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Abstract: In the present paper, we introduce a new type of Riemannian submersion in the 

contact framework such that the fibers of such submersion are generic submanifolds, as 

given in [10]. This type of submersion is a generalization of many kinds of submersion 

introduced before in the literature. Once the Reeb vector field ξ is tangent to the fibers, its 

position is given such that it should lie in the anti-invariant distribution 𝐷0, which is given 

in the definition of the generic submersion. Moreover, we give an example and some 

results for such submersions. 

 

 

Kontakt Geometride Kapsamlı Submersiyonlar Üzerine 
 

 

Anahtar Kelimeler 

Riemann submersiyon, 

Hemen hemen kontakt 

metrik manifold, 

Distribüsyon, 

Reeb vektör alanı 

Öz: Makalede, bu tür submersiyonların liflerinin kapsamlı alt manifoldlar ([10]’da 

verildiği gibi) olacağı şekilde, kontakt çerçevede, yeni bir Riemann submersiyon 

tanımlıyoruz. Bu tür submersiyonlar daha önce literatürde tanımalanan bir çok 

submersiyon çeşidinin genelleştirilmesidir. Reeb vektör alanı liflere teğet olduğu durumda 

kapsamlı submersiyon tanımında verilen 𝐷0 distribüsyonunda yer alması gerektiği sonucu 

verildi. Dahası, kapsamlı submersiyon örneği ve bazı sonuçlar verildi.  

 

 

1. INTRODUCTION 

 

The theory of submanifolds has always been a trending 

topic in differential geometry. This fact inspired most 

geometers to define and study new submanifolds. After 

O’Neill [1] and Gray [2] introduced the concept of 

Riemannian submersion between two Riemann 

manifolds, the verity; fibers of a Riemannian submersion 

are a submanifold of the total manifold, put the 

geometers in a direction to focus on the theory of 

submersion. Besides this, Watson considered the 

Riemannian submersions in a complex context and 

defined and studied so-called almost Hermitian 

submersions [3]. Later, the theory of submersion became 

a popular field, and it has also been worked in the 

contact context [4,5]. Most recent submersion studies 

can be found in the books [6,7].  

 

Ronsse defined generic submanifolds in the complex 

context [8]. Based on the given idea in this work, generic 

submersions were defined in the complex context [9]. 

Later on, the concept given by Ronsse was introduced in 

contact geometry [10]. In this paper, we construct 

generic submersions using the idea presented in [10] for 

generic submanifolds.  

 

The current paper is organized as follows:  

Section 2 includes the fundamental literature, which is 

used throughout the paper. Generic submersion in the 

contact context is defined and studied in Section 3. In 

this section, the position of the Reeb vector field, when it 

is tangent to the fibers, is given. Moreover, an original 

example is introduced and some results are given.  

 

2. PRELIMINARIES 

 

2.1. Riemannian Submersions 

 

This section is devoted to Riemannian submersion and 

some related preliminaries.  

 

Let (𝑀, 𝑔)  and (𝑁, ℎ)  be Riemannian maifolds, here 

𝑑𝑖𝑚(𝑀) > 𝑑𝑖𝑚(𝑁). A surjective mapping  
 

π: (𝑀, 𝑔) → (𝑁, ℎ) 

 

is called a Riemannian submersion [1] if  

 π has maximal rank, and 
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 the restriction of 𝜋∗ on 𝑘𝑒𝑟𝜋∗
⊥ is a linear  

isometry. 

 

In this case, for each point 𝑞  in 𝑁 , π−1(𝑞)  is a 

𝑘 − dimensional submanifold of 𝑀  is called a fiber, 

where 𝑘 = 𝑑𝑖𝑚(𝑀) − 𝑑𝑖𝑚(𝑁).  A vector field on 𝑀 is 

called a vertical (resp. horizontal) if it is always tangent 

(resp. orthogonal) to the fibers. A vector field 𝑋 on 𝑀 is 

called basic if 𝑋 is horizontal and π −related to a vector 

field 𝑋∗ on 𝑁, i.e. π∗𝑋𝑝 = 𝑋∗π(𝑝) for all 𝑝 ∈ 𝑀. We will 

denote by 𝒱  and ℋ  the projections on the vertical 

distribution 𝑘𝑒𝑟π∗ , and the horizontal distribution 

𝑘𝑒𝑟π∗
⊥, respectively. Here, the manifold (𝑀, 𝑔) is called 

total manifold and (𝑁, ℎ) is called base manifold of the 

submersion 𝜋: (𝑀, 𝑔) → (𝑁, ℎ).  

