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Abstract. In this paper, we study minimal translations surfaces in a strict

Walker 3-manifold. Based on the existence of two isometries, we classify min-
imal translation surfaces on this class of manifold. Some drawings have been

added to illustrate the shape of certain surfaces.

1. Introduction

Minimal surfaces are the most natural objects in differential geometry, and have
been studied during the last two and half centuries since J. L. Lagrange. In par-
ticular, minimal surfaces have encountered striking applications in other fields, like
mathematical physics, conformal geometry, computer aided design, among others.
In order to search for more minimal surfaces, some natural geometric assumptions
arise. Translation surfaces were studied in the Euclidean 3-dimensional space and
they are represented as graphs z = α(x)+β(y), where α and β are smooth functions.
Scherk [11] proved in 1835 that, besides the planes, the only minimal translation
surfaces are the surfaces given by

z =
1

a
log
∣∣∣cos(ax)
cos(ay)

∣∣∣,
where a is a non-zero constant. Since then, minimal translation surfaces were gen-
eralized in several directions. For example, the Euclidean space R3 was replaced
with other spaces of dimension 3-usually being 3-dimensional Lie groups and the
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notion of translation was often replaced by using the group operation (see for exam-
ple [6], [8], [14] and references therein). Another generalizations of Scherk surfaces
are: affine translation surfaces in Euclidean 3-space [7], affine translation surfaces in
affine 3-dimensional space [12] and translation surfaces in Galilean 3-space [14]. On
the other hand, Scherk surfaces were generalized to minimal translation surfaces in
Euclidean spaces of arbitrary dimensions(see [5], [9]). In [13], the authors introduce
and define the notion of translation surfaces in the Heisenberg group H(1; 1) as the
formal analogue to those in the Euclidean 3-space.

In this paper, we define and classify minimal translation surfaces in a 3-dimensional
strict Walker manifold. The strict Walker manifolds are described in terms of a
suitable coordinates (x, y, z) of the manifolds R3 and their metric depends on an
arbitrary function of two variables f = f(y, z) and their metric tensor is given by

gϵf = ϵdy2 + 2dxdz + fdz2 (1)

where ϵ = ±1. These manifolds are denoted by (M, gϵf ). In [4], the authors study
a class of minimal surfaces in the three-dimensional Lorentzian Walker manifolds.
Their proved the existence of minimal flat and non totally geodesic graphs on three
dimensional Lorentizain Walker manifolds. In [2], the authors have found that the
strict Walker manifold (M, gϵf ) where f depends only on the variable y are very

important. Here we will work with the manifold (M, gϵf ) where f depends only on
y and f is not locally a constant.

Three dimensional geometry plays a central role in the investigation of many
problem in Riemannian and Lorentzian geometry. The fact that Ricci operator
completly determines the curvature tensor is crucial to these investigations, (for
detail see [1]).

The paper is organised as follow: in section 2, we recall some preliminaries results
for three-dimensional Walker manifold (M, gϵf ) and we give some basic formula for

immersed surface in (M, gϵf ). We consider two families of translation surfaces in

(M, gϵf ) which are used in the main result. In the last section we classify those
which are minimal.

2. Preliminaries

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field
of null parallel r-planes, with r ≤ n

2 . The canonical forms of the metrics were
investigated by A. G. Walker [15]. Walker has derived adapted coordinates to
a parallel plan field. Hence, the metric of a three-dimensional Walker manifold
(M, gϵf ) with coordinates (x, y, z) is expressed as

gϵf = dx ◦ dz + ϵdy2 + f(x, y, z)dz2 (2)
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and its matrix form as

gϵf =

 0 0 1
0 ϵ 0
1 0 f

 with inverse (gϵf )
−1 =

 −f 0 1
0 ϵ 0
1 0 0


for some function f(x, y, z), where ϵ = ±1 and thus D = Span{∂x} as the parallel
degenerate line field. Notice that, when ϵ = 1 and ϵ = −1 the Walker manifold has
signature (2, 1) and (1, 2) respectively, and therefore is Lorentzian in both cases.
Hence, if (M, gϵf ) is a strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the
associated Levi-Civita connection satisfies

