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Abstract 

In this work, we introduce application of a hybrid algorithm (DE/PSO) to estimate the model parameters from residual gravity 
anomalies due to some simple geometrical bodies. This algorithm combines differential evolution (DE) and particle swarm 
optimization (PSO). To investigate the performance of the hybrid algorithm, test studies were carried out using synthetic and field 
data sets. The synthetic data sets include noise-free and noisy synthetic anomalies. Two published gravity anomalies from Cuba and 
Canada were used as the field data. In the hybrid algorithm, DE and PSO yield [premature] solutions separately and share their best 
solutions during an iterative process. An openly accessible metaheuristics package (NMOF) in R programming environment was used 
to implement the hybrid algorithm. Through simulations using synthetic anomalies, DE/PSO algorithm was successful to provide 
improved results. In comparison to the solutions from the single algorithms (DE and PSO), the DE/PSO algorithm shows more 
effectiveness in terms of accuracy and convergence. The true model parameters of noise-free and noisy synthetic gravity anomalies 
were recovered well by the hybrid algorithm. The results of inversion for the field examples are characterized by low residual values 
between the observed gravity anomalies and the calculated ones. 
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Öz 

Bu çalışmada, basit geometrik şekilli cisimlerden kaynaklanan rezidüel gravite anomalilerin model parametrelerinin kestirimi için bir 
hibrit algoritmanın (DE/PSO) uygulaması sunulmaktadır. Bu algoritma, Farksal Evrim (DE) ve Parçacık Sürü Optimizasyonunu (PSO) 
birleştirmektedir. Hibrit algoritmanın performansını araştırmak için kuramsal ve arazi veri setleri kullanılarak test çalışmaları 
gerçekleştirilmiştir. Kuramsal veri setleri, gürültüsüz ve gürültülü sentetik anomalileri içermektedir. Arazi verileri ise literatürde yer 
alan Küba ve Kanada gravite anomalileridir. Hibrit algoritmada, DE ve PSO algoritmaları ayrı ayrı [ilksel] çözümler üreterek tekrarlı 
bir süreç boyunca en iyi çözümlerini paylaşmaktadır. Hibrit algoritmayı gerçekleştirmek için R programlama ortamında açık erişimli 
bir metasezgisel paket (NMOF) kullanılmıştır. DE/PSO algoritması, kuramsal anomalilerin kullanıldığı simülasyonlarda, iyileştirilmiş 
sonuçlar sağlamada başarılı olmuştur. Her bir algoritmadan (DE ve PSO) gelen çözümlerle karşılaştırıldığında, DE/PSO algoritmasının, 
doğruluk ve yakınsama açısından daha etkili olduğu görülmüştür. Gürültüsüz ve gürültülü kuramsal gravite anomalilerinin doğru 
model parametreleri, hibrit algoritma tarafından daha iyi bir şekilde kestirilmiştir. Arazi örnekleri için ters çözüm sonuçları, gözlenen 
ve hesaplanan gravite anomalileri arasında düşük hata değerlerine sahiptir.

Anahtar Kelimeler: Farksal evrim, parçacık sürü optimizasyonu, hibrit metasezgisel, gravite anomalisi, jeofizik 

 

1. Introduction 

Gravity field’s variations along the Earth’s surface are due to 
variations of density in the subsurface. Then, gravity anomalies 
are the result of anomalous density structures. Inversion of 
gravity anomalies is widely used in geophysics to interpret 
subsurface structures. In this study, we try to solve a small-scale 
inversion problem, which interprets residual gravity anomalies 
due to bodies having simple geometric shapes such as horizontal 
cylinder, vertical cylinder, and sphere. Derivative-based 
algorithms have been widely used in the inversion of gravity data. 
However, some disadvantages are highlighted in the literature 
for the derivative-based methods. These methods are prone to be 
trapped in local minima. The results from derivative-based 
methods strongly depend on the initial model. This means that a 
good initial model is an essential to reach the global minimum, 
which is not available in most of the case studies. Recent global 