 

The geometry of the Riemannian submersions is 

characterized by O’Neill tensors 𝒯  and 𝒜 , defined as 

follows:  

 

𝒯𝒰𝑉 = 𝒱∇𝒱𝑈ℋ𝑉 + ℋ∇𝒱𝑈𝒱𝑉 (1) 
 

𝒜𝒰𝑉 = 𝒱∇ℋ𝑈ℋ𝑉 + ℋ∇ℋ𝑈𝒱𝑉 (2) 

 

for any vector fields 𝑈 and 𝑉  on 𝑀,here ∇ is the Levi-

Civita connection of 𝑔. One can see that 𝒯𝒰 and 𝒜𝒰 are 

skew-symmetric operators on the tangent bundle of the 

total manifold 𝑀  reversing the vertical and horizontal 

distributions.  

 

Here we give some of the properties of the O’Neill 

tensors 𝒯 and 𝒜, which will be helpful for the following 

sections.  

 

Let 𝑉, 𝑊 be vertical and 𝑋, 𝑌 be horizontal vector fields 

on 𝑀, then we have  

 

𝒯𝒱𝑊 = 𝒯𝒲𝑉, (3) 

𝒜𝒳𝑌 = −𝒜𝒴𝑋 =
1

2
𝒱[𝑋, 𝑌]. (4) 

 

On the other hand, (1) and (2) yield us 

∇𝑉𝑊 = 𝒯𝒱𝑊 + ∇�̂�𝑊, (5) 

∇𝑉𝑋 = 𝒯𝒱𝑋 + ℋ∇𝑉𝑋, (6) 
∇𝑋𝑉 = 𝒜𝒳𝑉 + 𝒱∇𝑋𝑉, (7) 
∇𝑋𝑌 = ℋ∇𝑋𝑌 + 𝒜𝒳𝑌, (8) 

where ∇�̂�𝑊 = 𝒱∇𝑉𝑊. Moreover, if 𝑋 is basic 

ℋ∇𝑉𝑋 = 𝒜𝒳𝑉. 
 

Remark 1.  

 In this paper, we will assume all the horizontal 

vector fields as basic.  

 One can observe that 𝒯 acts on the fibers as the 

second fundamental form while 𝒜 acts on the 

horizontal distribution and measures of the 

obstruction to the integrability of it.  

 

To see more details, we refer to the paper [1] and the 

book [7].  

 

Lemma 1. [1] Let π: 𝑀 → 𝑁  be a Riemannian 

submersion between Riemannian manifolds and 𝑋, 𝑌 be 

basic vector fields of 𝑀. Then  

 𝑔(𝑋, 𝑌) = ℎ(𝑋∗, 𝑌∗) ∘ π, 
 the horizontal part [𝑋, 𝑌]ℋ  of [𝑋, 𝑌] is a basic 

vector field and corresponds to [𝑋∗, 𝑌∗] , i.e 

π∗([𝑋, 𝑌]ℋ) = [𝑋, 𝑌], 
 [𝑉, 𝑋]  is vertical for any vector field 𝑉  of 

𝑘𝑒𝑟π∗, 
 (∇𝑋𝑌)ℋ is the basic vector field corresponding 

to ∇𝑋
𝑁𝑌∗.  

 

2.2. Almost Contact Metric Manifolds 

 

Let 𝑀  be a 𝐶∞ − differentiable manifold. An almost 

contact structure on 𝑀, denoted by (ϕ, ξ, η), consists of 

a (1,1) tensor field ϕ (called the structure tensor field), a 

vector field ξ (called Reeb vector field) and a 1-form η 

(the dual of ξ) such that  

 

ϕ2 = −𝐼 + η ⊗ ξ (9) 

 

and 

 

η(ξ) = 1, (10) 

 

where 𝐼 denotes the identity endomorphism of the fiber 

bundle 𝑇𝑀. In this case, (𝑀, ϕ, ξ, η, ) is called an almost 

contact manifold. One can see that the manifold has odd 

dimension and it follows that 

 
𝐹ξ = 0,  η ∘ 𝐹 = 0. (11) 

 

If a Riemannian metric 𝑔 on 𝑀 satisfies 

𝑔(ϕ𝑋, ϕ𝑌) = 𝑔(𝑋, 𝑌) − η(𝑋)η(𝑌),  ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀), 12 

then 𝑔  is said to be adapted to the almost contact 

structure (ϕ, ξ, η) . In this case, (ϕ, ξ, η, 𝑔)  (resp. 

