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1. Introduction

Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping T from C into H is said
to be generalized hybrid [22] if there exist a, 8 € R such that

ol Te = Tyl? + (1 = a)||lz = Ty|* < BTz — y|* + (1 = B) |z — y||?

for any x,y € C. Such a mapping is said to be («, 3)-generalized hybrid. The class of all generalized hybrid
mappings is a new class of nonlinear mappings including nonexpansive mappings, nonspreading mappings
[24] and hybrid mappings [26]. A mapping T from C into H is said to be nonexpansive if

[Tz =Tyl < llz —yll
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for any z,y € C; nonspreading if
2Tz — Ty|* < | Tz — y||* + | Ty — x|
for any z,y € C; hybrid if
3Tz — Tyl < |lo —ylI* + | Tz — y|* + || Ty — 2|

for any z,y € C. Any nonexpansive mapping is (1,0)-generalized hybrid; any nonspreading mapping is
(2,1)-generalized hybrid; any hybrid mapping is (%, %)—generalized hybrid.

Motivated these mappings, in [19] Kawasaki and Takahashi introduced a new very wider class of mappings,
called widely more generalized hybrid mappings, than the class of all generalized hybrid mappings. A

mapping T from C into H is widely more generalized hybrid if there exist a, 58,7,9,¢,(,n € R such that

al|Tz —Ty|* + Bllz — Ty|* + 4Tz — y||* + ]z -yl
+ellz — T |* + Clly = Tyl* + nll(x = Ta) — (y — Ty)|* <0
for any x,y € C'. Such a mapping is said to be («, 8,7, 0, ¢, (,n)-widely more generalized hybrid. This class

includes the class of all generalized hybrid mappings and also the class of all k-pseudocontractions [3| for
k € [0,1]. A mapping T from C into H is called a k-pseudocontraction if

1Tz = Ty|* < |lo = ylI* + kll(z = Tx) — (y = Ty)|I?

for any z,y € C. Any («, #)-generalized hybrid mapping is (o, 1—«, — 3, 5—1, 0, 0, 0)-widely more generalized
hybrid; any k-pseudocontraction is (1,0,0,—1,0,0, —k)-widely more generalized hybrid. Furthermore they
proved some fixed point theorems [7—12,18-21] and some ergodic theorems [7,8,18-20].

There are some studies on Banach space related to these results. In [28] Takahashi, Wong and Yao
introduced the generalized nonspreading mapping and the skew-generalized nonspreading mapping in a
Banach space. Let E be a smooth Banach space and let C' be a nonempty subset of E. A mapping T from
C into F is said to be generalized nonspreading if there exist «, 5,7, d,¢,( € R such that

ap(Tz, Ty) + Bo(x, Ty) +vo(Tx,y) + 0é(x,y)
<e(p(Ty, Tz) — ¢(Ty, ) + ((P(y, Tx) — d(y,x))

for any z,y € C, where J is the duality mapping on £ and
$(u,v) = [[ull* = 2(u, Jv) + [|v]*.

Such a mapping is said to be («, 3,7, 9, e, {)-generalized nonspreading. A mapping 7" from C into F is said
to be skew-generalized nonspreading if there exist «, 8,7, 9,¢,¢ € R such that

ap(Tx, Ty) + Bé(x, Ty) + v¢(Tx,y) + 6é(z,y)
S 5(¢(Ty7 Tﬂj‘) - (l)(y? TJ))) + g(qs(Tyv '7:) - ¢(y7 .CC))

for any x,y € C. Such a mapping is said to be («, 3,7, 9, €, ()-skew-generalized nonspreading. These classes
include the class of generalized hybrid mappings in a Hilbert space, however, it does not include the class of
widely more generalized hybrid mappings.

Motivated these results, we introduced a new class of mappings [13-16] on Banach space corresponding to
the class of all widely more generalized hybrid mappings on Hilbert space. Let E be a smooth Banach space
and let C be a nonempty subset of £. A mapping T from C into F is called a generalized pseudocontraction
if there exist aq, as, 81, 82,71, Y2, 01, 02, €1, €2, (1, (2 € R such that

a10(Tz, Ty) + aed(Ty, Tx) + Bréd(x, Ty) + Bod(Ty, )
0T, y) + 720(y, Tx) + 019(x,y) + d20(y, )

+e1¢(Tx, z) + eap(z, Tx) + C1o(y, Ty) + C2(Ty, )
<0



Toshiharu Kawasaki, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 387-404. 389

for any z,y € C. Such a mapping is called an (a1, ag, f1, 52,71, 72,01, 02, €1, €2, (1, (2)-generalized pseu-
docontraction. Let E* be the topological dual space of a strictly convex, reflexive and smooth Banach
space E and let C* be a nonempty subset of E*. A mapping T* from C* into E* is called a *-generalized
pseudocontraction if there exist aq, as, 81, 82,71, 72, 01, 02, €1, €2, (1, (3 € R such that

a1 (T72", T*Y") + aodu (T7y", T72") + B (2", T7y™) + Baopu(T7y", %)
+710: (T2, y") + 720 (y*, T72%) + 019 (2", y™) + d20u(y*, %)
+e19:(T72", 2%) + 20 (2™, T72") + Gu (v, T™Y") + Qo (T7Y", y7)
<0
for any z*,y* € C*, where
Gula® y") = 2*)* = 207 y", ") + Iy 12

for any z*,y* € E*. Such a mapping is called an (a1, g, 81, 82,71, 72, 01,02, €1, €2, (1, (2)-*-generalized
pseudocontraction.

On the other hand, in [27] Takahashi and Takeuchi introduced a concept of attractive point in a Hilbert
space. Let H be a real Hilbert space, let C' be a nonempty subset of H and let T' be a mapping from C' into
H. x € H is called an attractive point of T if

[z = Tyll < flz -yl
for any y € C. Let
A(T) ={x e H | [lx = Ty[| < [lz — y]| for any y € C}.