search methods (metaheuristics) inspired by nature have been 
introduced to overcome the drawbacks of the derivative-based 
methods. Although the considerable computational effort is the 
most important disadvantage of metaheuristics, these algorithms 
continue to be preferred for addressing optimization problems. 
The reason for that is their success to avoid local minima. In 
addition, these algorithms get to the global minimum without 
depending on the initial model [1,2,3]. A variety of metaheuristics 
has been implemented to solve geophysical inverse problems. 
Some examples in the literature for inversion of gravity 
anomalies include differential evolution-DE [e.g. 4-6], particle 
swarm optimization-PSO [e.g. 7,8], very fast simulated annealing-
VFSA [e.g. 9], backtracking search optimization-BSO [10], and 
success-history-based adaptive differential evolution-SHADE 
[11]. 
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A wide application of metaheuristics to different optimization 
problems lead to further studies to develop new strategies for the 
algorithms’ modifications. Hybridization is one of the attempts to 
improve metaheuristics. Hybridization includes combination of 
metaheuristics with local search algorithms, or with other 
metaheuristics. Because the strong aspects of the combined 
algorithms are magnified while their weak aspects are lessened, 
hybrid algorithms show a better performance [12-14]. Some 
recent examples of hybrid algorithms for inverting potential-field 
anomalies comprised DE and PSO [15,16], PSO and evolution 
strategies (ES) [17], GA and PSO [18], and genetic-price hybrid 
algorithm (GPA) proposed by Di Maio et al. [19-21]. 

According to our survey on the literature, inversion of gravity 
anomalies has been rarely addressed by DE and PSO 
hybridization. This study tests a hybrid algorithm called DE/PSO 
to invert gravity anomalies. Both PSO and DE are well-known and 
popular algorithms widely used to solve optimization problems. 
The disadvantage of slow convergence has been reported for PSO 
[e.g. 22,23] and some studies have reported that DE performance 
is highly sensitive to control parameters selection [e.g. 24,25]. 
The DE/PSO hybrid gives an opportunity to exploit both 
algorithms for more accurate results by minimizing their possible 
disadvantages. 

In the DE/PSO hybrid we used, self-contained DE and PSO search 
their own spaces while sharing their information in parallel. We 
executed the DE/PSO hybrid algorithm using a metaheuristics 
package called NMOF [26] applicable in the environment of R 
programming language [27]. R is an open source released under 
the terms of the GNU General Public License. 

2. The DE/PSO Hybrid Algorithm 

DE is a stochastic vector-based metaheuristic algorithm 
consisting of two phases. The first phase is to initialize a random 
population. The second phase is to evolve the population through 
mutation, crossover and selection operations. The second phase 
repeats and a solution is obtained where a termination criterion 
(e.g. to reach a certain number of generations) is satisfied. The 
reader can refer to [28], [29], and [30] for more explanation of 
the algorithm scheme. DE algorithm has two user-defined control 
parameters to be optimized: F as the parameter for mutation 
constant and Cr as the parameter for crossover probability. 

PSO first introduced by [31] is inspired by the swarming behavior 
of birds or fishes as they look for sources of food. The procedure 
of PSO algorithm can be defined in two main steps: starting with 
a population of particles with random positions, then the 
positions of the particles are updated iteratively. The iterative 
process continues until a pre-defined condition, such as reaching 
a certain number of generations, is met. PSO is controlled by three 
parameters: ω (inertia weight) as weighting factor (0 < ω < 1); c1 

and c2 as cognitive and social scaling factors in the range of [0, 1]. 
The reader can refer to [31], and [32] for more details related to 
PSO algorithm. 

Following the hybrid algorithm suggested by (15), we used a 
DE/PSO algorithm in this study. In a similar scheme, our used 
algorithm starts with two different random populations. DE 
obtains a [premature] solution after 𝑁𝑔𝑒𝑛

𝐷𝐸  number of generations. 

