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Abstract   

In this study, magnetization is examined with the help of the Ising model within the framework of non-
comprehensive statistical mechanics, where the behavior of the interacting fundamental moment ensemble 
is taken into account. Researchers employ the spin-1 single lattice Ising model or three-state systems to 
examine the physical systems with three states and two order parameters. Within this model, various 
thermodynamic characteristics of phenomena like ferromagnetism in binary alloys, liquid mixtures, liquid-
crystal mixtures, freezing, magnetic order, phase transformations, semi-stable and unstable states, ordered 
and disordered transitions have been investigated for three distinct forms associated with q < 1, q = 1, and 
q > 1. In this context, q represents the non-extensivity parameter of Tsallis statistics. 
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1. Introduction 
 

Understanding the essence of the interaction between magnetic atoms and the magnetic 
moment value of these atoms holds significant significance when examining 
ferromagnetism. For this purpose, one of the methods is the study of the magnetic 
properties of a magnetically dilute system based on the magnetic atoms which are put 
together with non-magnetic atoms. In 1988, there existed a research on the mathematical 
properties and physical applications of a new versions of entropy based on generalized 
entropic functional [1, 2]. Tsallis demonstrated that an entropy functional dependent on q 
extended the conventional Boltzmann-Gibbs thermostatistical formalism to encompass 
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non-extensive systems. Within this approach, q is referred to as the non-extensive 
parameter. [3-5]. There are important physical scenarios one of which is self-graviting 
systems that are characterized by a non-extensive behavior. Dilute magnetic systems are 
examined in this study using non-extensive statistics and spin-1 Ising systems are used as 
the model's foundation. The general Hamiltonian for spin-1 Ising systems with next 
nearest pair interactions is 
 

𝐻 = −𝐽 ∑ 𝑠𝑖𝑠𝑗 − 𝐾 ∑ 𝑠𝑖
2

〈𝑖𝑗〉〈𝑖𝑗〉 𝑠𝑗
2 − 𝐷 ∑ 𝑠𝑖

2𝑁
𝑗=1 − 𝐿 ∑ (𝑠𝑖

2𝑠𝑗 + 𝑠𝑖𝑠𝑗
2)〈𝑖𝑗〉 − H ∑ 𝑠𝑖𝑖                                 (1) 

 

where, J, K, D, L, and H are constants for bilinear exchange interaction, bi-quadratic 
exchange interaction, crystal field interaction, magnetic field due to s, and dipole-
quadrupole interaction, respectively. The term "H" refers to the magnetic perturbation of 
the third degree, while "L" represents the number of lattice points. When the systems exist 
in semi-stable states or phases, their properties undergo significant alterations. [6-9]. All 

terms that are conceivable when 𝑠𝑖
𝑗

= 𝑠𝑖  are included in the Hamiltonian generated by Eq. 

(1), but higher order powers of spin are excluded. 
 

2. Materials and Method 
 

A dilute magnetic system is one that is created when magnetic and nonmagnetic atoms 
combine. In the case of such systems, the potential for displaying magnetic characteristics 
arises when the concentration of magnetic atoms attains a specific threshold [10,11]. The 
Hamiltonian of such a system is expressed in the form 
 

                                                            𝐻 = − ∑ 𝑠𝑖𝑠𝑗𝐽𝑛𝑖𝑛𝑗⟨𝑖𝑗⟩                                                                   (2) 
 

This is determined from Eq. (1) by adopting K=D=L=H=0. In this equation, J is the energy 
resulting from the exchange interaction, and si and jj are the spin vectors of the ith and jth 
atoms, respectively. ni and nj represent spin disorder variables, which can take on the 
values of 0 and 1, respectively. The mean value of these variables determines the magnetic 
concentration. [10,11]. 
 
2.1 The System's Free Energy 
 

This system's energy per atom is: 
 

                                                                  
𝐸

𝑁
= 𝐽𝜌𝜎𝑖𝑗𝛽B                                                                              (3) 

 

In this context, ρ denotes the overall count of lattice points within the system, Λ signifies 
the number of nearest neighboring lattice points, represents the external magnetic field, 

and 𝛽 = 
1

𝑘𝛽𝑇
. The statistical weight of the spin-1 Ising system can be represented as follows: 

utilizing the internal variable xi, which has been defined for three-state systems, along with 
the double variable σij [12]. 
 