Furthermore they proved that the Baillon type ergodic theorem [2] for generalized hybrid mappings without
convexity of C.

In [28] Takahashi, Wong and Yao introduced some extensions of attractive point and proved some at-
tractive point theorems on Banach spaces. = € F is an attractive point of T if

o(z,Ty) < o(x,y)

for any y € C; x € F is a skew-attractive point of T if
o(Ty,z) < ¢(y,x)

for any y € C. Let
AT) = {zeE|¢(x,Ty) < d(z,y) for any y € C};
B(T) = {ze€E|¢(Ty,z) < ¢(y,x) for any y € C}.

In [1] Atsushiba, Iemoto, Kubota and Takeuchi introduced a concept of acute point as an extension of
attractive point in a Hilbert space. Let H be a real Hilbert space, let C' be a nonempty subset of H and let
T be a mapping from C into H and k € [0,1]. = € H is called a k-acute point of T if

lz = Ty|* < ||z — y||* + klly — Ty
for any y € C. Let
(T) ={z € H ||z —Ty|* < llz — y|* + klly — Ty||* for any y € C}.

Furthermore, using a concept of acute point, they proved convergence theorems without convexity of C.

We introduced some extensions of acute point [13-16]. Let E be a smooth Banach space, let C be a
nonempty subset of E, let T' be a mapping from C into FE and let k,/ € R. = € E is called a (k, ¢)-acute
point of T' if

o(z, Ty) < d(z,y) + ko(y, Ty) + Ld(Ty, y)
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for any y € C. z € E is called a (k, ¢)-skew-acute point of T if

o(Ty,x) < ¢(y,z) + ko(y, Ty) + £d(Ty, y)
for any y € C'. Let

o (T)

={z € E|¢(z,Ty) < ¢(z,y) + ko(y,Ty) + £p(Ty, y) for any y € C'};

B (T)

={z € E|¢(Ty,z) < d(y,z) + ko(y, Ty) + £d(Ty,y) for any y € C}.
Furthermore we proved some fixed point and acute point theorems [13,15], and some convergence theorems
[14,16]. However, convergence theorems require more assumptions on parameters than fixed point theorems.

In this paper we generalize the concept of acute point and we introduce some convergence theorems that
holds under the same assumptions on parameters as fixed point theorems.

2. Preliminaries
We know that the following hold; for instance, see [4,5,25].

Condition 2.1. 000000
(T1) Let E be a Banach space, let E* be the topological dual space of E and let J be the duality mapping on
E defined by

J(z) = {z* € B* | ||l2]|* = (z,2") = [|l2"||*}

for any x € E. Then E is strictly convez if and only if J is injective, that is, x # y implies J(x) N J(y) = 0.
(T2) Let E be a Banach space, let E* be the topological dual space of E and let J be the duality mapping on
E. Then E is reflevive if and only if J is surjective, that is, \J,cp J(v) = E*.

(T3) Let E be a Banach space and let J be the duality mapping on E. Then E is smooth if and only if J is
single-valued.

(T4}) Let E be a Banach space and let J be the duality mapping on E. If J is single-valued, then J is
norm-to-weak™* continuous.

(T5) Let E be a Banach space and let J be the duality mapping on E. Then E is strictly convex if and only if
1 - <$7y*> >0

for any x,y € E with x # y and ||z|| = ||y|]| = 1 and for any y* € J(y).

(T6) Let E be a Banach space and let E* be the topological dual space of E. Then E is reflexive if and only
if E* is reflezive.

(T7) Let E be a Banach space and let E* be the topological dual space of E. If E* is strictly convex, then E

s smooth. Conversely, E is reflexive and smooth, then E* is strictly convex.

(T8) Let E be a Banach space and let E* be the topological dual space of E. If E* is smooth, then E is strictly
convex. Conversely, E is reflexive and strictly convex, then E* is smooth.

(T9) If a Banach space E is unformly convex, then E is reflexive.

(T10) Let E be a Banach space and let J be the duality mapping on E. If E has the Fréche differentiable
norm, then J is norm-to-norm continuous.

(T11) Let E be a Banach space and let E* be the topological dual space of E. E has uniformly Frécht
differentiable norm if and only if E* is uniformly convez.
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(T12) Let E be a Banach space and let E* be the topological dual space of E. E is strictly convex and reflexive
and has Kadec-Klee property if and only if E* has Fréchet differentiable norm.

Let E be a smooth Banach space, let J be the duality mapping on E and let ¢ be the mapping from
E x E into [0,00) defined by

¢z, y) = ||lz]|* — 2(z, Jy) + [ly||*

for any z,y € E. Since by (T3) J is single-valued, ¢ is well-defined. It is obvious that z = y implies
¢(x,y) = 0. Conversely, by (T5)

Condition 2.2. 000000
(T13) If E is also strictly convex, then ¢(x,y) =0 implies x = y.

Let E be a strictly convex and smooth Banach space. By (T1) an (T3) J is a bijective mapping from
E onto J(E). In particular, if E is also reflective, then by (T2) J is a bijective mapping from E onto E*.
Suppose that E is strictly convex, reflective and smooth. Let ¢, be the mapping from E* x E* into [0, c0)
defined by

Su(a”,y") = [l = 2007y 2 + [y
for any z*,y* € E*. Then
bu(a*, ") = 6Ty, T a) (2.1)
holds. Therefore
Condition 2.3. 000000
(T13)* ¢«(x*,y*) = 0 if and only if ©* = y*.

We use the following lemmas in this paper.
The following showed in [6].

Lemma 2.4. Let E be a strictly convex and smooth Banach space and let C be a nonempty closed subset
of E. Suppose that there exists a sunny generalized nonexpansive retraction of E onto C. Then the sunny
generalized nonexpansive retraction is uniquely determined.