PSO also obtains its [premature] solution after 𝑁𝑔𝑒𝑛
𝐷𝐸  number of 

generations. At this point, the hybrid algorithm picks the best 
individual, which is the one with less objective function value, 
between these two solutions. In each iteration, the best individual 
enters the next generations of DE and PSO. The optimum solution 
is the final best individual where the hybrid iteration number 
meets a user-defined maximum iteration number (Itmax). All the 
control parameters of DE (F, and Cr) and PSO (ω, c1, and c2) are 

involved in the hybrid algorithm. In addition, the main 
parameters that tune the hybrid algorithm are population size 
(Npop), the number of generations per each algorithm 
(𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂), and Itmax. The hybrid scheme introduced by [15] 

exchanges the information of the first generations obtained by DE 
and PSO. On the other hand, the hybrid algorithm introduced in 
present study was designed to share the information of Nth 
generations (N ≥ 2) obtained by DE and PSO. 

The flowchart in Fig. 1 illustrates DE/PSO hybrid algorithm. i)  
The algorithm begins with determination of optimum values for 
DE, PSO, and DE/PSO including F, Cr, ω, c1, c2, Npop, 𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂, and 

Itmax. ii) DE and PSO initialize with different populations (popDE 

and popPSO) of size Npop. iii) PSO yields a [premature] solution of 
𝑁𝑔𝑒𝑛

𝑃𝑆𝑂𝑡ℎ generation. iv) DE yields a [premature] solution of 𝑁𝑔𝑒𝑛
𝐷𝐸 𝑡ℎ 

th generation. v) Solutions obtained from DE and PSO are 
compared based on OFDE (objective function of DE solution) and 
OFPSO (objective function of PSO solution). The one with smaller 
objective function value is determined as the best individual. 
Then, the best individual is carried to the next generation by 
updating popDE or popPSO. vi) The algorithm ends if the iteration 
number gets to Itmax. If not, it repeats from step (iii). In our coding 
implementation, PSO and DE run in a serial order. On the other 
hand, they can be implemented simultaneously by parallel 
programming tools. 

  

 

Figure 1. Flowchart of DE/PSO [after 15]. 
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3. Gravity Anomaly 

A body in subsurface with a simple geometric shape (sphere, a 
semi-infinite vertical cylinder or an infinitely long horizontal 
cylinder) produces gravity anomaly along a profile. At each point 
of the profile, the following formula gives gravity [mGal] 
[33,4,34]: 

𝑔(𝑥, 𝐴, 𝑧0, 𝑞, 𝜂, 𝑥0)  = 𝐴
𝑧0

η

[(𝑥 − 𝑥0)2 + 𝑧0
2]𝑞

 (1) 

In this equation, x [m] is horizontal distance, A [mGal m2q–ƞ] is the 
amplitude coefficient, z0 [m] and x0 [m] are the depth of the 
subsurface body, and its location respectively; and q and ƞ denote 
dimensionless shape factors. Inversion of gravity anomaly goals 
to obtain estimations for the model parameters A, z0, q, ƞ, and x0. 
The shape factors (q, ƞ) for a semi-infinite vertical cylinder, 
infinitely long horizontal cylinder, and sphere respectively are 
(0.5, 0), (1, 1), and (1.5, 1). 

4. Synthetic Data 

A gravity profile along 240 m was produced synthetically with 
points spaced at 2-m intervals using Eq. 1. The subsurface body 
was assumed as an infinitely long horizontal cylinder with model 
parameters of A = 250 mGal m, z0 = 50 m, q = 1, η = 1, and x0 = 120 
m. The gravity anomaly is symmetric and shows a maximum 
around 5 mGal (Fig. 2). Parameter tunings of DE, PSO, and 
DE/PSO were carried out using this noise-free synthetic data. 
Then, we tested DE/PSO hybrid algorithm on noise-free and 
noisy gravity anomalies. In order to generate a noisy gravity data 
(Fig. 4), we added pseudo-random numbers with normal 
distribution having zero mean and standard deviation of ±0.25 
mGal [35] to the noise-free gravity data. 