∇∂y
∂z =

1

2
fy∂x, ∇∂z

∂z =
1

2
fz∂x − ϵ

2
fy∂y. (3)

Let now u and v be two vectors in M . Denoted by (e1, e2, e3) the canonical
frame in R3. The vector product of u and v in (M, gϵf ) with respect to the metric
gϵf is the vector denoted by u× v in M defined by

gϵf (u× v, w) = det(u, v, w) (4)

for all vector w in M , where det(u, v, w) is the determinant function associated to
the canonical basis of R3. If u = (u1, u2, u3) and v = (v1, v2, v3) then by using (4),
we have:

u× v =

(∣∣∣∣u1 v1
u2 v2

∣∣∣∣− f

∣∣∣∣u2 v2
u3 v3

∣∣∣∣) e1 − ϵ

∣∣∣∣u1 v1
u3 v3

∣∣∣∣ e2 + ∣∣∣∣u2 v2
u3 v3

∣∣∣∣ e3
LetD be an open subset of the plane R2 satisfying this interval condition: horizontal
or vertical lines intersect D in intervals (if at all). A two-parameter map is a smooth
map φ : D → M . Thus φ is composed of two interwoven families of parameter
curves:

(1) the u-parameter curves v = v0 of φ is u 7→ φ(u, v0).
(2) the v-parameter curves u = u0 of φ is v 7→ φ(u0, v).

The partial velocities φu = dφ(∂u) and φv = dφ(∂v) are vector fields on φ. Ev-
idently φu(u0, v0) is the velocity vector at u0 of the u-parameter curve v = v0,
and symmetrically for φv(u0, v0). If φ lies in the domain of a coordinate system
x1, . . . , xn, then its coordinate functions xi ◦φ (1 ≤ i ≤ n) are real-valued functions
on D and

φu =
∑ ∂xi

∂u
∂i, φv =

∑ ∂xi

∂v
∂i.

So far M could be a smooth manifold: now suppose it is pseudo-Riemannian. If Z
is a smooth vector field on φ, its partial covariant derivatives are: Zu = ∇Z

∂u , the

covariant derivative of Z along u-parameter curves, and Zv = ∇Z
∂v , the covariant

derivative of Z along v-parameter curves. Explicitly, Zu(u0, v0) is the covariant
derivative at u0 of the vector field u 7→ Z(u, v0) on the curve u 7→ φ(u, v0). In
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terms of coordinates, Z =
∑

Zi∂i, where each Zi = Z(xi) is a real valued function
on D. Then

Zu =
∑
k

{∂Zk

∂u
+
∑
i,j

Γk
ijZ

i ∂x
j

∂u

}
∂k. (5)

In the special case Z = φu, the derivative Zu = φuu gives the accelerations of
u-parameter curves, while φvv gives v-parameter accelerations. With coordinate
notation as above, we have:

φuv =
∑
k

{ ∂2xk

∂v∂u
+
∑
i,j

Γk
ij

∂xi

∂u

∂xj

∂v

}
∂k. (6)

Now we will assume that φ is an isometric immersion. The first fondamental form
of the immersion φ is given by E = gf (φ∗(∂u), φ∗(∂u))

F = gf (φ∗(∂u), φ∗(∂v))
G = gf (φ∗(∂v), φ∗(∂v)) .

(7)

The coefficients of the second fundamental form of φ are L = ε1gf (φuu, ξ)
M = ε1gf (φuv, ξ)
N = ε1gf (φvv, ξ)

(8)

where ε1 = gϵf (ξ, ξ) the sign of the unit normal ξ along φ.
The mean curvature of φ is given by

H = ε1
1

2

(LG− 2MF +NE

EG− F 2

)
. (9)

The idea of translation surface have its origine in the classical text of G. Dar-
boux [3] where the so-called ”surfaces définies par des propriétés cinématiques”
is introduced. A Darboux surface of translation is defined kinematically as the
movement of a curve by a uniparameter family of rigid motion of R3. Hence, such
a surface in locally described by φ(s, t) = A(t).α(s) + β(t) where α and β are
parametrized curves in R3 and A(t) is an orthogonal transformation. A(t) being
identity is the case which is most investigated. So a surface S in R3 is called a
translation surface if S can be locally discribed as a sum

φ(s, t) = α(s) + β(t).