Lemma 2.5. Let E be a strictly convexr and smooth Banach space, let C' be a nonempty closed subset of E
and let (z,z) € E x C. Suppose that there exists a sunny generalized nonexpansive retraction Rc of E onto

C. Then the following hold.
Condition 2.6. 0000
(1) z = Rox if and only if (x — 2z, Jz — Jy) >0 for any y € C;
(ii) ¢(Row,y) + ¢(z, Rex) < ¢(z,y) for any y € C.
The following showed in [23].

Lemma 2.7. Let E be a strictly convez, reflexive and smooth Banach space and let C' be a nonempty closed
subset of E. Then the following are equivalent:

Condition 2.8. 0000

(i) There exists a sunny generalized nonexpansive retraction of E onto C;

(1) There exists a generalized nonexpansive retraction of E onto C;

(i13) J(C) is closed and conves.
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Lemma 2.9. Let E be o strictly convex, reflexive and smooth Banach space, let C' be a nonempty closed
subset of E and let (x,z) € E x C. Suppose that there exists a sunny generalized nonezpansive retraction Rc
of E onto C. Then the following are equivalent:

Condition 2.10. 0000
(i) z = Rox;
(i) ¢(z,z) = mingeo ¢z, y).
The following showed in [28].

Lemma 2.11. Let E be a uniformly convex and smooth Banach space, let C' be a nonempty subset of E, let
T be a mapping from C into itself with B(T) # 0 and let R be the sunny generalized nonezpansive retraction
of E onto B(T). Then for any v € C, {RT™z} is strongly convergent to an element in B(T).

The following lemmas are shown in [14-16].

Lemma 2.12. Let E be a smooth Banach space, let C' be a nonempty subset of E, let D be a nonempty
convez subset of E, let T be an (aq, s, B1, P2, 71,72, 01,02, €1, €2, (1, (2)-generalized pseudocontraction from
C into D and let A € [0,1]. Then T is a ((1 —N)ag +Aaz), Aag + (1 — Nag, (1 —X)B1 + Ay2, A1+ (1 — X) B2,
(L=X) 71+ AB2, ABL+ (1= A)v2, (1= A)d1 + Ad2, Ad1 4 (1 = A)d2, (1= A)er +A¢2, AG + (1= A)ez, (1= A)C1+ Aea,
et + (1 — N)(a)-generalized pseudocontraction from C into D.

Lemma 2.13. Let E* be the topological dual space of o strictly convex, reflexive and smooth Banach space
E, let C* be a nonempty subset of E*, let D* be a nonempty convezr subset of E*, let T* be an (au, ag, f1,
B2, 71,72, 01,02, €1, €2, (1, (2)-*-generalized pseudocontraction from C* into D* and let X € [0,1]. Then T* is
a ((1 — /\)041 + /\042), Aaq + (1 — A)ag, (1 — /\)51 + Avyg, A1 + (1 — )\)52, (1 — )\)’)/1 + ABo, A\B1 + (1 — /\)’)/2,
(1 — )\)51 + Ado, Aoy + (1 - )\)52, (1 - )\)51 4+ Ao, A(1 + (1 — )\)62, (1 — )‘)Cl + Aeg, Ae1 + (1 — )\)Cg)—*—genemlized
pseudocontraction from C* into D*.

Lemma 2.14. Let E be a strictly convex, reflexive and smooth Banach space, let E* be the topological dual
space of E, let C' and D be nonempty subsets of E and let T' be an (a1, a9, b1, 82,71, 72,01, 02,€1, €2, (1, (2)-
generalized pseudocontraction from C into D. Put T* = JTJ ™', where J is the duality mapping on E. Then
T* is an (a2, aq, B2, B1,72, 71,02, 01, €2, €1, C2, C1)- *-generalized pseudocontraction from J(C) into J(D).

3. Generalized acute and skew-acute point

Most of this section are included in [17], however, the following are described for completeness.
Let E be a smooth Banach space, let C' be a nonempty subset of E, let T" be a mapping from C into E
and let k,¢,s € R. x € E is called a (k, ¢, s)-generalized acute point of T if

s(¢(x, Ty) — ¢(x,y)) < ko(y, Ty) +Ld(Ty, y) (3.1)
for any y € C. x € E is called a (k, /¢, s)-generalized skew-acute point of T if
s(¢(Ty, ) — d(y,x)) < ko(y, Ty) + Ld(Ty,y) (3.2)

for any y € C. Let

.5(T)
={z e E|s(¢(z,Ty) — ¢(z,y)) < ko(y, Ty) + Lp(Ty,y) for any y € C};
Brs(T)
={z e E|s(¢(Ty,x) — ¢(y,x)) < ko(y, Ty) + Lp(Ty,y) for any y € C}.
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It is obvious that
ey 1,51 (1) C Doy 3,55 (T) s B 1,55 (T) T By 2,55 (T)

for any ki, ko, 01,02 € R and for any si,s2 € (0,00) with ’S% < ’;—j and % < %;
G 1,51 (T) D iy 3,50 (1) By 1,55 (T) D By 2,5(T)

for any ki, k2, 01,02 € R and for any s, s2 € (—o00,0) with % < IZ—; and % < %,
o 0(T) = Bruo(lT) =F

for any (k, /) € [0,00) X [0, 00);
e 0.0(T) = Brpo(T) =0

for any (k, ) € (—o0,0] x (—00,0]\ {(0,0)}; otherwise,
poo(T) =FE or 0, Bro(T)=FE or 0;

)
(
)
(

Furthermore

however, it is generally unknown which case holds. In this way, 2% ¢0(T) and By ¢0(T) may be empty.
However, in later discussions, under some assumptions, such cases will be properly ruled out.
The following lemmas are important property characterizing them.

Lemma 3.1. Let E be a smooth Banach space, let C' be a nonempty subset of E, let T be a mapping from
C into E and let k,l,s € R. Then o s(T) is closed and convez.