  

Figure 2. The noise-free synthetic gravity anomaly and the 
corresponding model parameters for an infinitely long horizontal 
cylinder. 

 

5. Tuning of DE/PSO Control Parameters 

To determine the optimum control parameters involved in the 
hybrid algorithm, the first step was to tune DE and PSO 
separately. We implemented each algorithm with fixed 
population number of 50, and generation number of 100 through 
synthetic noise-free data set. Each algorithm was executed 10 
times, and then the best solution was selected based on the 
statistical information of the results. The statistical information 
includes the minimum, maximum, mean, and standard deviation 
(SD) of root mean square (rms) values, and the mean execution 
time. It is worth to mention that the parameter tuning, and test 
studies were implemented in computer with 2.4 GHZ processor 
and 4 GB of memory. The square root of calculated error energy 
(E) gives rms value (2): 

𝐸 =  
1

𝑁
∑(𝑔𝑖

𝑜𝑏𝑠 − 𝑔𝑖
𝑐𝑎𝑙)2

𝑁

𝑖=1

 (2) 

This formula gives error energy for N number of data. For each 
observation point marked by i, gobs is the observed data (synthetic 
or field), while gcal is the calculated data.  

We considered combinations of F and Cr from [0.4, 0.9] with a 
step of 0.1 to achieve the optimum for DE control parameters 
(Table 1). Five different sets of ω, c1, and c2 from some previous 
works were considered to find the optimum for PSO control 
parameters (Table 2, 3). The optimum control parameters of F, 
Cr, ω, c1, and c2 achieved for DE and PSO were respectively 0.4, 
0.9, 0.729, 2.041, and 0.948.  

DE/PSO control parameters are Npop, Itmax, and (𝑁𝑔𝑒𝑛
𝐷𝐸 , 𝑁𝑔𝑒𝑛

𝑃𝑆𝑂). 

Trial-and-error through the noise-free data set indicated that 
(𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂) are the most effective parameters that influence the 

accuracy and the rate of convergence. With fixed Npop of 50, and 
Itmax of 100, we obtained the results for several values of 1, 2, 3, 
and 4 for the parameters (𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂). As we can see in Table 4, 

the rms and SD values decreases with respect to the increasing 
(𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂) parameters. The increasing elapsed time is a result 

of the sequential excution of PSO and DE. It is avoidable with 
parallel programming approach. The optimum value selected for 
the parameters (𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂) was 3 as it yielded a satisfactory 

result in terms of rms, and SD values.  
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Table 1. Tuning of DE control parameters.  

F Cr 
Model Parameters  rms [mGal] Mean 

Elapsed 
Time [s] 

A 
[mGal.m2q- η] 

z0 [m] q η x0 [m] 
 

Min Max Mean SD 

0.4 

0.4 248.69 48.30 0.95 0.90 119.93  0.01 0.07 0.04 0.02 0.82 
0.5 296.25 52.24 1.05 1.07 120.01  0.01 0.07 0.04 0.01 0.44 
0.6 255.79 48.66 0.97 0.93 120.06  0.009 0.04 0.02 0.01 0.63 
0.7 278.73 50.07 0.99 0.97 119.98  0.005 0.03 0.02 0.008 0.62 
0.8 271.24 50.04 1.00 0.98 120.00  0.001 0.006 0.003 0.001 0.49 
0.9 331.92 49.98 1.00 0.93 120.00  1x10-4 7x10-4 3x10-4 2x10-4 0.46 

0.5 

0.4 178.34 53.96 1.10 1.31 119.71  0.03 0.09 0.05 0.02 0.47 
0.5 222.67 48.77 0.97 0.96 120.00  0.02 0.08 0.05 0.02 0.65 
0.6 230.87 50.98 1.03 1.09 119.93  0.01 0.06 0.03 0.01 0.47 
0.7 279.82 49.08 0.99 0.94 119.85  0.01 0.03 0.02 0.007 0.60 

