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Let s(t) be a reference signal corrupted by additive 
white Gaussian noise (AWGN), i.e, sN(t) = s(t) + 

w(t) where w(t) ~ N(0, a2) is AWGN with zero mean 
and a2 variance. When s(t) is considered to be an 
image signal, the main goal of image denoising is to 
recover signal s(t) while preserving image structures 
and features as much as possible. In the process of 
recovering original signal, the suppression of noise 
and preservation of image details is a compromise. 
Noise can be due to imperfections in camera sensory 
systems and imaging process, different sources of no-
ise such as photon, thermal and quantization noise, 
poor illumination conditions, etc.

One of the oldest and simplest methods of denoi-
sing is to average the image spatially. This process acts 
as a low-pass filter and removes the noise by smoothing 
it. In smoothing operations, the pixels that have signi-
ficantly higher or lower intensity values would smear 
across neighboring pixels and thus create blur. Similarly, 
neighborhood filters which take an input pixel and apply 
an algorithm to neighbor pixels of the corresponding 
pixel create shocks and artifacts [1,2]. To address the 
blurring problems of spatial and neighborhood filters 
anisotropic diffusion filter [3] was designed by Perona 
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and Malik to avoid the blurring effects of spatial and ne-
ighborhood filters. This filter smooths the image in the 
direction that is orthogonal to the gradient direction. 
Also, a minimization technique called total variation 
filter [4] designed by Rudin et al. acts for the same goal. 
Unfortunately, these two approaches are fairly slow and 
come with more computation burden compared to afo-
rementioned spatial techniques. It is a fact that noise 
commonly manifests itself as fine grained structure in 
images. Many researches have been conducted addres-
sing this phenomenon. Wavelet based techniques [5-7] 
rely on this phenomenon. In wavelet domain, most of 
the noise is represented by wavelet coefficients at finer 
scales. The coefficients are thresholded to get rid of un-
wanted noise. The main handicap of wavelet threshol-
ding techniques is that the chosen threshold may not 
match the specific distribution of image signal. Also, 
hard thresholding would create visual artifacts and soft 
thresholding would create blur in the recovered image. 
Nonlinear estimators based on Bayesian theory attempt 
to overcome the disadvantages of wavelet based met-
hods at cost of high computation burden [8]. On the ot-
her hand, an algorithm called Non-Local Means [9-10] 
brought a new perspective to image denoising task. This 
algorithm have for the first time used patch-wise pixel 
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Wiener Filter
In wiener filtering, the goal is to obtain a linear estimate 
of the noise-free image, ˆ( )x i, j  of the size MxN that mini-
mizes the mean squared error (MSE), i.e.
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This linear estimate is given by
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where 2
xσ  and xµ  are the signal variance and the mean of 

the original image and 2
nσ  is the variance of noise, respec-

tively. The wiener filter is optimal when x(i, j) and n(i, j) are 
stationary Gaussian processes.

Non-local Means (NLM)

The NLM method aims to take advantage of the high 
degree of redundancy found in any natural images. It 
uses the fact that every small window in a natural image 
has many similar windows in the same image:

( )[ ]( ) ( , )
j I

NL x i w i j v j
∈

= ∑ (6)

where weighting kernel w(i, j) depends on the similarity 
between the pixels i and j:
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and Z(i) is the normalizing constant:
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where h is the size of the kernel. In this approach, the 
Euclidean distance .  between two pixels in the bilate-
ral filter [15, 16] is replaced by the weighted Euclidean 
distance between two patches. Moreover, the Euclidean 
distance in the weight function is substituted with a Ga-
ussian. Thus, it can be considered as a variation of the 
neighborhood filter [17].