Proof. Since

d(u,v) = d(u, w) + d(w,v) + 2(u — w, Jw — Jv) (3.3)
for any u,v,w € E, (3.1) is equivalent to

2s(z, Jy — JTy) < (k = s)é(y, T'y) + Ld(Ty,y) + 2s(y, Jy — JTy).
Therefore a7, ¢ s(T') is closed and convex. O

Lemma 3.2. Let E be a smooth Banach space, let C' be a nonempty subset of E, let T be a mapping from
C into E and let k,{,s € R. Then %y, ¢ (T) is closed.

Proof. (3.2) is equivalent to
2s(y = Ty, Ja) < ko(y, Ty) + (£ = s)o(Ty, y) + 25y — Ty, Jy)
from (3.3). Furthermore by (T4) J is norm-to-weak™® continuous. Therefore %y, ¢ s(T') is closed. O

Let E* be the topological dual space of a strictly convex, reflexive and smooth Banach space E, let C*
be a nonempty subset of E*, let T* be a mapping from C* into E* and let k,/,s € R. z* € E* is called a
(k, £, s)-generalized-*-acute point of T if

(0 (2%, T*Y") — ¢u(2”,y7)) < kpu(y™, T™y") + Lou(T7y", y7) (3.4)
for any y* € C*. x* € E* is called a (k, ¢, s)-generalized-*-skew-acute point of T™* if
s(@«(T7y", ") — du(y", 7)) < kbu(y™, TTy") + L (T7y", ") (3.5)
for any y* € C*. Let
Ay y,s(T7)

e pr| S@@N Ty = 0@t y7) S kouly™ Ty7) + Lou (T, y7)
for any y* € C* ’
‘@Z,Z,S(T*)
e pr | STy aT) = by a7)) < Ry TMy") + L0 (T7y", y7)
for any y* € C* '
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Lemma 3.3. Let E* be the topological dual space of a strictly convex, reflective and smooth Banach space F,
let C* be a nonempty subset of E*, let T* be a mapping from C* into E* and let k,{,s € R. Then <7}, (T™)
15 closed and convez.

Proof. (3.4) is equivalent to
2s(JLy* — JTITy 2
< (k= 8)bu(y*, T*y") + Lo (T*y" y*) + 25(J " Hy" — T T7y" ")
from (3.3) and (2.1), 7, (T) is closed and convex. O
Lemma 3.4. Let E* be the topological dual space of a strictly convez, reflexive and smooth Banach space F,

let C* be a nonempty subset of E*, let T* be a mapping from C* into E* and let k,¢,s € R. Then %}, (T™)
15 closed.

Proof. (3.5) is equivalent to
25(J " \a*, yF — THy)
< ki (y" T Y") + (= 8)ou(T Y y") + 2(J " y" = T*y")
from (3.3) and (2.1). Furthermore by (T4) J~! is norm-to-weak* continuous. Therefore B g s(T7) is
closed. n

Lemma 3.5. Let E be a strictly convex, reflective and smooth Banach space, let C be a nonempty subset of
E, let T be a mapping from C into E, let T* = JTJ " and let k,¢,s € R. Then

0 s(T*) = J(Bug,s(T)), Brys(T*) = J( A p,s(T)).
In particular, J(Bj (1)) is closed and conver and J (0 5(T)) is closed.
Proof. Let z* € @/, (T™). Then

s(pu (2™, Ty") — dula™,y")) < kouly™, T*y") + Ldu(Ty", y")
for any y* € J(C). From (2.1)

STy, Nt — 6(T 7y, )
S kG Ty TN + (T Y T TITY)

for any y* € J(C). Since J~'T* = TJ~!, putting y = J~ly*, we obtain

s(6(Ty, J~'a") = gy, J~'a")) < Loy, Ty) + k¢(Ty. y).

Therefore J12* € %y s(T) and hence Ay (T7) = J(Bug,s(T))-
By (™) = J(Hk,s(T)) can be shown similarly.
Furthermore, by Lemma 3.3 J(%y ¢ s(T)) is closed and convex and by Lemma 3.4 J (%, ¢4(T)) is closed.
O

Lemma 3.6. Let E be a strictly convex and smooth Banach space, let C be a nonempty subset of E, let T
be a mapping from C into E and let k, 0, s € R. Then the following hold.

Condition 3.7. 0000

(1) If (k,0) € (=00, 8] x (—00,0] \ {(5,0)}, then C N oA, ¢ s(T) is a subset of the set of all fired points of T';
(2) If (k,0) € (—00,0] x (—00,s]\ {(0,s)}, then C N PBros(T) is a subset of the set of all fized points of T
Proof. Let x € C N, 04(T). Then (3.1) holds for any y € C. Putting y = «, we obtain (s — k)¢(x, Tx) —
Lp(Tx,x) <0. If (k,£) € (—o0, 8] x (—o0,0]\ {(s,0)}, then by (T13) we obtain z = Tx.

Let x € C N By s(T). Then (3.2) holds for any y € C. Putting y = z, we obtain —k¢(x,Tx) + (s —
Op(Tx,x) <0. If (k) € (—o00,0] x (—o0,s]\ {(0,s)}, then by (T13) we obtain z = Tx. O
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Lemma 3.8. Let E* be a strictly conver and smooth topological dual space of a Banach space, let C* be a
nonempty subset of E*, let T be a mapping from C* into E* and let k,{ € R. Then the following hold.
Condition 3.9. 0000

(1) If (k,€) € (—o0,s] x (—00,0]\ {(s,0)}, then C N, (T™) is a subset of the set of all fived points of T™;
(2) If (k,€) € (—00,0] x (—00,s|\ {(0,1)}, then CN By, (T*) is a subset of the set of all fired points of T*.
Proof. Let z* € C* N *‘Z{/:,é,s(T*)- Then (3.4) holds for any y* € C*. Putting y* = z*, by we obtain