0.8 294.30 49.68 1.00 0.94 120.04  0.002 0.02 0.01 0.005 0.64 

0.9 226.84 50.01 1.00 1.02 120.00  2x10-4 0.002 0.001 6x10-4 0.49 

0.6 

0.4 333.35 49.23 0.97 0.86 119.53  0.03 0.09 0.06 0.02 0.61 

0.5 113.84 44.80 0.91 1.01 119.52  0.05 0.10 0.07 0.02 0.63 

0.6 137.77 50.40 1.00 1.16 120.05  0.01 0.06 0.04 0.02 0.51 
0.7 309.05 47.55 0.94 0.81 119.81  0.02 0.06 0.04 0.02 0.59 
0.8 257.79 50.56 1.00 1.01 119.90  0.006 0.04 0.02 0.01 0.52 
0.9 361.97 49.85 1.00 0.90 120.00  0.004 0.03 0.01 0.008 0.62 

0.7 

0.4 135.11 50.55 1.01 1.18 120.09  0.01 0.11 0.07 0.02 0.47 
0.5 142.39 46.53 0.92 0.96 120.07  0.03 0.09 0.06 0.01 0.65 
0.6 152.42 48.48 0.96 1.04 120.30  0.02 0.14 0.07 0.03 0.64 
0.7 349.47 49.60 0.97 0.85 119.90  0.02 0.07 0.05 0.01 0.51 
0.8 333.22 50.43 1.01 0.96 120.02  0.009 0.09 0.04 0.02 0.51 
0.9 307.65 51.35 1.03 1.02 119.98  0.01 0.04 0.02 0.01 0.63 

0.8 

0.4 258.28 47.21 0.94 0.85 120.22  0.04 0.14 0.08 0.03 0.49 
0.5 237.26 54.24 1.05 1.13 120.57  0.06 0.13 0.09 0.02 0.51 
0.6 269.52 57.65 1.16 1.34 118.89  0.06 0.13 0.10 0.02 0.47 
0.7 324.24 49.99 0.98 0.90 119.99  0.02 0.14 0.08 0.03 0.50 
0.8 353.55 48.34 0.98 0.88 119.88  0.04 0.08 0.06 0.01 0.63 
0.9 321.50 49.12 0.97 0.86 120.23  0.02 0.07 0.04 0.01 0.47 

0.9 

0.4 198.68 44.08 0.88 0.80 119.41  0.06 0.17 0.10 0.03 0.64 
0.5 253.87 58.57 1.15 1.33 120.00  0.07 0.16 0.11 0.02 0.52 
0.6 249.88 55.93 1.17 1.36 119.18  0.05 0.15 0.10 0.03 0.47 
0.7 256.21 45.63 0.87 0.72 119.60  0.06 0.20 0.11 0.05 0.62 
0.8 293.75 56.99 1.20 1.39 120.54  0.05 0.13 0.09 0.02 0.57 
0.9 329.49 50.37 1.00 0.94 120.64  0.03 0.12 0.07 0.03 0.62 

 

Table 2. PSO control parameter sets from some previous studies. 

Coefficients Reference Inertia Weight 
Cognitive Scaling 
Factor 

Social Scaling 
Factor 

Set 1 [31] 1 2 2 

Set 2 
[42] 
[43] 
[44] 

0.729 1.494 1.494 

Set 3 [45] 0.6 1.7 1.7 
Set 4 [46] 0.729 2.041 0.948 
Set 5 [47] 0.715 1.7 1.7 

 

Table 3. Tuning of PSO control parameters. 