(𝑀, ϕ, ξ, η, 𝑔)) is called almost contact metric structure 

(resp. almost contact metric manifold). By using (9) and 

(12), the following relation can be obtained: 

 

η(𝑋) = 𝑔(𝑋, ξ),  ∀𝑋 ∈ Γ(𝑇𝑀). (13) 

 

Let 𝒟 = 𝐼𝑚𝐹 = 𝐾𝑒𝑟 η denote the contact distribution of 

the manifold 𝑀. Hence the tangent bundle decomposes 

into the orthogonal sum: 

 
𝑇𝑀 = 𝒟 ⊕ 𝑠𝑝𝑎𝑛 ξ. (14) 

 

From (9) and (12), it follows that ϕ is skew-symmetric 

with respect to 𝑔, which allows one to define the 2-form 

α, called the fundamental 2-form of the almost contact 

metric structure on 𝑀, by [11] 

 

α(𝑋, 𝑌) = 𝑔(𝑋, ϕ𝑌),  ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀). (15) 

 

Therefore, (𝑀, α) is an almost symplectic manifold. 
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3. GENERIC SUBMERSIONS 

 

In this section we define and study the concept of 

generic submersion from an almost contact metric 

manifold onto a Riemannian manifold.  

We would like to mention that there are other notions of 

generic submanifolds, [12,13,14]. 

 

First, we give some facts on generic submanifolds in the 

almost contact context, [10]. 

 

3.1. Generic Submanifolds of Almost Contact Metric 

Manifolds 

 

In [Bejan and me], the concept generic submanifold of 

an almost contact metric manifold is defined and studied.  

 

Now, we recall some fundamental knowledge. 

 

Let (𝐵, ϕ, ξ, η, 𝑔) be an almost contact metric manifold 

and let 𝑀  be a Riemannian submanifold of 𝐵. For any 

𝑋 ∈ Γ(𝑇𝑀), we may write 

 

ϕ𝑋 = 𝑃𝑋 + 𝑁𝑋, (18) 

 

where 𝑃𝑋 ∈ Γ(𝑇𝑀) and 𝑁𝑋 ∈ Γ(𝑇𝑀⊥). 
 

Proposition 1. [Bejan and me] Let 𝑀 be a submanifold 

of an almost contact metric manifold (𝐵, ϕ, ξ, η, 𝑔) and 

let 𝑃 the operator defined by (18). Then 

 𝑃 is skew-symmetric with respect to 𝑔 on 𝑀; 
 𝑃2 is symmetric with respect to 𝑔; 

 all eigenvalues of 𝑃2 are contained in [-1,0]. 

 

Remark 2. [Bejan and me] From Proposition 1, 𝑃2 has 

at each point the associated matrix diagonalizable. 

 

Let −𝛽2  be an eigenvalue of 𝑃2  whose corresponding 

eigen distribution will be denoted by 𝐷𝛽 . Since 𝑃2  is 

diagonalizable we may take −β𝑖
2(𝑝),  𝑖 = 1, … , 𝑛,  to be 

all distinct eigenvalues of 𝑃2 at any point 𝑝 ∈ 𝑀, which 

yields the decomposition of 𝑇𝑝𝑀  into the direct 

orthogonal sum, i.e. 

 

𝑇𝑝𝑀 = 𝐷𝑝
β1 ⊕ 𝐷𝑝

β2 ⊕ … ⊕ 𝐷𝑝
β𝑛 . (19) 

 

Corresponding to Ronsse’s definition [8] of generic and 

skew CR-submanifolds in almost Hermtian context, it is 

introduced in almost contact framework the following:  

 

Definition 1. [10] A submanifold 𝑀 of an almost contact 

metric manifold (𝐵, ϕ, ξ, η, 𝑔) is called generic if there 

exist some functions  

 

β1, … , β𝑛: 𝑀 → (0,1), 
 

for a positive integer 𝑘, such that at each point 𝑝 ∈ 𝑀:  