Wavelet-based Denoising

In wavelet-based denoising, the image is decomposed into 
subbands (LL, LH, HL, HH) by the wavelet transform as 
shown in Fig.1. Then, coefficients of the detail subbands 
are compared with a threshold value and modified ac-

operations instead of point-wise pixel operations. As a se-
cond contribution, the algorithm has considered the patches 
physically not near the pixel of interest and hence having its 
name as nonlocal. Following this, the search for optimally 
designing a filter that maximizes the signal-to-noise ratio 
(SNR) for each component of the signal in Wiener filter re-
sulted an algorithm that is still considered as the state-of-
the-art called Block-Matching and 3-D Filtering (BM3D) 
[11]. This algorithm stacks the 2-D noisy image patches into 
3-D groups and then a high-dimensional filtering approach 
called collaborative filtering is employed. This latter opera-
tion includes 3-D transform, shrinkage and inverse trans-
form of image data. Recently, some image denoising techni-
ques based on deep learning appear [12]. But, these methods 
need lots of data for training and are not yet mature to be 
employed in real-world denoising operations. Interested re-
aders can refer to [13] for more comprehensive review of the 
image denoising algorithms.

The remainder of the paper is organized as follows. In 
the next section, the algorithms suitable for blind image de-
noising are briefly explained. Then, the results obtained on 
the basis of quality, robustness and computation time are 
presented and discussed. Finally, some concluding remarks 
are given.

MATERIAL AND METHODS

In this section, we introduce the problem of image deno-
ising and briefly explain the algorithms suitable for blind 
image denoising. Gaussian, Wiener, NLM, Wavelet hard 
and soft denoising methods, and BM3D are evaluated 
and the results are presented in terms of image quality 
metrics and computational efficiency.

Problem Definition

Let the problem be modeled as

, ,( ) ( ,) ( )y i j x i j n i j= + (1)

where x(i, j) is the noise-free input image, n(i, j) ~ N(0, σ2)  
is AWGN and y(i, j) is the noisy image observed. We wo-
uld like to obtain an estimate x̂  of the original image, x. 
A relatively simple approach is to convolve (or correlate) 
the noisy image with a lowpass kernel centered at (i, j) in 
spatial domain, i.e,

ˆ *x y h= (2)

where x̂  is the estimate of noise-free image and h is 
the NxN kernel with weights satisfying the general rule: 

 = 1w(i, j)∑ . The simplest weighted averaging filter is the 
average (or smoothing) filter with weights 1/(NxN), 2-D, an 
isotropic (i.e, circularly symmetric) Gaussian filter [14] has 
the form:
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cording to some thresholding rules. Finally, the image is 
reconstructed from the updated wavelet coefficients by 
performing inverse wavelet transform. Generally, there 
are two thresholding rules: hard-thresholding and soft-
thresholding. In hard-thresholding, wavelet coefficients 
that are smaller than or equal to the threshold value T are 
set to zero and the others are kept:

0,
( )

,H
x T

T x
x otherwise

 ≤
= 


(9)

On the other hand, in soft thresholding, wavelet coeffici-
ents that are larger than the threshold value are shrunk 
towards to zero by a factor of  T:

0,
( )

( ).( ),
x T

Ts x
sign x x T otherwise
 ≤=  −

    (10)

Thus, we refer to this latter procedure as the wavelet 
shrinkage. Here, the signum function sign(.) preserves the 
sign of the wavelet coefficients.

Block-Matching and 3-D Filtering (BM3D)

BM3D is essentially based on Wiener filtering. BM3D 
clusters the 2-D noisy image patches or blocks that have 
similar local structures into stacked 3-D groups. Then, a 
higher dimensional filtering called collaborative filtering 
is applied to exploit potential similarity between groups. 
Collaborative filtering reveals the fine details in 3-D gro-
ups and preserves the unique features of each group. This 
filtering operation is realized in three successive steps: 
3-D transform of the group, shrinkage of the transform 
spectrum and the inverse 3-D transform. 3-D transform 
includes the 2-D transform within a group such as DCT 
or wavelets and the 1-D transform across groups such as 

Haar wavelet. Shrinkage by hard-thresholding or wiener 
filtering is employed to attenuate noise in transform do-
main. Finally, estimates of grouped fragments are produ-
ced by inverting from the transform domain.

