indicate  instability  or  numerical  noise.  As  for  the
ABB and BAB orders, we notice that there are few
negative  values  at  ᴦ,  which  is  mostly  due  to
numerical noise.
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Figure 3: The band structure of the monolayers (a)MoSe2, (b)PtS2.

Figure 4: Phonon dispersions of trilayer heterostructures (a) ABA, (b) BAA, (c) ABB, (d) BAB orders.

Figure  5  depicts  the  band  structure  of trilayer
heterostructures. The bandgaps are 0.875 eV (ABA),
0.68 eV (BAA), 0.595 eV (ABB), and 0.594 eV (BAB).
These values are corresponded to the wavelengths,
1416.96 nm, 1823.29 nm, 2083.77 nm, and 2087.27
nm, respectively. From the band structure of ABA,
BAA, ABB, and BAB orders, it can be seen that ABA
and BAA orders have a lot in common when it comes
to their direct and indirect energy gaps. The same is
true for ABB and BAB orders. It should be pointed
out that the VBM for all trilayers is positioned at ᴦ

point whereas CBM is placed in (ABA and BAA) ABB
and BAB orders at (K-ᴦ path) ᴦ path. However, the
sites  of  VBM  are  unchanged  irrespective  of  the
heterostructure  order  in  contrast  to  CBM,  which
depends on the heterostructure type. Although the
values  of  bandgaps  of  ABB  and  BAB
heterostructures  are  very  comparable,  the  values
are  much  smaller  than  those  in  MoSe2 and  PtS2
monolayers  counterparts.  More  precisely,  the
construction of trilayer heterostructures reduces the
energy gap to nearly a third of its value. In another
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development, there a direct bandgaps for ABA, BAA,
ABB, and BAB orders are positioned at ᴦ path with
comparable values; 1.22, 1.16, 1.013, and 1.014 eV,
respectively.  This  indicates  that  the  values  of  the
direct bandgap are approximately twice the indirect
bandgap.  Based  on  these  values,  we  can
unambiguously  deduce  that  the  bandgaps  are
situated in  the  infrared  (IR)  range.  These findings
revealed that there is a high probability of utilizing
heterostructures  as  promising  materials  as
photovoltaic devices. 

This  suggests  that  controlling  the  number  and
arrangement of  the monolayers to  form the triple
layers  leads  us  to  obtain  a  band  structure  with

different energy gaps. This is the important feature
of the triple layers that make them preferable to the
monolayers that are involved in their formation. In
addition, we computed the total and partial densities
of  state  (TDOS  and  PDOS),  and  the  results  are
shown in Fig. 6, It can be observed that the valence
band (VB) and conduction band (CB) near the Fermi
level (near zero) are composed of the p orbitals of
sulfur  and  selenium  atoms  and  the  d  orbitals  of
molybdenum and platinum atoms. The far region (-
12 to -15 eV) of the valence band (VB) is dominated
by the 3 s and 4 s orbitals of sulfur and selenium,
whereas the far region of the conduction band (VB)
is dominated by the s and p orbitals of platinum and
selenium. This data provides the strongest support
for the band structure results.

Figure 5: The band structure of trilayer heterostructures (a) ABA, (b) BAA, (c) ABB, (d) BAB orders.
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Figure 6: TDOS and PDOS of trilayer heterostructures (a) ABA, (b) BAA, (c) ABB, (d) BAB orders.
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3.2. The Optical Properties
To  determine  the  possible  uses  of  a  material  in
optical detection and electronic devices, its optical
properties are crucial. Within the energy range of
up to 30 eV,  the optical  properties of  the layers
were determined in the current study.

To  employ  a  material  in  high-performance  solar
cells and other photovoltaic devices, it is necessary
to understand its optical  absorption, which offers
essential  information  on  how  efficiently  it
transforms solar energy. The absorption coefficient
(α) of trilayer heterostructures is illustrated in Fig.
7(a),  After  a careful  analysis,  we notice that the
beginning of α in the infrared (IR) range, then, α
increases with the growth of photon energy. This
rise continues up to the highest value of α;  15.2×
104,  15× 104,  15× 104,  and 14.9 × 104  cm-1,  for
ABB, ABA, BAA, and BAB orders, respectively, all
these  values  are  positioned  in  the  ultraviolet
region.  To  be  precise,  this  does  not  mean
neglecting the value of the absorption coefficient in
other regions, as its value in the visible region is
also  very  high  and  equal  to  8  ×  104 cm-1.  In
addition, the absorption coefficient of the ABA and
BAA have two peaks, not three as in ABB and BAB
orders. 