 −β𝑖
2(𝑝),  𝑖 = 1, … , 𝑛 are distinct eigenvalues of 

𝑃2; 

 the dimension of each 𝐷𝑝
β1 , 𝐷𝑝

β2 , … , 𝐷𝑝
β𝑛  is 

independent of 𝑝 ∈ 𝑀 , where 𝐷𝑝
β

 denotes the 

eigenspace corresponding to the eiganvalue 

−β𝑖
2(𝑝) of 𝑃2, for β ∈ {0,1, β1, β2, … , β𝑛}; 

 the tangent space decomposes into the direct 

orthgonal sum 

  

𝑇𝑝𝑀 = 𝐷𝑝
0 ⊕ 𝐷𝑝

1 ⊕ 𝐷𝑝
β1 ⊕ … ⊕ 𝐷𝑝

β𝑛 . 

 

When β1, … , β𝑛  are constants, 𝑀  is called a skew CR-

submanifold.  

 

3.2. Generic submersions in contact geometry 

 

This section will define the generic submersions in the 

contact context. Since the fibers of a submersion is a 

submanifold of the total manifold, we will follow the 

idea of generic submanifold given in the Section 3.1. to 

construct the generic submersions.  

 

Let (𝑀, ϕ, ξ, η, 𝑔) be an almost contact metric manifold, 

(𝑁, ℎ) be a Riemannian manifold and  

 

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 

 

be a Riemannian submersion. For any 𝑋 ∈ Γ(𝑘𝑒𝑟π∗) and 

𝑈 ∈ Γ(𝑘𝑒𝑟π∗
⊥), we can set 

 

ϕ𝑋 = 𝑃𝑋 + 𝑄𝑋, (20) 
ϕ𝑈 = 𝑡𝑈 + 𝑛𝑈, (21) 

 

where 𝑃𝑋, 𝑡𝑈 ∈ Γ(𝑘𝑒𝑟π∗) and 𝑄𝑈, 𝑛𝑈 ∈ Γ(𝑘𝑒𝑟π∗
⊥).  

 

Now, we define a generic submersion in the contact 

context.  

 

Definition 2.  Let (𝑀, ϕ, ξ, η, 𝑔)  be an almost contact 

metric manifold, (𝑁, ℎ) be a Riemannian manifold and  

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 

be a Riemannian submersion. Then, π is called a generic 

submersion (resp. skew CR-submersion) if the fibers of 

the submersion π are generic submanifold (resp. Skew 

CR-submanifold) of 𝑀. 
 

Remark 3. One can see that the definition has no 

limitation for the Reeb vector field ξ such as tangent or 

normal. This fact makes this work different than the 

others given in the literature.  

 

Let (𝑀, ϕ, ξ, η, 𝑔) be an almost contact metric manifold, 

(𝑁, ℎ) be a Riemannian manifold and  

 

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 
 

be a generic submersion (or skew CR-submersion). In 

this case, there are 𝑘  functions (or constant functions) 

β1, … , β𝑘  defined on the fibers with the values in the 

open interval (0,1) such that 𝑘𝑒𝑟π∗ is decomposed as 

 

𝑘𝑒𝑟π∗ = 𝐷0 ⊕ 𝐷1 ⊕ 𝐷β1 ⊕ … ⊕ 𝐷β𝑘 , (22) 

 

where 𝐷1  is invariant, 𝐷0  is anti-invariant, 𝐷β𝑖  is 

pointwise slant distribution (or slant distribution) with 
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slant function θ𝑖  and −β𝑖
2 is a distinct eigenvalue of 𝑃2 

for each 𝑖 = 1, … , 𝑘. 
 

Proposition 2. Let (𝑀, ϕ, ξ, η, 𝑔)  be an almost contact 

metric manifold, (𝑁, ℎ) be a Riemannian manifold and  

 

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 

 

be a generic submersion. Then, 

 𝑃 is skew-symmetric with respect to the metric 

𝑔 on the fibers; 

 any distribution 𝐷𝑝
β

 is 𝑃 − invariant, for β ∈

{0,1, β1, … , β𝑘}; 
 for any non-zero eigenvalue, the corresponding 

eigen distribution is even dimensional. 