(s = k)pu(a*, T*x*) — Lo (T*x*,2*) < 0. If (k,¢) € (—o0, 5] X (—00,0] \ {(s,0)}, then by (T13)* we obtain

¥ = T*x*.
Let z* € C* n %ZZS(T Then (3.5) holds for any y* € C*. Putting y* = z*, by we obtain
«

)-
—kos(a*, T z*) + (s — 0o (T*x “a*) < 0. If (k,0) € (—00,0] x (—o0,s] \ {(0,s)}, then by (T13)* we
obtain :v* =T"x". O

4. Mean convergence theorems

Theorem 4.1. Let E be a uniformly conver Banach space with a Fréchet differentiable norm, let C' be a
nonempty subset of E and let T be an (aq, oz, 1, B2, 71,72, 01, 02, €1, €2, (1, (2)-generalized pseudocontraction
from C into itself. Suppose that there exists X € [0, 1] such that

(I=XN(a1+ 51+ +01) +Aag+ P2+ 72+ 62) > 0;
Mar+7) + (1= A)(az + B2) = 0;

AB1+61) + (1 =N (y2 + d2) > 0;

(1=Xe1 + A > 0;

AG+ (1= A)e2 >0,

and suppose that

D ((1-N)G1-+Ac2),~ Q1+ (1-0)6), (1-N(ar +81)+ Mz +2) (T) € B(T) # 0.
Let R be the sunny generalized nonexpansive retraction of E onto B(T'). Then for any x € C,

def 1 ZTk

15 weakly convergent to an element

4 € _((1-N)G1+2e2),— Cer+(1-N)2), (1-A) (a1 +B1)+A(az+12) (1)

where ¢ = lim,,_,oo RT™x.
Additionally, if C is closed and conver and one of the following holds:

Condition 4.2. 0000

(1) (1 =X)(a1+ B1+ )+ Aag+v2+e2) >0 and Aep + (1 — N)¢2 > 0;

(2) (1 — /\)(a1 + B+ C1) + /\(052 + 72 + Eg) >0 and Ae1 + (1 — )\)CQ > 0,
then q is a fized point of T.

Proof. By the assumption F is strictly convex and smooth, and by (T9) F is reflexive. By Lemma 3.2 B(T)
is closed and by Lemma 3.5 J(B(T)) is closed and convex. Therefore by Lemmas 2.7 and 2.4 there exists a
unique sunny nonexpansive retraction R of E onto B(T).
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By Lemma 2.12 T is a ((1 — )\)041 —|—)\042), Ao + (1 — )\)ch, (1 — )\),31 + Ay, A1+ (1 — )\)ﬁg, (1 — )\)71 + ABa,
AB1+ (1 — )\)’yg, (1 — )\)51 + Ado, A1 + (1 — )\)52, (1 — )\)61 + A2, A1+ (1 - )\)52, (1 — )\)Cl 4+ Aeg, Aep + (1 — )\)CQ)—
generalized pseudocontraction. From (3.3) we obtain

(1 =XNa1 + Aa2)p(Tz, Ty) + (Ao + (1 — ANag)d(Ty, T'x)

+((1 =)+ M2)d(z, Ty) + (A + (1 = A)B2)o(Ty, x)
(1 =N+ AB2)d(Tz,y) + (AB1 + (1 = A)v2)é(y, Tx)
+((1 = A)d1 + Ad2)d(w, y) + (Ad1 + (1 — A)d2)9(y, x)
+((1 = Ne1 + A)d(Tx, z) + (A + (1 = Ne2)o(x, Tx)
+((1 = NG+ Ae2)d(y, Ty) + (Aer + (1 = A)¢2)o(Ty, y)

= ((1 = Na1 + Aa2)¢(Tz, Ty) + (Aar + (1 — Naz)¢(Ty, Tx)

—((1 = Aoy + Aa2)é(z, Ty)
+((1 = A)(a1 + B1) + Maz +72)) (2, y) + ¢(y, Ty) + 2(x — y, Jy — JTy))
+(A11 + (1= A)B2)o(Ty, z)

(1 =)+ AB2)o(Tz, y) + (AB1 + (1 — M)y2)é(y, Tx)
+((1 = A)d1 + Ad2) (2, y) + (Ad1 + (1 — A)d2)o(y, x)
+((1 = Ner + A2)od(Tx,x) + (A + (1 — Neg)p(x, Tx)
+((1 = A1+ Ae2)d(y, Ty) + (Aer + (1 = AN)2)o(Ty, v)

= ((1 = Na1 + Aa2)¢(Tz, Ty) + (Aar + (1 — Naz)o(Ty, Tx)

—((1 = Nan + Aaz)o(z, Ty) + (M1 + (1 = A)B2)d(Ty, )
+((L = Nm + AB2)o(Tz,y) + (AB1 + (1 = My2)o(y, Tx)
+((1 = A)(a1 + B1 + 1) + Aoz + 72 + 62))9(z, y)
+(A01 + (1 = A)d2)é(y, )
+((1 = Ne1 + AR)o(Tz,z) + (MG + (1 — Ne2)o(z, Tx)
+((1=N)(a1+ 81+ ) + Aag +v2 +€2)o(y, Ty)
+(Ae1 + (1 = N)@)o(Ty, y)
+2((1 = M1 + B1) + Maz +72)){x — y, Jy — JTy).
Since
(1- )(a1+ﬁ1+51)+A(a2+~yg+52) —((1 = A7 + AB2);
M1+ (1 =X)B2 > —(Aag + (1 — Nag);
Ao+ (1= A)d2 > =(AB1 + (1 = A)y2);
(1—=XNe1+ >\C2 > 05
A+ (1= A)eg >0,
we obtain