Next, we consider a three-dimensional strict Walker manifold (M, gεf ), where f is
not locally a constant and depends only on the variable y. For any real number a,
the following two maps:

R3 → R3

(x, y, z) 7→ (x, y, z + a)
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and

R3 → R3

(x, y, z) 7→ (x+ a, y, z)

are isometries of (M, gεf ). Based in these isometries, we will define two types of
translation surfaces.

Definition 1. A non-degenerate surface S of sign ε1 in (M, gεf ) is a translation

surface if it can be described locally by an isometric immersion φ : U ⊂ R2 →
(M, gϵf ) of the form

φ(u, v) = (u, v, α(u) + β(v)), Type I (10)

or

φ(u, v) = (α(u) + β(v), u, v), Type II (11)

where α and β are smooth functions on opens of R.

The aim of this work is to classify the minimal translation surfaces in (M, gεf ) of
the Type I and type II as above.

3. Main Results

3.1. Minimal translation surfaces of Type I. Let us consider a translation
surface of Type I in (M, gϵf ) parametrized by φ(u, v) = (u, v, α(u) + β(v)). In this

case we have x = u, y = v and z = α(u) + β(v). For a function g of one variable u

(respectively v) we denote dg
du by ġ (respectively dg

dv by g′). The tangent plane of S
is spanned by

φu = ∂x + α̇∂z and φv = ∂y + β′∂z. (12)

The unit normal ξ (up to orientation) is given by

ξ =
1

∆

[
(1 + α̇f)∂x − εβ′∂y − α̇∂z

]
. (13)

where ∆ = ∥φu × φv∥. We obtain the coefficients of the first fundamental form of
φ as

E = 2α̇+ α̇2f, F = β′ + α̇β′f, G = ε+ β′2f. (14)

And using (6) we have

φuu =

 0
− ε

2 α̇
2fy

α̈

 , φuv =

 1
2 α̇fy

− ε
2 α̇β

′fy
0

 , φvv =

 β′fy
− ε

2β
′2fy

β′′

 . (15)

Then the coefficients of the second fundamental form of φ

L =
ε1
∆

[ε
2
β′α̇2fy + α̈

]
,
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M =
ε1
∆

[
−1

2
α̇2fy +

ε

2
α̇β′2fy

]
,

N =
ε1
∆

[
−α̇β′fy +

ε

2
β′3fy + β′′

]
. (16)

Consequently, the minimality condition (9) may be expressed as follows:

α̈(ε+ β′2f) + α̇2(−1

2
β′fy + fβ′′) + 2α̇β′′ = 0. (17)

Since y = v, we can rewrite the minimal condition for Type I in the form

α̈(ε+ β′2f) + α̇2(−1

2
β′f ′ + fβ′′) + 2α̇β′′ = 0. (18)

We have the following solutions:

(1) Case 1: Assume that α̇ = 0 that is α = α0 (constant). We get the following
surface:

(s1) : φ(u, v) = (u, v, α0 + β(v))

for any smooth functions β.
(2) Case 2: Assume that α̇ ̸= 0 and α̈ = 0. Equation (18) becomes

α̈

α̇
(ε+ β′2f) + α̇(−1

2
β′f ′ + fβ′′) + 2β′′ = 0. (19)

Since α̈ = 0, from (19) we have:{
α(u) = au+ b with a ∈ R∗, b ∈ R

(af + 2)β′′ = 1
2af

′β′.
(20)