 

Proof. For any 𝑋, 𝑌 ∈ Γ(𝑘𝑒𝑟π∗),  by using the skew-

symmetry of ϕ 

 

𝑔(𝑃𝑋, 𝑌) = 𝑔(ϕ𝑋, 𝑌) = −𝑔(𝑋, ϕ𝑌) = −𝑔(𝑋, 𝑃𝑌), 
 

which shows the first claim.  

 

Let consider an arbitrary β ∈ {0,1, β1, … , β𝑘} and let −β𝑖
2 

be an eigenvalue of 𝑃2  whose associated eigen 

distribution is 𝐷𝑝
β

.  For any δ ∈ {0,1, β1, … , β𝑘} , δ ≠ β, 

the skew-symmetry of 𝑃 yields:  

 

β2𝑔(𝑃𝑋, 𝑌) = −β2𝑔(𝑋, 𝑃𝑌) = 𝑔(𝑃2𝑋, 𝑃𝑌)
= −𝑔(𝑃𝑋, 𝑃2𝑌) = δ2𝑔(𝑃𝑋, 𝑌),  ∀𝑋

∈ Γ(𝐷𝑝
β

),  ∀𝑌 ∈ Γ(𝐷𝑝
δ). 

 

Since β ≠ δ, it follows  

 

𝑔(𝑃𝑋, 𝑌) = 0, ∀𝑋 ∈ Γ(𝐷𝑝
β

), 𝑌 ∈ Γ(𝐷𝑝
δ), 

 

which shows the second claim.  

 

Last claim follows from the other claims.  

 

The following identity gives a relation between certain 

canonical structures. The idea of the proof is same with 

Lemma 3.7. in [10].   

 

Lemma 1. Let (𝑀, ϕ, ξ, η, 𝑔) be an almost contact metric 

manifold, (𝑁, ℎ) be a Riemannian manifold and  

 

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 

 

be a generic submersion. Then,  

 

||𝑄𝑋||
2

= ||𝑋||
2

− (η(𝑋))
2

+ 𝑔(𝑋, 𝑃2𝑋),  ∀𝑋 ∈ Γ(𝑘𝑒𝑟π∗). (23) 

 

Proposition 3. Let (𝑀, ϕ, ξ, η, 𝑔)  be an almost contact 

metric manifold, (𝑁, ℎ) be a Riemannian manifold and  

 

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 
 

 

 

be a generic submersion. Then, 

 𝐷0 = 𝑘𝑒𝑟𝑃; 
 𝐷1 = 𝑘𝑒𝑟𝑄 ∩ 𝒟. 

 

Proof. If 𝑋 ∈ Γ(𝐷0), i.e. 𝑃2𝑋 = 0, then from the skew-

symmetry of 𝑃, we obtain  

 

||𝑃𝑋||
2

= −𝑔(𝑃2𝑋, 𝑋) = 0, 
 

which shows the first equality.  

 

Assume that 𝑋 ∈ Γ(𝐷1),  i.e. 𝑃2𝑋 = −𝑋,  which makes 

(23) 

||𝑄𝑋||
2

= −(η(𝑋))
2

. 
 

Then, the last equality above says that both 𝑄𝑋 and η(𝑋) 

are supposed to be identically zero, i.e.  

 

𝐷1 ⊆ 𝑘𝑒𝑟𝑄 ∩ 𝒟. 
 

On the other hand, for any 𝑋 ∈ Γ(𝑘𝑒𝑟𝑄 ∩ 𝒟),  (23) 

becomes  

 

0 = 𝑔(𝑋, 𝑋) + 𝑔(𝑋, 𝑃2𝑋), 
 

Which shows that the only eigenvalue of 𝑃2  is -1 and 

complete the proof.  

                                                                                         ■ 

 

In the view of Proposition 3., we have the following 

Lemma: 

 

Lemma 2. Let (𝑀, ϕ, ξ, η, 𝑔) be an almost contact metric 

manifold, (𝑁, ℎ) be a Riemannian manifold and  

 

π: (𝑀, ϕ, ξ, η, 𝑔) → (𝑁, ℎ) 

 

be a generic submersion. If the Reeb vector field ξ  is 

tangent to 𝑘𝑒𝑟π∗, then  

 

𝐷0 ∩ 𝑘𝑒𝑟𝑄 = 𝑠𝑝𝑎𝑛{ξ}. 
 