(1 =XNag + Aa2)o(Tz, Ty) + (Ao + (1 — Nag)o(Ty, Tx)
— Mg +Aag)d(z, Ty) + (A + (1 = A)B2)¢(Ty, x)
— A+ AB2)d(Tx,y) + (AB1 + (1 — A)2)d(y, Tx)
1 —X) (a1 + b1+ 61) + Moz + 72 + 62)) (2, y)
(1-
)
)

_l’_

(
(
(

_l’_

Aoy + A)o2)p(y, x)
(I —=XNe1 +20)p(Tz,x) + (NG + (1 — Neg)o(x, Tx)
(1= A1+ 81+ G) + Aoz + 72 +€2))d(y, Ty)

_l’_

—(
(
(
+(
(
(
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Therefore

+(Ae1 + (1 = A))o(Ty, v)
+2((1 = N (a1 + B1) + Moz + 72))(x —y, Jy — JTy)

> (1= A)ar + Aaz)(¢(Tz, Ty) — ¢(x, Ty))

+(Aa1 + (1 = Nao)(¢(Ty, Tz) — ¢(T'y,z))

F((L =My + AB2)(¢(Tz, y) — o(x,y))

+(AB1+ (1= N)72)(o(y, Tz) — ¢(y,2))

(1= X)(a1 + B1+ 1) + Maz + 72 +€2))p(y, Ty)
+(Aer+ (1= A))o(Ty,y)

+2((1 = XN (a1 + B1) + Mag + 7))z —y, Jy — JTy).

_|_

(
(
(
(

(T =A)ar + Aa)(¢(Tx, Ty) — ¢(z, Ty))

+()\041 + (1 - A)QQ)(gb(Tyv T.Z‘) - ¢(Ty7 .1‘))

(1 = M+ AB2)(¢(Tz, y) — d(x,y))

+(AB1+ (1 = N)72)(o(y, Tz) — ¢(y,z))

+((1 = A (a1 + B1+ Q) + AMaz + 72 + €2))p(y, Ty)
+(Ae1+ (1= N))o(Ty,y)

+2((1 = A)(a1 + B1) + Maz +72) )z —y, Jy — JTy)

<0.

Replacing = by T*z, we obtain
(1= Nau + Aa2)(@(TH e, Ty) — ¢(T* 2, Ty))

Summing up these inequalities for k =0, ...

(1-

+(Aar + (1 = Naz)(¢(Ty, T"'2) — ¢(Ty, TFx))

(L= Ny + AB2) (T, y) — ¢(T" 2, y))

+(ABL+ (1= Ny2) oy, T ' 2) — ¢y, TFx))

+((1 = A1+ B1+ Q) + AMaz + 72 + €2))(y, Ty)
+(Ae1 + (1 = N)R)o(Ty,y)

+2((1 = A)(a1 + B1) + Maz +92))(TFx —y, Jy — JTy)

<0.

Aag + Aag
n

(o(T"z, Ty) — ¢(z,Ty))
+)\a1 + (711 — Nag
+(1 — )+ AB2

n (¢(Tnxa y) - d)(l‘, y))
+>\51 + (=N

n (¢(y7Tnx) - ¢(y7$))
(1 =Nl + B+ Q) + Moz + 72 +€2))0(y, Ty)

+(Ae1 + (1 = AN)G)o(Ty, v)
+2((1 = A)(a1 + B1) + Mag +72)){(Shz —y, Jy — JTy)

(¢(Ty7 Tnx) - ¢(Ty7 [IZ))

<0.

,n — 1 and dividing by n, we obtain
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Since B(T') # ), we obtain

o(T "z, y) < S(T" 'z, y)

for any = € C, for any y € B(T) and for any n € N. Therefore {T"z} is bounded and hence {S,x} is also
bounded. Therefore there exists a subsequence {Sy,z} of {S,z} such that {S,,z} is weakly convergent to
an element p € E. Replacing n by n;, we obtain

(1-— )\)Ozll + Ao (¢(T"z, Ty) — ¢(z, Ty))

+)\a1 + (1= XNas

n (1-— )\)Zzl + A3 (O(T™z,y) — d(z,y))
+)\,31 + (7;_ )‘>72 (¢(y’ Tniﬂj) _ gb(y, g;))

+((1 = A) (a1 + B+ G) + Aoz + 72 + £2))d(y, Ty)

+(Ae1 + (1 = A)G)o(Ty, y)

+2((1 = N (a1 + B1) + Maz +72)){(Sp,z — y, Jy — JTy)
<0.

Putting ¢ — oo, we obtain

(L =N (a1 + 81+ Q) + Maz + 72 +€2)o(y, Ty) + (Aer + (1 = N)¢2)d(Ty, y)
+2((1 = A)(ar + B1) + Maz +72)){p — v, Jy = JTy)
<0.
From (3.3) we obtain

(T =A)G + Ae2)o(y, Ty) + (Aer + (1 = A)G) (T, y)
+((1 =N + B1) + Maz +72))(6(p, Ty) — 6(p,y))
<0.

Therefore we obtain

(1= X) (o + B1) + Maz +72))(¢(p, Ty) — d(p,y))
< (1 =X+ Ae2)d(y, Ty) — (Aer + (1 = N)G)d(Ty, y)

and hence

P € D (1-N)Ci4ren)— et +(1-N)C2),(1-A) (a1 +61)+ Az -+r2) (T)-
Next by Lemma 2.5 we obtain

(T*x — RT*x, Jy — JRT*z) < 0
for any y € B(T). By Lemma 2.11 for any x € C, {RT™z} is strongly convergent to an element in
B(T). Let ¢ = limy,_yoo RT™x. Since {T"x} is bounded, by Lemma 2.5 {RT"x} is also bounded. Putting
K = max,enyoy,zec ||T"r — RT"x||, we obtain
(T*z — RT*z, Jy — Jq) < (T*z — RT*z, JRT*z — Jq)
< || T*z — RT*z| - || JRT*z — Jq|
< K| JRT*z — Jq||.
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Summing up these inequalities for k = 0,...,n — 1 and dividing by n, we obtain
1 n—1 K n—1
Spx— =Y RT*z,Jy—Jq) < — JRT*z — Jq||.
<n:v nkZ_O z, Jy q>_nkz_0! z — Jql|

