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Abstract: The karyological features of Akis subtricostata was determined for the first time with conventional and silver nitrate 
staining. The diploid number 2n=16 and meioformula 7+neoXY represents a deviation from the modal karyotype of Coleoptera. 
The pericentromeric heterochromatin was detected with both Giemsa and silver nitrate staining. In addition to determining a 
single possible NOR on prophase I nuclei, AgNO3 revealed that several telomeric regions of mitotic metaphase chromosomes 
were slightly more argyrophilic. 

Keywords: Karyotype, NOR, neoXY, Akis subtricostata, heterochromatin. 

Tenebrionidae’de (Coleoptera) İndirgenmiş Kromozom Sayısına Yeni Bir Kayıt 

Öz: Akis subtricostata'nın karyolojik özellikleri geleneksel ve gümüş nitrat boyama ile ilk kez belirlenmiştir. 2n=16 diploid sayısı 
ve 7+neoXY formülü, Coleoptera takımının model karyotipinden bir sapma temsil etmektedir. Perisentromerik heterokromatin 
hem Giemsa hem de gümüş nitrat boyamaları saptanmıştır. Profaz I nukleuslarında olası tek bir NOR belirlemenin yanı sıra, 
AgNO3 birkaç mitotik metafaz kromozomunun telomerik bölgelerinin biraz daha arjirofilik olduğunu ortaya çıkartmıştır. 

Anahtar kelimeler: Karyotip, NOR, neoXY, Akis subtricostata, heterokromatin. 

1. Introduction 

Tenebrionidae is the seventh largest family of Coleoptera 
with more than 20.000 described species (Fattorini, 2000; 
Bouchard et al., 2005; Lillig et al., 2012; Tezcan et al., 2012; 
Slipinsky et al, 2011, McKenna & Farrell, 2009, Iwan & 
Löbl, 2020). Beetles belonging to the family Tenebrionidae 
occupy a great array of diverse habitats and show 
considerable species diversity mainly in arid and 
semiarid environments. Due to having a worldwide 
distribution and comprising several agriculturally and 
economically important species, Tenebrionidae has been 
the focus of evolutionary biology (Papadopoulou et al., 
2009, 2010; Condamine et al., 2013; Lamb & Bond, 2013; 
Kergoat et al., 2014), biogeography (Juan et al., 1995, 
1996a, 1996b; Rees et al., 2001) and ecology studies (Los 
Santos et al., 2000; Carrara & Flores, 2012; Fattorini & 
Ulrich, 2012; Fattorini, 2013). However, cytogenetic 
studies and chromosomal information about the group 
are still insufficient to represent this diverse family. 
Possessing small chromosomes is one of the reasons that 
makes conventional banding techniques and fluorescence 
labelling difficult and therefore cytogenetic studies scarce 
(Dutrillaux et al., 2006).  

While the chromosome number in Tenebrionidae 
ranges between 14 and 38, the most prominent diploid 
number within the family is 2n=20. Considering the 
studied species, there is a tendency of a decrease in 
chromosome number in Pimelinae subfamily. However, 
the species with increased chromosome number are 
members of the subfamily Tenebrioninae (Juan & 
Petitpierre, 1991). Even though it has been reported in 
two genera (Akis and Morica) so far, 2n=16 is the second 

most common record of reduced diploid number in 
Pimelinae (Blackmon & Demuth, 2015). Akis is a genus 
which comprises approximately 34 species in the 
palearctic region yet only four species (Akis acumita, A. 
bacarozzo, A. bremeri and A. discoidea) have been studied 
cytogenetically (Juan & Petitpierre, 1991). All four species 
possess the meioformula of 7+neoXY. It is stated that 
neoXY system is derived from autosome-gonosome 
translocations (Schneider et al, 2006; Dutrillaux & 
Dutrillaux, 2009; Lira-Neto et al., 2012) and it has been 
frequently reported in Coccinellidae, Chrysomelidae and 
Scarabaeidae families (Blackmon & Demuth, 2015). 

In this study, Akis subtricostata, a new record from 
Türkiye (Keskin & Yağmur, 2008), has been analyzed 
cytogenetically in order to corroborate the reduced 
diploid number reported from the genus. Furthermore, 
we provide the first cytogenetic information about the 
species by analyzing mitotic and meiotic spreads using 
conventional and differential staining. 

2. Material and Methods 

Adult A. subtricostata specimens that were collected from 
the Harran Ruins, Şanlıurfa brought alive to our 
laboratories in Ege University (İzmir). Mitotic and meiotic 
plates wereobtained from the male gonads applying the 
microspreading (Chandley et al., 1994) and splashing 
(Murakami & Imai, 1974) methods. The slides were 
stained with 4% Giemsa solution for 20 minutes for 
conventional staining. The silver impregnation method 
(Patkin & Sorokin, 1983) was applied in order to 
determine the possible NOR regions. 

The chromosome spreads were photographed and 
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analyzed with Zeiss Axioscope light microscope using 
ZEN software. The male karyotype and chromosomal 
measurements were made with Image J software 
(Rasband, 1997-2015) and Levan plugin (Sakamoto & 
Zacaro, 2009). 