Evaluation Criteria

In order to evaluate the performance of the denoising al-
gorithms, we have used two quality metrics: Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index 
Measure (SSIM) [18]. Given a reference image x, the 
PSNR of the denoised image x̂  is defined as:

2

10 2
255ˆ( , ) 10

ˆ
PSNR x x log

x x

 
 =
 − 

(11)

where 2.  is the l2 –norm distance between two images 
and the SSIM of the image is given by:

ˆ ˆ1 xx 2
2 2 2 2
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where ˆ,x xµ µ  are the means and 2 2
ˆ,x xσ σ  are the variances 

of the images x  and x̂ , respectively, and ˆxxσ  is the cova-
riance of the images. Here, the constant parameters C1 
and C2 are inserted to stabilize the result in the case that 
one of the denominator operands is very close to zero.

PSNR metric is merely used for compatibility. SSIM is 
proven to better represent the image quality [19]. For this re-
ason, we only consider SSIM metric in experimental studies.

RESULTS AND DISCUSSION

For benchmarking purposes, we utilize nine well-known 
images of size 256-by-256 and 512-by-512 pixels from 

Figure 1. A sample image ‘Barbara’ and 2-D wavelet decomposition of the image. From top left to bottom right: LL, LH,HL, and HH (detail) subbands.
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image set as shown in Fig.2. Images were chosen to rep-
resent a categorical set, i.e., human, nature, and textural. 
AWGN is added to reference images ranging from stan-
dard deviation (std) σ=5 to σ=100 with increments of 5 
std units.

Robustness

Wiener Filter

In wiener filtering, for a moderate noise level σ = 25, the 
images were filtered by a NxN kernel ranging from 3 to 
13. The results are given in Fig.3. As it can be observed,
the optimal wiener filter size was found as 7x7.

By increasing noise standard deviation σ = 5 to σ = 100 
with 5 units, we denoised the images and superimposed the 
all results as shown in Fig. 4. It is seen that SSIM value is aro-
und 0.73 in σ = 5 case and decreases monotonically towards 
0.35 when σ is increased up to 100. It is evident that Wiener 
filtering is not robust to noise.

Wavelet Hard Threshold

We set up the threshold level to its default value thr = 
0.1 and choose a base level of decomposition L =1. The 
obtained SSIM values for haar wavelet, dual-tree wavelet 
and double density dual-tree complex wavelet (dddtcwt) 
[20,21] are 0.289649, 0.320354, and 0.589060, respectively. 

Figure 2. Montage of benchmarking images used in the experiments. From left to right and top to bottom: (a) Lena (b) Goldhill (c) Boats (d) Mandrill 
(e) Cameraman (f) Barbara (g) House (h) Livingroom (i) Pirate.

Figure 3. Filter size vs. SSIM value in Wiener filtering. Figure 4. Robustness of Wiener filter (Average is denoted by red curve).
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dddtcwt improves the image quality tremendously com-
pared with haar and dual-tree wavelets. Concurrently, 
we measure the computational burdens of the wavelet 
types. The average run-time performances are 0.077567, 
0.123712, and 0. 0.359911 seconds, respectively, As one 
would expect, dddtcwt comes with extra computational 
time which is nearly five times haar wavelet to offer this 
improved image quality. By setting the wavelet type to 
dddtcwt, we increase the threshold level from its default 
value 0.1 with increments 0.01 up to 0.3 and L = 1 to L=5. 
The more level of decomposition bring out much compu-
tational burden. We searched for the optimum values of 
these parameters and we give the heat map obtained in 
Fig. 5. It is interesting to note that better SSIM scores are 
obtained at L=2. The figure demonstrates that as the level 
of decomposition increases, less peak SSIM scores are ob-
tained. The performance of the algorithm decreases after 
the decomposition level 2 and saturates after the decom-
position level 4. The best SSIM score was achieved at the 
threshold 0.16 and decomposition level 2 which is 0.7896.