Remark 4. In this case of 𝜉  is tangent to the fibers, 

Lemma 2. gives a deomposition for the anti-invariant 

distribution 𝐷0 such that  

 

𝐷0 = 𝐷0̂ ⊕ 𝑠𝑝𝑎𝑛{ξ}, (24) 

where 𝐷0̂  is the orthogonal complementary of 𝑠𝑝𝑎𝑛{ξ} 

in 𝐷0 . In other words, if the Reeb vector field ξ  is 

tangent to the fibers, then it it always perpendicular to all 

other distributions (ξ ⊥ 𝐷β,  β ∈ {1, β1, … , β𝑘}),  which 

gives a new decomposition for the fibers.  

 

Remark 5. As a natural consequence of Remark 4., one 

can see that  

 

η(𝑋) = 0, (25) 

 

where 𝑋 ∈ Γ(𝐷0̂ ⊕ 𝐷1 ⊕ 𝐷β1 ⊕ … ⊕ 𝐷β𝑘),  i.e. 𝐷0̂  is 

comprised by the contact distribution 𝒟. 
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Example 1. Consider a pair of almost complex 

structures {𝐽1, 𝐽2} on 𝑅12 as in the following: 

 

𝐽1(∂1, … ∂12)
= (− ∂3, − ∂4, ∂1, ∂2, − ∂7, − ∂8, ∂5, ∂6, − ∂11, − ∂12, ∂9, ∂10), 
𝐽2(∂1, … , ∂12)
= (− ∂2, ∂1, ∂4, − ∂3, − ∂6, ∂5, ∂8, − ∂7, − ∂10, ∂9, ∂12, − ∂11) 

 

with ∂𝑖 =
∂

∂𝑥𝑖
 for any 𝑖 ∈ { 1, … ,12}. Thus, (ϕ, ξ, η, 𝑔) is 

an almost contact metric structure on the Euclidean 

space 𝑅𝟙𝟛 = 𝑅𝟙𝟙 × 𝑅  with the coordinates (𝑥1, … , 𝑥13) 

such that  

 

ϕ (𝑉 + τ
∂

∂𝑥13

) = (𝑐𝑜𝑠 𝑓)𝐽1𝑉 + (𝑠𝑖𝑛 𝑓)𝐽2𝑉, ∀𝑉

∈ Γ(𝑅𝟙𝟚), 

ξ =
∂

∂𝑥13

,   η = 𝑑𝑥13, 

 

where 𝑔 is the Euclidean metric on 𝑅𝟙𝟛, τ: 𝑅𝟙𝟛 → 𝑅 and 

𝑓: 𝑅𝟙𝟛 → 𝑅 − {0,
π

2
} are smooth functions on the fibers. 

Define a map π: 𝑅𝟙𝟛 → 𝑅𝟞 such that  

 

π(𝑥1, … , 𝑥13) = (𝑥2, 𝑥3, 𝑥6, 𝑥8, 𝑥9, 𝑥12). 
 

𝑘𝑒𝑟π∗ = 𝐷0̂ ⊕ 𝑠𝑝𝑎𝑛{ξ} ⊕ 𝐷1 ⊕ 𝐷β, 
where  

𝐷0̂ = 𝑠𝑝𝑎𝑛{∂𝑥1, ∂𝑥4}, 

𝐷1 = 𝑠𝑝𝑎𝑛{∂𝑥9 − ∂𝑥12, ((𝑐𝑜𝑠 𝑓) + (𝑠𝑖𝑛 𝑓)) ∂𝑥10

+ ((𝑐𝑜𝑠 𝑓) − (𝑠𝑖𝑛 𝑓)) ∂𝑥11} 

 

and  

 

𝐷β = 𝑠𝑝𝑎𝑛{∂𝑥5, ∂𝑥7} 

 

such that 𝐷β  is of the pointwise slant function 𝑓. 
Moreover,  

 

(𝑘𝑒𝑟π∗)⊥ = 𝑠𝑝𝑎𝑛{(𝑠𝑖𝑛 𝑓) ∂𝑥2

+ (𝑐𝑜𝑠 𝑓) ∂𝑥3, (− 𝑐𝑜𝑠 𝑓) ∂𝑥2

+ (𝑠𝑖𝑛 𝑓) ∂𝑥3, ∂𝑥6, ∂𝑥8, ∂𝑥9

+ ∂𝑥12, ((𝑐𝑜𝑠 𝑓) + (− 𝑠𝑖𝑛 𝑓)) ∂𝑥10

+ ((− 𝑐𝑜𝑠 𝑓) + (− 𝑠𝑖𝑛 𝑓)) ∂𝑥11}. 
 