Coefficients 
Model Parameters  rms [mGal] Mean 

Elapsed 
Time [s] 

A 
[mGal.m2q- η] 

z0 [m] q η x0 [m] 
 

Min Max Mean SD 

Set 1 281.73 46.17 0.85 0.64 21.75  0.11 0.25 0.16 0.05 0.65 
Set 2 265.52 50.63 1.02 1.02 119.99  0.005 0.13 0.06 0.05 0.63 
Set 3 300.69 52.12 1.05 1.06 120.00  0.01 0.05 0.02 0.01 0.51 
Set 4 224.50 50.58 1.01 1.05 120.01  0.004 0.09 0.05 0.03 0.65 
Set 5 266.57 52.77 1.06 1.13 119.97  0.02 0.13 0.05 0.04 0.52 
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Table 4. Tuning of DE/PSO hybrid algorithm. 

 
𝑵𝒈𝒆𝒏

𝑫𝑬  

𝑵𝒈𝒆𝒏
𝑷𝑺𝑶 

Model Parameters  rms [mGal] Mean 
Elapsed 
Time [s] 

Algorithm A  
[mGal.m2q- η] 

z0 [m] q η x0 [m] 
 

Min Max Mean SD 

 
Hybrid 

1 244.43 50.10 1.00 1.01 119.99  8x10-5 0.002 0.0005 0.0006 0.76 
2 244.67 49.99 1.00 1.00 120.00  5x10-8 1x10-5 1 x10-6 3x10-6 1.15 
3 249.13 49.99 1.00 1.00 120.00  2x10-9 8x10-7 1x10-7 2x10-7 1.48 
4 237.62 49.99 1.00 1.01 120.00  2x10-10 3x10-10 2x10-10 2x10-13 1.86 

 

6. DE/PSO Hybrid Algorithm Performance 

6.1. Synthetic Data 

DE/PSO hybrid algorithm was implemented on noise-free and 
noisy synthetic data sets. For each set of the synthetic data, the 
algorithm was executed 10 times, and then the best solution was 
selected based on the rms value of the results. Table 5 includes 
the estimations with the corresponding rms values, true model 

parameters, and the search space (determined by trial-and-
error). Fig. 3 and 4 show the fit between the observed and 
calculated gravity anomalies, observed versus calculated data, 
and the convergence of the error energy. The convergence plots 
show the first 50 iterations for better resolution. For noise-free 
data, the estimations are close to true model parameters. For 
noisy data, the rms value agrees with the standard deviation of 
the noise, which was added (±0.25 mGal). 

Table 5. Test results through synthetic data inversion. 

Model Parameters 
True 
Values 

Parameter Bounds Estimated Parameters 
Minimum Maximum Noise-free Noisy 

A [mGal⋅m2q- η] 250 50 500 249.13 278.37 
z0 [m] 50 1 150 49.99 51.87 
q 1 0 2 1.00 1.04 
η 1 0 2 1.00 1.07 
x0 [m] 120 50 200 120.00 119.73 
rms [mGal] - - - 1.71x10-9 0.24 

 

Figure 3. Results from noise-free gravity data including, (a) fit between the observed and calculated data, (b) observed versus 
calculated data, (c) convergence of the error energy, and (d) convergence of the error energy in logarithmic scale. 



DEU FMD 26(78) (2024) 379-388  

 384 

 
 

Figure 4. Results from noise-free gravity data including, (a) fit between the observed and calculated data, (b) observed versus 
calculated data, and (c) convergence of the error energy. 

The performance of DE, PSO, and DE/PSO algorithms were 
compared by using the same parameter values. The value of 100 
was assigned for iteration number (Itmax) and generation number. 
The three algorithms start with the same initial population size 
of 50 (Table 6, Fig. 5). According to Table 6, the DE/PSO algorithm 
yields results with small values of rms and SD in the case of noise-
free data. Further investigations to compare the performances of 

the three algorithms were done through the convergence rate of 
the three algorithms for noise-free and noisy data. This 
comparison was based on the necessary iteration/generation 
numbers for each algorithm to reach the rms value less or equal 
to 0.01 mGal. The hybrid algorithm requires 19 iterations to 
reach that threshold rms value, while DE and PSO respectively 
require 71 and 100 generations. 