Reflectivity  as  a  function  of  phonon  energy  is
depicted in Fig. 7(b) Clearly, the static reflectivity
of ABA, BAA, ABB, and BAB orders at zero energy is
22.5%,  22.2%,  21.9%,  and  21.5%,  respectively.
However,  the maximum values of  reflectivity are
33.1% (ABA), 33% (BAA), 32.9% (ABB), and 32.7%
(BAB); hence, the maximum values of reflectivity
cannot  exceed  33.1%  for  all  trilayer  vdW
heterostructures. In addition, there are two peaks
of  reflectivity for  ABA and BAA orders and three
peaks for ABB and BAB orders, with the principal
peaks for ABA, BAA, ABB, and BAB orders occurring
in the visible range at energies of 2.67, 2.78, 2.78,
and  2.67  eV,  respectively.  Reflectivity
demonstrated a  notable  amount  of  anisotropy in
the energy range of 0 to 21 eV, which decreases
gradually  to  zero  above  27  eV.  Trilayer  vdW
heterostructures can therefore be used as coating
nanomaterials  in  the  visible  and  ultraviolet
spectrum. The optical  conductivity (σ) versus the
photon energy of heterostructures described in Fig.
7(c) Clearly, there are two main peaks for ABA and

BAA orders and three main peaks for ABB and BAB
orders. Although the conductivity commences from
the  IR region, their main peaks are positioned at
the end of the infrared region and the beginning of
the  visible  light  region.  Precisely,  the  uppermost
values of conductivity are 2.8, 2.77, 2.65, and 2.6,
positioned at 1.6 eV for all orders. After about 13.5
eV,  the  optical  conductivity  begins  to  decrease
with the growth of photon energy. 

The real (Re ε) and imaginary (Im ε) components of
the dielectric function are computed and depicted
in Fig. 7(d) and (e). The results of the (Re ε) portion
indicate  that  the  topmost  peaks  of
heterostructures are 9.66 (ABA), 9.58 (BAA), 9.45
(ABB),  and  9.23  (BAB)  at  phonon  energies  of
approximately  1.47  eV,  1.53  eV,  1.58eV,  and
1.64eV, respectively. After about 21 eV, the (Re ε)
part becomes constant. Generally, it is notable that
the superior  (Re ε)  part  is  located in  the  visible
region. In contrast, the results indicate that for all
cases, the imaginary parts (Im ε) of the dielectric
function have one maximum peak in visible light.
Nevertheless, the (Re ε) and (Im ε) peaks of  the
dielectric function of ABA layers are always greater
than  those  of  other  layers.  These  peaks
demonstrate that there is no additional transition
between  the  valence  and  conduction  bands.
Because  the  number  of  peaks  increases  or
decreases with the amount of electron transitions,
when  the  number  of  peaks  increases,  more
electrons are transferred between the valence and
conduction bands.

Materials'  optoelectronic  properties  are
substantially  influenced  by  the  refractive  index.
Fig. 7(f) depicts the refractive index as a function
of phonon energy (f). At zero photon energy, the
static refractive indices of the real part for the ABA,
BAA, ABB, and BAB orders are 2.82, 2.80, 2.77, and
2.72, respectively.  Additions For  all  trilayers,  The
maximum  refractive  index  occurs  near  2  eV,
Beyond  these  values,  the  refractive  index
decreases  gradually  as  photon energy  increases.
The  refractive  index  remains  constant  after
approximately 21 eV, In other words, after 21 eV,
these heterostructures become anisotropic. These
trilayers can be used as an internal layer coating
between  the  substrate  and  ultraviolet  absorbing
layer due to their high refractive indices.
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Figure 7: The optical characteristics of triple-layer heterostructures (a) the Absorption coefficient, (b) the
reflectivity, (c) the conductivity, (d) the real part of the dielectric function, (e) the imaginary part of the

dielectric function, (f) the refraction index.

4. CONCLUSIONS

In  summary,  we  studied  four  orders  of  trilayer
heterostructure.  Using the PBE method the band
gaps of All trilayers are between 0.594 to 0.875 eV,
appealing  for  applications  in  nanoelectronics.
Additionally,  their  direct  energy  gaps  are  nearly
twice as great as their indirect energy gaps. On the
other hand, it  is  found that the bandgaps of  the

trilayer  heterostructures  are  much  smaller  than
those in the monolayer counterpart. the VB and CB
near the Fermi level are composed of the p orbitals
of S and Se atoms and the d orbitals of Mo and Pt
atoms.  According  to  optical  simulations,  the
absorption  coefficient  of  these  unique  trilayer
heterostructures  is  extremely  high  in  the  visible
light spectrum. ABA and BAA orders have higher
optical  property  values  in  lower  energy  regions
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before 6  eV. Due  to  the  unique  optical  and
electronic  features  of  trilayer  vdW
heterostructures,  it  is  hypothesized  that  these
heterostructures can be utilized in optoelectronics
and nanoelectronics applications.
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