Therefore, the map π is a generic submersion.  

 

Proposition 4. Let π be a generic submersion from an 

almost contact metric manifold (𝑀, ϕ, ξ, η, 𝑔)  onto a 

Riemannian manifold (𝑁, ℎ) with ξ tangent to the fibers 

and 𝐷0  is parallel with respect to ξ. Then, any integral 

curve of ξ is a geodesic on the fibers if and only if 𝐷0̂ is 

parallel with respect to ξ.  

 

Proof. Assume that ξ is tangent to the fibers and 𝐷0  is 

parallel with respect to the Reeb vector field, i.e.  

 

∇ξ𝑋 ∈ 𝐷0,  ∀𝑋 ∈ Γ(𝐷0), 

 

Which gives the following equivalence with Remark 4, 

for any 𝑍 ∈ Γ(𝐷0̂), 

𝐷0̂ is parallel with respect to ξ ⇔ ∇ξ𝑍 ∈ 𝐷0̂  

               ⇔ 𝑔(∇ξ𝑍, ξ) = 0 ⇔ 𝑔(𝑍, ∇ξξ) = 0 

⇔ ∇ξξ ∈ 𝑠𝑝𝑎𝑛{ξ}. 

 

On the other hand, since ξ is unitary,  

 

𝑔(ξ, ξ) = 1 ⇔ 𝑔(∇ξ, ξ) + 𝑔(ξ, ∇ξξ) = 0 

⇒ 𝑔(ξ, ∇ξξ) = 0 

⇒ ∇ξξ = 0, 

 

which completes the proof.  

 

Theorem 1. Let π  be a generic submersion from an 

almost contact metric manifold (𝑀, ϕ, ξ, η, 𝑔)  onto a 

Riemannian manifold (𝑁, ℎ) . If 𝑀  is of a closed 

fundamental 2-form α, then 

 the anti-invariant distribution 𝐷0 is integrable, 

 if the Reeb vector field ξ is tangent to the fibers, 

then the distribution 𝐷0̂ is integrable if and only 

if the restriction of η on 𝐷0̂ is closed.  

 

Proof. Let 𝑋, 𝑌 ∈ Γ(𝐷0) and 𝑉 ∈ Γ(𝑘𝑒𝑟π∗ −  𝐷0). Thus, 

by Proposition 2, there exists 𝑍 ∈ Γ(𝑘𝑒𝑟π∗ − 𝐷0) such 

that 𝑃𝑍 = 𝑉. Since 𝑃𝑍 = 𝑃𝑉 = 0, we have  

 

𝑔([𝑋, 𝑌], 𝑉) = 𝑔([𝑋, 𝑌], 𝑃𝑍)
= 𝑍𝑔(𝑌, 𝑃𝑋) − 𝑌𝑔(𝑍, 𝑃𝑋)
− 𝑋𝑔(𝑍, 𝑃𝑌) − 𝑔([𝑍, 𝑌], 𝑃𝑋)
− 𝑔([𝑋, 𝑍], 𝑃𝑌) + 𝑔([𝑋, 𝑌], 𝑃𝑍) 

= 𝑍α(𝑌, 𝑋) − 𝑌α(𝑍, 𝑋) − 𝑋α(𝑍, 𝑌) − α([𝑍, 𝑌], 𝑋)
− α([𝑋, 𝑍], 𝑌) + α([𝑋, 𝑌], 𝑍 

= 𝑑α(𝑍, 𝑋, 𝑌) 

= 0, 
 

which means [𝑋, 𝑌] ∈ Γ(𝐷0), i.e. 𝐷0 is integrable.  

Now, let 𝑋, 𝑌 ∈ Γ(𝐷0̂). 𝐷0 is integrable implies [𝑋, 𝑌] ∈

Γ(𝐷0). From Remark 5, it follows that  

𝑔([𝑋, 𝑌], ξ) = η([𝑋, 𝑌]) = 𝑑η(𝑋, 𝑌). 

Thus, [𝑋, 𝑌] ∈ Γ(𝐷0̂) if and only if 𝑑η(𝑋, 𝑌) = 0. 
                                                                                         ■ 
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