(a) If β′ = 0, then β = β0 is a constant with α(u) = au+ b, a ∈ R∗ satisfy
(19) as (18). Thus we have the plan:

(s2) : φ(u, v) = (u, v, au+ b̃), a ∈ R∗, b̃ ∈ R

(b) Now assume β′ ̸= 0. An easy integration of the second equation in
(20) gives

β(v) = c̃

∫ v

v∗

√
|2 + af |dv,

where c̃ ∈ R∗, v∗ is a real number such that v and v∗ belong to interval
on which (2 + af > 0) or (2 + af < 0). So we get the solution

(s3) : φ(u, v) =
(
u, v, au+ b+ c̃

∫ v

v∗

√
|2 + af |dv

)
, a, c̃ ∈ R∗, b ∈ R.

(3) Case 3: Assume that α̇ ̸= 0 and α̈ ̸= 0. Then equation (18) can be written
as (19) anywhere where α̇ ̸= 0. By differentiating the equation (19) with
respect to u and v, we get:

d

du

(
α̈

α̇

)
(ε+ β′2f)′ + α̈(−1

2
β′f ′ + fβ′′)′ = 0. (21)
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(a) Case 3-1: (ε + β′2f)′ = 0. Since α̈ ̸= 0, the equation (21) gives
(− 1

2β
′f ′ + fβ′′)′ = 0. So we get{

ε+ β′2f = c1
− 1

2f
′β′ + fβ′′ = c2,

(22)

where c1, c2 ∈ R. Then the equation(19) becomes(
α̈

α̇

)
c1 + α̇c2 = −2β′′. (23)

Since the left member depends only on u and the right member depends
only on v, then there exist a constant c3 and we have:{

β′ = − 1
2c3v + c4(

α̈
α̇

)
c1 + α̇c2 = c3,

(24)

where c3, c4 ∈ R. If c3 = 0, then β′′ = 0 and β′ = c4. From (22), one
gets ε + c24f = c1. Then c24f

′ = 0 and c4 = 0 by the hypothesis on f .
So β′ = 0 implies c2 = 0 and c1 = ε. Using this with (24) we get α̈ = 0
(contradiction with the hypothesis). So c3 ̸= 0. And then β′ ̸= 0 and
β′′ = − 1

2c3 ̸= 0. Then (22) becomes{
f = c1−ε

(− 1
2 c3v+c4)2

− 1
2f

′β′ + fβ′′ = c2.
(25)

So we get f ′ = c3(c1−ε)

(− 1
2 c3v+c4)3

. Thus (25) gives c3(c1−ε)

(− 1
2 c3v+c4)2

= c2, and then

we must have c2 = 0 and c1 = ε. Then we get f = 0 (a contradiction).
So the sub-case (ε+ β′2f)′ = 0 is not possible.

(b) Case 3-2: (ε+ β′2f)′ ̸= 0. The equation (21) becomes

d
du

(
α̈
α̇

)
α̈

= −
(− 1

2β
′f ′ + fβ′′)′

(ε+ β′2f)′
. (26)

Since the left member depends only on u and the right member depends
only on v, its must be constant c. So we get d

du

(
α̈
α̇

)
= cα̈ and (− 1

2β
′f ′+

fβ′′)′ = −c(ε+β′2f)′. Then, there exist constants c1, c2 ∈ R such that

α̈

α̇
= cα̇+ c1 and (−1

2
β′f ′ + fβ′′) = −c(ε+ β′2f) + c2. (27)

If we put the equations (27) in (19), we get

c1(ε+ β′2f) + α̇c2 + 2β′′ = 0.

If we differentiate with respect to u, we obtain α̈c2 = 0 i.e., c2 = 0. So
we get:

c1(ε+ β′2f) + 2β′′ = 0

−c(ε+ β′2f) = − 1
2β

′f ′ + fβ′′

α̈
α̇ = cα̇+ c1

(28)
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And now we have two possibilities: c1 = 0 or c1 ̸= 0.
• Case 3-2-1: c1 = 0. We have c ̸= 0 otherwise α̈ = 0. The first
equation in (28) gives β′′ = 0, so β′ = β′

0 ∈ R. And we get

−c(ε+ β′2f) = −1

2
f ′β′

0. (29)

If β′
0 = 0, then by using (29) we get cε = 0, which is impossible.