Since {Sp,x} is weakly convergent to p and by (T11) J is norm-to-norm continuous, we obtain
(p—q,Jy—Jq) <0.
Since @ (1-2)¢14+Aea),— (Ae1+(1=N)C2),(1=A) (@1 +81 )+ A (aa+r2) (T) € B(T), putting y = p, from (3.3) we obtain
0 < 2p—q,Jg—Jp)
= —¢(p,q) — ¢(q,p)

and by (T13) we obtain p = ¢q. Therefore {S,z} is weakly convergent to gq.
Additionally, if C is closed and convex and (1) or (2) holds, then {S,z} C C and hence ¢ € C. By
Lemma 3.6 ¢ is a fixed point of T O

Theorem 4.3. Let E* be a uniformly convex topological dual space with a Fréchet differentiable norm,
let C* be a nonempty subset of E* and let T* be an (a1, oz, b1, B2,71,72, 01,02, €1, €2, (1, C2)-*-generalized
pseudocontraction from C* into itself. Suppose that there exists \ € [0,1] such that

I=XN(a1+B1+7+01) +Xaz+ B2+ 72+ d2) > 0;
Mai +m) + (1= A) (a2 + B2) > 0;

AB1+61) + (1= X)(y2 + d2) > 0;

(1= Ne1 + A2 > 0;

A+ (1= A)eg >0,

and suppose that

G (1N 2e2),— 1+ (1-A)a), (1=A) (1 41 )+ M asta2) (L) C Boo(T) # 0.

Let R* be the sunny generalized nonexpansive retraction of E* onto %’5‘70(T*). Then for any x* € C*,

15 weakly convergent to an element

0" € D126 +e2), - OerH(1-2)G2), (1N o+ Az +2) (T
where ¢* = limy,_,oo R*(T™)"x*.
Additionally, if C* is closed and convex and one of the following holds:
Condition 4.4. 0000
(1) (1 —=XN)(c1+ P14+ C)+AMag+v2+e2) >0 and Aey + (1 — N\)¢2 > 0;
(2) (1=XN(a1+61+C)+AMag+v2+e2) >0 and Aeg + (1 —\)¢2 >0,

then ¢* is a fized point of T*.
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Proof. By (T11) and (T12) E is a strictly convex, reflexive and smooth Banach space. Therefore ¢, is
well-defined. From (2.1) and (3.3) we obtain

bu(u*,0%) = (U, w*) + ¢u(w*, v*) + 2(J tw* — T 1%, u* — w*). (4.1)
Therefore we obtain similarly to the proof of Theorem 4.1

(T =XN)(a1 + b1+ C1) + Mag + 72 +£2)) o« (¥, T"y")
+(Ae1 + (1 = N)G2)o«(T Y™, y")
+2((1 = N (a1 + B1) + Moz + ) (I Ty = T 1Ty p* —y")
<0

for any x*,y* € C*, where p* € E* is a weak limit of a subsequence {S}; z*} of {S;;2*}. From (4.1) we obtain

(1= A)C1 + Ae2) o (y™, T7Y") + (Aer + (1 = M@)o (T7y", y")
+((1 = A)(oa + B1) + Maz +72)) (0 (0", T*y") — o« (p*, y™))
<0.

Therefore we obtain

(1= A) (a1 + Br) + Aaz +72))(0«(p", T™Y") — ¢+ (0", y7))
< (1= NG+ Ae2)du(y" T7y") — (A + (1 = X))o (T7y", y7)

and hence

P € D210 +ea),— (a1 +(1-0)G), (1-N) (a1 +1)+ A (az+r2) (T ):
Next by Lemma 2.5 we obtain
<J—1y* _ J_lR*(T*)k.Z‘*, (T*)k.%'* _ R*(T*)kl'*> < 0
for any y* € %5 o(T"). By Lemma 2.11 for any 2* € C*, { R*(T*)"2"} is strongly convergent to an element in
B o(T7). Putting ¢* = limy, 00 B*(T™)"2* and K = max,enuio}z+ec- [|[(1T7)" 2" — R*(T*)"x*||, we obtain
<Jfly* _ Jflq*7 (T*)kx* . R*(T*)kx*>
< TR (T — T | - (TRt — RH(T)Ea|
< KR e =0

Summing up these inequalities for k = 0,...,n — 1 and dividing by n, we obtain
1 n—1 K n—1
J—l*_J—l*S* * - R*T*k* < = J_lR*T*k*—J_l*.
< y ¢, S ”kz—o (T*)* _nkZ_OH (T*)* ol

Since {S;; 2*} is weakly convergent to p* and by (T9) J~! is norm-to-norm continuous, we obtain
<J—1y* _ J_lq*,p* _ q*) < 0.
Since @Z((1_3)¢1-+xen),— (er+(1-N)2),(1-\)(a1-+81)+A(az-+72)
obtain
0 < 2JJ7'y =T~ ")
= —¢u(p",q") = &u(d",p")
and by (T13)* we obtain p* = ¢*. Therefore {S}z*} is weakly convergent to ¢*.

Additionally, if C* is closed and convex and (1) or (2) holds, then {S;;z*} C C* and hence ¢* € C*. By
Lemma 3.8 ¢* is a fixed point of T™*. O

(T*) C %5,(T"), putting y* = p*, from (3.3) we
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By Theorem 4.3 we obtain the following.