 

Table 6. Comparison of DE/PSO, DE, and PSO results through synthetic data inversion. 

 
Synthetic 

Data 

 Model Parameters  rms [mGal] Mean 
Elapsed 
Time [s] 

Algorithm A 
[mGal.m2q- η] 

z0 [m] q η x0 [m] 
 

Min Max Mean SD 

 
Noise-Free 

Hybrid 249.13 49.99 1.00 1.00 120.00  2x10-9 8x10-7 1x10-7 2x10-7 1.48 
DE 241.52 49.93 0.99 1.00 119.98  0.001 0.008 0.003 0.002 0.50 

PSO 231.31 49.29 0.99 0.99 119.95  0.008 0.07 0.04 0.02 0.61 

 
Noisy 

Hybrid 278.37 51.87 1.04 1.07 119.73  0.24 0.24 0.24 2x10-14 1.49 

DE 214.94 51.92 1.05 1.14 119.74  0.24 0.24 0.24 1x10-10 0.53 

PSO 220.64 57.29 1.17 1.39 119.95  0.24 0.28 0.25 0.01 0.47 

 

Figure 5. DE/PSO, DE, and PSO convergence rate through noise-free data (left) and noisy data (right) inversion. The plots illustrate 50 

iterations for a zoomed-in view of the comparison. 

During the test studies, an additional research was done about 
the success rate of DE and PSO to get the best individual in each 
iteration of the DE/PSO. According to the investigation, the 
average success rate of DE and PSO are respectively around %65 
and %35 in the test with noise-free data. The values are around 
%66 and %34 in the test with noisy data. 

Prior to inverting the gravity anomalies, error energy maps were 
generated to examine the solvability of the model parameters 
addressed in the current inverse problem (36,5,30). Fig. 6 shows 
the error energy maps for some pairs of the model parameters. 
Each map is produced by calculating the error energy values (Eq. 
2) over the ranges of the associated parameter pair within the 
search space. Due to the non-uniqueness of the inverse problems, 
it is acknowledged that there are multiple models that can fit the 
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data well. Then, the error energy map shows topography that the 
true model parameters (global minimum) are placed in the 
location of the lowest error energy value. According to the 
literature, the shape of contour lines on the topography provides 
interpretations about the uniqueness in estimating the model 
parameter. i) Closed circular and elliptical contours parallel to 
any axis (Fig. 6. a-c) represent parameters that are uncorrelated. 
This suggests that the values of these parameters can be 
independently obtained. ii) Elliptic contours which are angled 
with one of the axes (Fig. 6. d-f) indicate a correlation between 
parameters. Despite this correlation, the parameters can still be 

solved individually. iii) Sloping unclosed elliptical contours 
exhibit a broad region characterized by low errors suggesting the 
presence of numerous equivalent solutions. This contour shape 
implies the difficulty in uniquely estimating the related 
parameters (Fig. 6. g-i). Fig. 6 also shows the locations of the 
model parameters estimated using the hybrid algorithm for both 
noise-free and noisy synthetic data. The close proximity of the 
estimations to the true parameters (global minimum) indicates 
that the hybrid algorithm has successfully estimated the model 
parameters.  

 

Figure 6. The generated error energy maps for the current inverse problem. The global minimum (red diamond), the model 

parameters estimated using the DE/PSO algorithm for noise-free (blue circle), and noisy data (blue star) are marked in each map. 

6.2. Field Data 

In the test with field data, we assigned 200 for Npop, 400 for Itmax, 
and 3 for (𝑁𝑔𝑒𝑛

𝐷𝐸 , 𝑁𝑔𝑒𝑛
𝑃𝑆𝑂) parameters to obtain the results. These 

values for the parameters have been chosen based on trial-and-
error. The selection of the best solution was carried out similarly 
to the test with synthetic data, involving 10 independent executions. 