Therefore β′
0 ̸= 0. An easy integration of (29) gives f(v) =

Ke2cβ
′
0v − ε

(β′
0)

2 and β = β′
0v + β0. The equation α̈

α̇ = cα̇ gives

α = − 1
c log |cu + c1|, c ∈ R∗ and c1 ∈ R. Then we get solution

of the form

(s4) :

{
φ(u, v) = (u, v,− 1

c log |cu+ c1|+ β′
0v + β0)

f(v) = Ke2cβ
′
0v − ε

(β′
0)

2

where K, c, β′
0 ∈ R∗ and c1, β0 ∈ R.

• Case 3-2-2: c1 ̸= 0. The first and the second equations in (28)
give:{

(f − 2c
c1
)β′′ = 1

2f
′β′

β′2f = −(2β′′ + εc1).

If β′ = 0 then β′′ = 0 and εc1 = 0, which is impossible since
c1 ̸= 0. Therefore we have β′ ̸= 0. So we get f = − 2β′′+εc1

β′2

β′′

β′ = 1
2

f ′

f− 2c
c1

.
(30)

The second equation of (30) gives

β′ = ±c∗

√∣∣∣f − 2c

c1

∣∣∣ with c∗ ∈ R∗
+.

Denoted by µ = sign
(
f − 2c

c1

)
and we get:

β′2 = µc2∗

(
f − 2c

c1

)
β′′ = ±c∗

µf ′

2

√
µ

(
f− 2c

c1

) (31)

The first equation of (31) gives: β = ±
∫ v

v∗

√∣∣∣f − 2c
c1

∣∣∣dτ where v∗

and v belong to an intervall on which
(
f− 2c

c1

)
> 0 or

(
f− 2c

c1

)
<
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0.
The first equation of (30) gives

f = −

±c∗
µf ′

2

√
µ

(
f− 2c

c1

) + εc1

µc2∗

(
f − 2c

c1

) .

If we put t =

√
µ
(
f − 2c

c1

)
then t2 = µ

(
f − 2c

c1

)
, we have f =

µt2 + 2c
c1

and t satisfy −µc2∗(t
2 + 2c

c1
)t2 ± c∗t

′ = εc1. We get the
solution:

(s5) : φ(u, v) = (u, v, α(u) + β(v))

where α and β are given by:
(i) α(u) = Aec1u + B and β(v) = ±c∗

∫ v

v∗

√
|f |dτ with f =

µt2 (µ = ±1) where t is solution of differential equation
−µc2∗t

4 ± c∗t
′ = εc1;

(ii) α(u) =
∫ u

u∗
dτ

Ke−c1u− c
c1

and β(v) = ±c∗
∫ v

v∗

√
|f − 2c

c1
|dτ ,

where K, c, c1 ∈ R∗, c∗ > 0 with f = µ(t2 + 2c
c1
) where t is

solution of −µc2∗(t
2 + 2c

c1
)t2 ± t′ = εc1.

We conclude with the following:

Theorem 1. A translation surface S of Type I in (M, gϵf ) where f depends only on

y and not locally a constant, is minimal if and only if there is an interval I (u ∈ I)
and an interval J (v ∈ J) such that on I × J the surface take one of the following
form

1) φ(u, v) = (u, v, α0 + β(v)) for any smooth functions β where α0 ∈ R.
2) φ(u, v) = (u, v, au+ b̃), where a ∈ R∗, b̃ ∈ R.
3) φ(u, v) =

(
u, v, au+ b+ c̃

∫ v√|2 + af |dτ
)
, where a, c̃ ∈ R∗, b ∈ R.