Theorem 4.5. Let E be a strictly conver and reflexive Banach space with Kadec-Klee property and a uni-
formly Fréchet differentiable norm, let C' be a nonempty subset of E and let T' be an (a1, ag, b1, B2,71, 72,
01,02, €1, €2, (1, (2)-generalized pseudocontraction from C' into itself. Suppose that there exists A € [0,1] such
that

(I =X)(ag+ B2+ 72+ 02) + Mag + B1 + 71 + 01) > 0;
Maz +72) + (1 = A)(a1 + B1) > 0;

A(B2 +02) + (1 = A) (71 + d1) > 0;

(1= N)e2 + A1 > 0;

A2+ (1= X)eg >0,

suppose that

B (reat(1-N)C1)—(1=N)Cat A1 ), (1=A) (az+B2)+Mar+41) (1) C A(T) # 0

and suppose that J~' is weakly sequentially continuous. Let R* be the sunny generalized nonexpansive re-
traction of E* onto J(A(T)). Then for any x € C,

def 1 n—1
€ —
k=0
1s weakly convergent to an element

4 € B—(rert(1-N)C1),—(1-N)Ca+Ae1),(1-2) (a+82) + A (a1 +71) (1),

where ¢ = limy,_yo0 J 'R*JT"x.
Additionally, if J(C) is closed and convexz and one of the following holds:

Condition 4.6. 0000
(1) (1= XN(az+ B2+ G) +Aar+71 +e1) >0 and Aea + (1 — NG > 0;
(2) (1 — /\)(a2 + B2 + CQ) + /\(Oél +71 + El) >0 and Aeg + (1 — /\)Cl > 0,
then q is a fized point of T.

Proof. By (T11) and (T12) E* is uniformly convex with a Fréchet differentiable norm. Let 7% = JT.J L.
Then T™* is a mapping from J(C) into itself. Putting * = Jx and y* = Jy, By Lemma 2.14 T™ is an («g,
a1, B2, 51,72, 71, 02, 01, €2, €1, (2, (1 )-*-generalized pseudocontraction from J(C') into itself. Since (T%)"z* =
JT"x, |[(T*)"2*|| = ||JT"z| = ||T"™z| and hence {(T™*)"2* | n € NU{0}} is bounded. By Lemma 3.5

(1N tren) i~ (Aeat (1N (1-A) (@4 B2)+ A (o ty2) (L)

= J (B (2ert (1-20)— (1-Na 4 Ae1). (1N (-4 B2)+A (e 47) (1)) 5
By o(T™) = J(A(T)).

By Theorem 4.3 for any « € C,
1 n—1
k
Syxt = . Z(T*) x*
k=0
is weakly convergent to an element

0" € J (B (rert(1-N)G1)— (1= NGt Ae1) (1A (@t B2) 4 A(ar +1) (1))
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where ¢* = lim,,_,oo R*JT"x. Since J~ ! is weakly sequentially continuous and by (T9) J ~1 is norm-to-norm
continuous,

n—1
1
Spr=J S Je=J1 =Y Jr*
X n X (nkzzo X

is weakly convergent to the element

q= J_lq* € ‘@—(/\52+(1—>\)C1)7—((1—/\)CQ+)\51),(1—/\)(042-‘(‘52)4‘)\(041+’Yl)(T)7

where ¢ = lim,, oo J ' R*JT"z.
Additionally, if J(C) is closed and convex and (1) or (2) holds, then ¢* is a fixed point of 7% and hence
g = J 'q¢* is a fixed point of T O

5. Remark and example

In the proof using the concept of acute or skew-acute point we needed the assumption (1 —\)(a; + 1) +
AMag +72) >0 or (1 = A)(az + B2) + A(a1 + 1) > 0 in addition to

(1= X)(a1 +B1 +m + 1) + Aag + B2 + 72 + d2) > 0;
AMar+7) + (L= A)(az + f2) =2 0;

A(Br+61) + (1= A)(y2 +d2) = 0;

(I =XNe1 +A¢ > 0;

A1+ (1= XN)eg >0,

or
(I—=XN(ag+B2+r2+02) + A1+ 61 +m + 1) >0;
AMag +792) + (1= N)(a1 + B1) > 0;
A(B2 +62) + (1 = X)(y1 + 1) > 0;
(1= N)e2+ A1 > 05
A2+ (1 = A)eg > 0;

see [14].

However the assumption (1 — A)(aq + f1) + AM(az2 +72) > 0 or (1 — A)(a2 + S2) + A1 +71) > 0 is
not needed [17]. Therefore we wondered if the condition was unnecessary. In this paper we generalize the
concept of acute point and by using the concept of generalized acute and skew-acute point we do not need
the assumptions (1 — A)(a1 + B1) + AMaz +92) > 0 and (1 — A)(az + B2) + A(ar + 1) > 0.

We consider an example.

Example 5.1. Let E be a uniformly convex Banach space with a Fréchet differentiable norm, let C' be a
nonempty subset of E and let T be an (a1, a9, 1, 82,71, Y2, 01, 02, €1, €2, (1, (2)-generalized pseudocontraction
from C into itself. Suppose that

ay,a € R;

1 =m=—ai; 01 = a;

B2 =72 = —ag; 02 = ag;

1,62 € [0,00); (1 = €2; (2 = €1,

and suppose that

(1Nt Ae2),— (A1 +(1-N) ), (1= (a1 +B1 )+ Maz+y2) (1) € B(T) # 0.
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Then for any X\ € [0, 1] we obtain

(1 =N (a1 + B +7 +01) + AMag + B2+ 72 + 52) = 0;
Aag +71) + (1= X)(az + p2) = 0;

A(Br+61) + (1= A)(y2+d2) =0;

(1= XNer + A > 0;

AC 4 (1= A)eg > 0.

Furthermore
(I =X (a1 + B1) + Mag +72) = (1 = N (a2 + B2) + AMas +71) = 0.

Unfortunately, by the previous theorem [14, Theorem 4.1] we cannot show the mean convergence theorem to
acute point, and of course, the mean convergence theorem to fized point. However, by using Theorem 4.1
we can show the mean convergence theorem to generalized acute point and the mean convergence theorem to
fized point.
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