3. Results 

Spermatogonial plates of A. subtricostata showed 2n=16 
diploid number with meioformula 7+neoXY. The 
karyotype is composed of 2 subtelocentric, 2 
submetacentric, and 3 metacentric pairs of autosomes. 
The submetacentric neoX is the second largest 
chromosome of A. subtricostata while the neoY is 
subtelocentric (Fig. 1). In metaphase I the heteromorphic 
bivalent can be determined as neoXY (Fig. 2a). Giemsa-
stained prophase nuclei presented dark stained 
pericentromeric regions (Fig. 2b). 

Silver nitrate revealed a single possible NOR (Fig. 
3a) and predominantly stained the pericentromeric 
regions of the chromosomes at prophase I (Fig. 3b). In 
silver-stained mitotic metaphase plates, telomeric regions 
of at least 3 pairs of chromosomes gave relatively high 
argyrophilic signals along with centromeric regions (Fig. 
4). 

 
Figure 1. Karyotype of Akis subtricostata (bar = 5µm). 

 
Figure 2. Giemsa stained a) metaphase I, b) prophase I stages 
(arrow indicates neoXY bivalent, bar = 5µm). 

 

Figure 3. Silver nitrate stained prophase I nuclei a) possible NOR 
showed with arrow, b) heterochromatin distribution (bar = 5µm). 

4. Discussion 

2n=20 is considered to be the modal karyotype for 
Coleoptera as it is the conserved diploid number among 
its species. Xyp sex determination system and meta-
submetacentric morphology of the chromosomes are two 
other conserved features of the order. However, different 
chromosome numbers and morphologies resulting from 

chromosomal rearrangements like translocations, fusions, 
and fissions have been reported in various families and 
subfamilies (Smith & Virkki, 1978; Petitpierre et al., 1991; 
Cabral-de-Mello et al., 2008; Lira-Neto et al., 2012). The 
most common reduced diploid number is 2n=18 since it 
only requires the fusion of two autosomal pairs. It is 
followed by 2n=16 which is mostly reported in 
Chrysomelidae and Coccinellidae families. In 
Tenebrionidae, this diploid number is only present in the 
tribe Akidini and it represents 2.4% of the studied 
Tenebrionids (Blackmon & Demuth, 2015). 

 

Figure 4. Silver stained mitotic metaphase plate shows 
argyrophilic telomeric regions (asterisks indicate telomeric 
heterochromatin, bar = 5µm). 

Sex chromosome morphologies and determination 
systems also vary among the families of Coleoptera. 
While Xyp is the most common system; XO, neoXY, and 
multiple sex chromosomes have been reported within the 
order (Pons, 2004; Karagyan et al., 2012; Lira-Neto et al., 
2012; Blackmon & Demuth, 2015). In addition to being 
common in Coccinellidae, Chrysomelidae, and 
Scarabaeidae, neoXY system has been reported in 
Tenebrionidae as well (Blackmon & Demuth, 2015). This 
sex determination system along with the reduced diploid 
number is present in all studied Akidini representatives 
(Juan & Petitpierre, 1991). 

This study demonstrated that A. subtricostata 
corroborated with the 2n=16 reduced chromosome 
number and neo-sex determination system of the tribe. In 
addition to reduced diploid number, chromosome 
morphology is quite deviated from Coleoptera that 
frequently has metacentric and submetacentric 
chromosomes (Petitpierre, 1996). In A. subtricostata two 
autosomal pairs along with the neoY chromosome were 
determined as subtelocentric. It is evident that multiple 
chromosomal rearrangements such as Robertsonian 
translocations, pericentric inversions, and fusions are at 
work in the genome evolution of the genus.  

The heterochromatin in Coleoptera can be detected 
on pericentromeric regions (Rozek, 1998; Pons et al., 2004; 
Bione et al., 2005; Lachowska et al., 2005; Şendoğan & 
Alpagut Keskin, 2016, Çalışan & Alpagut-Keskin, 2023) as 
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well as on telomeric regions (Bione et al., 2005; Colomba 
et al., 2006; Dutrillaux & Dutrillaux, 2009; Şendoğan et al., 
2019). In A. subtricostata pericentromeric blocks were 
demonstrated with silver nitrate and Giemsa staining. On 
the other hand, high argyrophilic signals were also 
detected on several chromosomal ends. These dark 
stained chromosomal regions can be associated with the 
heterochromatin as they represent more condensed and 
predominantly stained areas of the chromosomes. Silver 
nitrate staining also revealed a possible NOR regions on 
prophase nuclei. It is stated that silver particles highlight 
the nucleolar protein around the rDNA and; thus, 
determine the transcriptionally active NOR (Medina et 
al., 1983; Jordan, 1987; Vitturi et al., 1999; Kavalco & 
Pazza, 2004; Dutrillaux et al., 2007). 

In conclusion, the diploid number (2n=16) and 
meioformula (7+neoXY) of A. subtricostata was 
demonstrated for the first time in this study. Karyological 
findings of the species resembled those of other Akidini 
yet the sex determination system and reduced diploid 
number are what make this species intriguing. It is 
necessary to increase the cytogenetic studies on beetles in 
order to broaden the data available. Further comparative 
studies are important in order to understand the 
karyotype evolution in beetles. Completely 
understanding the karyotype evolution of the group 
needs further comparative studies. 
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