4) φ(u, v) = (u, v,− 1
c log |cu + c1| + β′

0v + β0) where the function f(v) =

Ke2cβ
′
0v − ε

(β′
0)

2 and K, c, β′
0 ∈ R∗ and c1, β0 ∈ R.

5) φ(u, v) = (u, v, α(u) + β(v)) where α and β are given by

(i) α(u) = Aec1u + B, A ∈ R∗, B ∈ R and β(v) = ±c∗
∫ v√|f |dτ , with

f = µt2 where t = t(v) is solution of differential equation ±c∗t
′ =

µc2∗t
4 + εc1;

(ii) α(u) =
∫ u dτ

Ke−c1u− c
c1

and β(v) = ±c∗
∫ v
√
|f − 2c

c1
|dτ ; K, c, c1 ∈ R∗,

c∗ > 0 with f = µ(t2 + 2c
c1
) where t = t(v) is solution of ±c∗t

′ =

µc2∗(t
2 + 2c

c1
)t2εc1.
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Example 1. Let (M, gϵf ) be a Walker manifold where the function f(y) = y2. Let

S be a translation surface in M satisfying the condition of the theorem 1. In 3) of
the above theorem, if we take a = 2, b = 0, c̃ = 1 then the surface S is given by (see
figure (A)):

φ(u, v) =

(
u, v, 2u+

1√
2
ln(v +

√
1 + v2) +

1√
2
v
√
1 + v2

)
. (32)

In 5)i), if we take A = 1, B = −3, c∗ = 1, c1 = 1 then the surface S is given by (see
figure (B)):

φ(u, v) =

(
u, v, eu +

1

2
v2 − 3

)
. (33)

3.2. Minimal translation surfaces of Type II. Let us consider a translation
surface S of Type II in (M, gϵf ) parametrized by φ(u, v) = (α(u) + β(v), u, v). In

this case we have x = α(u)+β(v), y = u and z = v. For a function g of one variable

u (respectively v) we denote dg
du by ġ (respectively dg

dv by g′). The tangent plane of
S is spanned by

φu = α̇∂x + ∂y and φv = β′∂x + ∂z, (34)

while the unit normal ξ (up to orientation) is given by

ξ =
1

∆

[
(−β′ − f)∂x − εα̇∂y + ∂z

]
(35)

where ∆ = ∥φu × φv∥. We obtain the coefficients of the first fundamental form of
φ as

E = ε, F = α̇, G = 2β′ + f. (36)

And we have by using (6)

φuu =

 α̈
0
0

 , φuv =

 1
2fy
0
0

 , φvv =

 β′′

− ε
2fy
0

 . (37)

Then the coefficients of the second fundamental form of φ

L =
ε1
∆
(α̈
)
,

M =
ε1
∆

(1
2
fy

)
,

N =
ε1
∆

(
β′′ +

ε

2
α̇fy

)
. (38)

Consequently, the minimality condition (9) may be expressed as follows:

α̈(2β′ + f)− 1

2
α̇ḟ + εβ′′ = 0 (39)
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(a) φ(u, v) =
(
u, v, 2u+ 1√

2
ln(v +

√
1 + v2) + 1√

2
v
√
1 + v2

)

(b) φ(u, v) =
(
u, v, eu + 1

2
v2 − 3

)
Figure 1. Figures of the Example 1

Taking the derivatives with respect to v, we get

2α̈β′′ + εβ′′′ = 0. (40)

We will consider the following cases:

(1) Case 1: Assume that α̈ = 0. Since (40), we get β′′ = β′′
0 ∈ R and

α̇ = α̇0 ∈ R. And the equation (39) becomes − 1
2 α̇0ḟ + εβ′′

0 = 0. We have
the following two subcases:
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(a) Case 1-1: α̇0 = 0. If α̇0 = 0 then β′′
0 = 0. Thus we get α = α0 and

β(v) = av + b. We get the plane

(s′1) : φ(u, v) = (a1v + a2, u, v); a1, a2 ∈ R.