                                                     [𝑊]
1

𝑁 =
[∏ (𝑝𝑖𝑌)!]7

𝑖=1
𝜌−1

𝐿!
𝜌
2−1

[∏ (𝜎𝑖𝑗
3
𝑖,𝑗=1 𝐿)!]

𝜌
2

                                                                   (4) 

 

Here, Y represents the count of systems in the ensemble, while N denotes the total number 
of lattice points within the system. On the other hand, everyone is familiar with what 
entropy is: 
 

                                                                     𝑆 = 𝑘𝐵𝑙𝑛𝑊    .                                                                       (5) 
 

When one system's entropy is calculated (Y=1). 
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𝑆

𝑁
= 𝑘𝐵[(𝜌 − 1) ∑ 𝑥𝑖𝑙𝑛𝑥𝑖 − (

𝜌

2
) ∑ 𝜎𝑖𝑗𝑙𝑛𝜎𝑖𝑗]7

𝑖,𝑗=1
7
𝑖=1 .                                      (6) 

2.2 The State of Equilibrium for the Dilute System within the Context of Non-
extensive Statistical Mechanics 
 

Prior to 1998, all physical properties of statistical systems were examined using 
Boltzmann-Gibbs statistics. Based on Boltzmann-Gibbs statistics, macroscopic quantities 
like free energy, entropy, and internal energy of a statistical system are perceived as 
extensive variables. In 1998, a thermodynamically motivated generalization was 
conducted to comprehend the structure or resolve numerous unfamiliar systems. This 
generalization drew inspiration from the probability definition of multifractal geometry. 
Magnetization is a phenomenon characterized by long-range interactions and memory. 
Systems that exhibit these characteristics are referred to as non-extensive systems. Hence, 
the investigation of magnetization is conducted within the framework of non-extensive 
statistical mechanics. This generalization involves parameterizing all statistical quantities 
with a parameter q. In the limit as q approaches 1, the statistics being studied converges 
to the standard Boltzmann-Gibbs statistics. However, for values of q other than 1, 
macroscopic quantities such as internal energy, free energy, and entropy in Boltzmann-
Gibbs statistics are not considered extensive quantities; in other words, they are non-
extensive [13]. Mathematical terms from non-extensive statistical mechanics are 
introduced with the aim of generalization; 
 

                                                                  𝑙𝑛𝑞𝑝 =
𝑝1−𝑞

1−𝑞
                                                                        (7) 

 

3. Results and discussion 
 

3.1 Determination of the Physical Quantities 
 

The temperature dependence of the generalized magnetization, generalized magnetic 
susceptibility and generalized specific heat are greatly governed by the values assigned to 
the nonextensivity parameter q [14, 15]. 
The following is the result of determining the relationship between the parameter t and 
temperature using probability, nonlinear equations, and expressions linked to 
concentration: 
 

                                      𝑒𝑞

𝐽

𝑘𝑇 =
𝑛𝛼𝑡𝑎𝑛ℎ𝑞𝜌𝑡

𝑐𝑜𝑠ℎ𝑞2(𝜌−1)𝑡[𝑛𝛼𝛼𝑡𝑎𝑛ℎ𝑞2(𝜌−1)𝑡+𝑛𝛼𝛽𝑡𝑎𝑛ℎ𝑞(𝜌−1)𝑡−𝑛𝛼𝑡𝑎𝑛ℎ𝑞𝜌𝑡]
−

𝑛𝛼𝛽𝑡𝑎𝑛ℎ𝑞(𝜌−1)𝑡

𝑐𝑜𝑠ℎ𝑞2(𝜌−1)𝑡[𝑛𝛼𝛼𝑡𝑎𝑛ℎ𝑞2(𝜌−1)𝑡+𝑛𝛼𝛽𝑡𝑎𝑛ℎ𝑞(𝜌−1)𝑡−𝑛𝛼𝑡𝑎𝑛ℎ𝑞𝜌𝑡]
                                                                  (8) 

 

The Fig. 1 illustrates the plot of the function Mq=f(T), showcasing magnetization vary with 
temperature for a specific concentration value (c=1) across different q values. In the figure 
the yellow, orange, gray and the blue lines refer to q = 1.2, q = 1.0, q = 0.7 and q = 0.4 
respectively. 
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Fig. 1 The plot represents the magnetization vary with temperature for a simple cubic 
structure at a specific concentration, considering four different q values. 