6.2.1. Camaguey anomaly (Cuba) 

The first data set used as field example was the normalized 
residual gravity anomaly measured over a chromite deposit in 
Camaguey province (Cuba) [37]. In Fig. 7, the gravity anomaly is 
shown along a 120 m profile with a maximum amplitude around 
0.2 mGal. We considered the search space following [4,34], except 
for the q parameter (A ∈ [1, 10000], z0 ∈ [1, 100], η ∈ [0, 1], x0 ∈ 
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[0, 120], and q ∈ [0, 2]). Fig. 7 also shows the results estimated by 
the hybrid algorithm. The convergence plot shows the first 50 
iterations for better resolution. Based on the information 
presented in Table 7, the DE/PSO hybrid algorithm has yielded 

parameters consistent with those estimated through various 
methods in prior studies. 

 

 

Figure 7. Results from the Cuba anomaly, (a) fit between the observed and calculated data, (b) observed versus calculated data, and 
(c) convergence of the error energy. 

Table 7. Test results through field data (Cuba anomaly) inversion. 

Parameters 
 [38]  [4]  [39]  [34]  [40] Present Study 

Neural 
Network 

DE DE CSA PSO DE/PSO 

A [mGal⋅m2q-η] 9382.52 288.25 175.02 1430.30 408.25 7333.02 
z0 [m] 21.14 23.23 23.23 23.30 21.15 25.44 
q 1.54 1.5 1.5 1.49 1.47 1.68 
η - 0.71 0.86 0.18 - 0.13 
x0 [m] - 58.73 58.73 58.72 0.63 58.69 
rms [mGal] - 0.0043 0.0043 0.00431 0.01 0.0042 

6.2.2. Quebec anomaly (Canada) 

The second data set used as field example was the normalized 
residual gravity anomaly measured over a sulfide ore body in 
Quebec (Canada) [41]. In Fig. 8, the gravity anomaly is shown 
along a 240 m profile with a maximum amplitude around 1.7 
mGal. We considered the search space following [4,34], except for 

the q parameter (A ∈ [1, 10000], z0 ∈ [1, 100], η ∈ [0, 1], x0 ∈ [0, 
240], and q ∈ [0, 2]). Fig. 8 also shows the results estimated by 
the hybrid algorithm. The convergence plot shows the first 50 
iterations for better resolution. Based on the information 
presented in Table 8, the DE/PSO hybrid algorithm has yielded 
parameters consistent with those estimated through various 
methods in prior studies. 

 

Figure 8. Results from the Canada anomaly including, (a) fit between the observed and calculated data, (b) observed versus calculated 
data, and (c) convergence of the error energy. 

Table 8. Test results through field data (Canada anomaly) inversion. 

Parameters 

 [38]  [4]  [34]  [40] Present Study 

Neural 
Network 

DE CSA PSO DE/PSO 

A [mGal⋅m2q-η] 200.11 299.11 204.04 38.51 340.90 
z0 [m] 29.15 35.39 40.32 21.53 35.39 
q 0.69 0.74 0.92 0.49 0.74 
η -  0.04 0.23 - 0.002 
x0 [m] - 113.93 113.66 1.11 113.93 
rms [mGal] - 0.029 0.0334 0.03 0.029 
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7. Conclusions 

In this study, a combination of DE and PSO was applied to gravity 
anomalies due to some simple geometrical bodies. DE and PSO 
algorithms were combined as a DE/PSO hybrid algorithm to 
share their best [premature] solutions in an iterative process. 
Considering simulations with the synthetic data, the hybrid 
algorithm successfully obtained results that closely 
approximated the true model parameters. Compared to DE and 
PSO, the hybrid algorithm generated results that are more 
accurate in terms of rms or SD values. The hybrid algorithm also 
speeded up the convergence rate compared to the ones of DE and 
PSO. Considering test studies with the field data sets, a good 
agreement between calculated and observed gravity anomalies 
from Cuba and Canada indicated that the hybrid algorithm was 
also successful to obtain the model parameters. Another 
conclusion worth to mention is the successful applicability of R 
programming language together with various available R 
packages to geophysical optimization problems. 
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