(b) Case 1-2: α̇ ̸= 0. If α̇ ̸= 0 then β′′
0 ̸= 0 and we get ḟ =

2εβ′′
0

α̇ . We get
the solution

(s′2) :

{
φ(u, v) = (a1u+ a2v + a3, u, v)
f(u) = 2εa2

a1
u+ a4

where a1, a2 ∈ R∗, a3, a4 ∈ R.
(2) Case 2: Assume that α̈ ̸= 0. We will consider the following two sub-cases.

(a) Case 2-1: β′′ = 0. If β′′ = 0 then β′ = β′
0 ∈ R. And the equation in

(39) becomes

α̈

α̇
=

1

2

(
ḟ

2β′
0 + f

)
,

which gives{
α(u) = c̃

∫ u

u∗

√
|f + 2a|dτ, a ∈ R

β(v) = av + d

where u∗ and u belong to an interval on which (f+2a > 0) or (f+2a <
0). We get the solution

(s′3) :

{
φ(u, v) =

(
c̃
∫ u

u∗

√
|f + 2a|dτ + av + d, u, v

)
c̃ ∈ R∗, a, d ∈ R

(b) Case 2-2: β′′ ̸= 0. If β′′ ̸= 0 then there exist c ∈ R∗ such that{
2α̈ = c
β′′′

β′′ = −cε.

Thus we have{
2α̇ = cu+ c1
β′′ = −cεβ′ + c2

where c1, c2 ∈ R. And the equation in (39) becomes

c

2
(2β′ + f)− 1

4
(cu+ c1)ḟ + ε(−εcβ′ + c2) = 0,

that is

c

2
f =

1

4
(cu+ c1)ḟ + εc2.

And then we have the solution

(s4) φ(u, v) =
(1
4
cu2 +

1

2
c1u+ c̃1 +

εc2
c

v +K1e
−εcv, u, v

)
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with f(u) = K2(cu+ c1)
2 + 2c2ε

c , where c1, c̃1, c2, c̃2 ∈ R and K1,K2 ∈
R∗.

We have the following result:

Theorem 2. A translation surface S of Type II in (M, gϵf ) where f depends only
on y and not locally a constant, is minimal if and only if there is an interval I
(u ∈ I) and an interval J (v ∈ J) such that on I × J the surface take one of the
following form

(1) φ(u, v) = (a1v + a2, u, v); a1, a2 ∈ R.
(2) φ(u, v) = (a1u + a2v + a3, u, v); a1, a2 ∈ R∗, a3, a4 ∈ R with f(u) =

2εa2

a1
u+ a4.

(3) φ(u, v) =
(
c̃
∫ u

u∗

√
|f + 2a|dτ + av + d, u, v

)
; a, d ∈ R.

(4) φ(u, v) =
(

1
4cu

2+ 1
2c1u+c̃1+

εc2
c v+K1e

−εcv, u, v
)
; c1, c̃1, c2, c̃2 ∈ R, c,K1,K2 ∈

R∗ with f(u) = K2(cu+ c1)
2 + 2c2ε

c .

Example 2. Let (M, gϵf ) be a Walker manifold where the function f(y) = 2y2. Let

S be a translation surface in M satisfying the condition of the theorem 2. In 3) of
the above theorem 2, if we take a = 1, c̃ = 1, d = 0 then the surface S is given by
(see figure 2a):

φ(u, v) =

(
1√
2
ln(u+

√
1 + u2) +

1√
2
u
√
1 + u2 + v, u, v

)
. (41)

Figure 2. φ(u, v) =
(

1√
2
ln(u+

√
1 + u2) + 1√

2
u
√
1 + u2 + v, u, v

)
,

Figure of the Example 2.
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4. Conclusion

In this paper we have defined two types of translation surfaces using two kind of
isometries in a strict Walker manifold (M, gϵf ). First we have studied and classified
the minimality of the translation surface of type I and we draw some examples of
these family of surfaces. Secondely, we considered the family of translation surfaces
of type II and we studied their minimality. We classify these surfaces and draw
some example.
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