 
For q < 1 the paramagnetic ferromagnetic phase transition is second order. On the other 
hand, the expression for the susceptibility is as follows. 

 

                                      
1

𝜒𝑞
=

𝑘𝑇[1+𝑒𝑞

𝐽
𝑘𝑇𝑐𝑜𝑠ℎ𝑞2(𝜌−1)𝑡](𝑛𝛼−𝜌𝑛𝛼𝛼−𝑛𝛼𝛼)+2𝑛𝛼𝛼(𝜌−1)

𝐺2[1+𝑒𝑞

𝐽
𝑘𝑇𝑐𝑜𝑠ℎ𝑞2(𝜌−1)𝑡](𝑛𝛼

2 +𝑛𝛼𝛼𝑛𝛼)−𝑛𝛼𝑛𝛼𝛼

                                      (9) 

 

Fig. 2 illustrates the plot of the function χq=f(T), presenting the susceptibility vary with 
temperature at a particular concentration value (c=1) for two distinct q values. In this plot 
yellow line corresponds to q = 1.2 and the blue line corresponds to q=0.4. 
The Fig. 1 illustrates the plot of the function Mq=f(T), showcasing magnetization vary with 
temperature for a specific concentration value (c=1) across different q values. In the figure 
the yellow, orange, gray and the blue lines refer to q = 1.2, q = 1.0, q = 0.7 and q = 0.4, 
respectively. 
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Fig. 2 Shows how a basic cubic structure's sensitivity to heat varies with respect to 
temperature for a given concentration and for four distinct q values. 

 
When the energy's magnetic component is taken into account, one writes: 

 

                                                               
𝐸𝑞

𝑁
=

𝜌𝐽

4
(4𝜂 − 𝑛𝑖𝑗)                                                                  (10) 

 

                                                 
𝐸𝑞

𝑁
=

−𝜌𝐽

4
𝑛𝛼𝛼 [

1−𝑒
−𝐽
𝑘𝑇 sec(ℎ𝑞)2(𝜌−1)𝑡

1+𝑒
−𝐽
𝑘𝑇 sec(ℎ𝑞)2(𝜌−1)𝑡

]                                                  (11) 

 

Using these expressions, the specific heat is found to be; 
 

                                             
𝐶𝑞

𝑘𝑁
=

𝜌𝐽

4𝑘
𝑛𝛼𝛼

𝑑

𝑑𝑇
[

𝑒
−𝐽
𝑘𝑇 sec(ℎ𝑞)2(𝜌−1)𝑡−1

𝑒
−𝐽
𝑘𝑇 sec(ℎ𝑞)2(𝜌−1)𝑡−1

]                                                   (12) 

 

In Fig. 3, the plot of Cq=f(T), showcasing the fluctuation of specific heat with respect to 
temperature for a specific concentration value (c=1) across three different q values, is 
displayed. The lines in yellow, orange, gray, and blue represent q values of 1.2, 0.7 and 0.4, 
respectively. 
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Fig. 3 Illustrates the relationship between temperature and specific heat for a simple 
cubic structure at a specific concentration, considering four distinct values of q. 

 

4. Conclusion 
 

In this study, the spin-1 Ising model is used to analyze the microscopic properties of 
magnetic systems viewed as a collection of interacting fundamental moments. Using 
statistical mechanics, a bridge has been established between the microscopic approach and 
macroscopic experimental data. The long-range phenomenon of magnetization also has a 
memory effect. These systems have the attribute of non-extensivity. Because of this, 
magnetization has been taken into account within the context of non-extensive statistical 
mechanics. The generalization process begins with the conventional method. There are 
also several experimental investigations [14, 15] that look into this sort of system. This 
study investigates the temperature-dependent fluctuations in magnetization, 
susceptibility, and specific heat. It has been shown that for the entropic index q, as q 
decreases, the magnetization shows a linear fluctuation rather than a parabolic fluctuation. 
However, the susceptibility does not alter with the q values and the specific heat, 
temperature dependency rises as q decreases. 
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