Wavelet Soft Threshold

The same procedure was applied for wavelet soft thres-
holding method. We give the heat map in Fig. 6. As in 
hard thresholding case, better SSIM scores are obtained 
at L=2. As the figure demonstrates the performance of 
the algorithm decreases sharper than hard thresholding 
after the decomposition level 2. The best SSIM score was 
achieved at the threshold 0.10 and decomposition level 2 
which is 0.7854.

By increasing noise standard deviation σ = 5 to σ = 100 
with 5 units, we denoised the images and superimposed the 
results of hard and soft thresholding together as shown in 
Fig. 7 and Fig. 8. Up to around σ = 30, the image qualities 
of both methods are comparable. After σ = 30, the per-
formances of both methods decrease sharply though soft 
thresholding gets better SSIM scores. After σ = 50 for hard 
thresholding and σ = 60 for soft thresholding, it is seen that 
the image qualities of both methods becomes worse than 
Wiener filtering.

Figure 5. Heat map for optimum values of threshold and level of de-
composition for wavelet hard thresholding.

Figure 6. Heat map for optimum values of threshold and level of de-
composition for wavelet hard thresholding.

Figure 7. Robustness of wavelet hard thresholding.

Figure 8. Robustness of wavelet hard thresholding.
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NLM

In NLM method, as aforementioned two windows are 
used: patch window and search window. Patch window 
indicates the neighborhood of the corresponding pixel 
for weight computations. On the other hand, search win-
dow indicates the area wherein similar patches will be 
searched. In original NLM algorithm, a patch window of 
the size 7x7 and a search window of the size 21x21 are 
chosen. But, the search paradigm and suggested values 
are not suitable for real-world image denoising operati-
ons. The original algorithm lasts in time amounts of tens 
of seconds not milliseconds to complete the denoising 
task. So, in this study, we preferred to use fast NLM app-
roach [22,23]. The degree of filtering h used in weight 
computation was chosen as 10 * σ as suggested. As the 
size of search window increases, the method brings out 
more computational burden. By varying the patch size in 
the range 3 to 7 and the window size in the range 7 to 21, 
we searched for the optimum values of these parameters 
and obtained the heat map presented in Fig. 9. The figure 
shows that with a fixed patch size as the window size inc-

reases the SSIM scores slightly decreases. Also, with a fi-
xed window size as the patch size increases the SSIM sco-
res slightly increases. Thus, we obtained the best SSIM 
score with a patch and window size of 7, which is 0.7824.

Fig.10 shows the robustness curve of NLM method. 
After σ = 25, the performance of the method decreases evi-
dently.

BM3D

It is a well-known fact in very low SNR values, the perfor-
mance of the BM3D method in terms of image quality de-
teriorates sharply. There is a quality/complexity trade-off 
profile selection key in the implementation of the method 
[24]. Thus, when implementing the BM3D method, we 
have selected normal profile for balanced quality/comp-
lexity. Fig. 11 shows the robustness curve of the method. 
Although it is observed that the performance decreases 
slowly, the method is also more robust against noise in-
terference than the prior methods.

Figure 9. Heat map for optimum values of window size and patch size.

Figure 10. Robustness of the NLM.

Figure 11. Robustness curve of BM3D.

Figure 12. Average robustness of the methods.
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Denoised Image Quality

Fig. 12 shows the robustness of the methods together ave-
raged over the benchmarking images. As it is observed, 
BM3D is the most robust method against noise interfe-
rence. But, at moderate noise levels up to σ = 30, NLM is 
more robust than BM3D. Moreover, at low noise levels up 
to σ = 15, Wiener filter performs better BM3D. After σ = 
30, the performances of four methods other than BM3D 

decrease more sharply. It is also interesting to note that 
Wiener filter performs better than wavelet and NLM 
methods at moderate and high noise levels after σ = 35.

Fig. 13 and Fig.14 show denoised sample ‘Lena’ images 
by Wiener, Wavelet soft thresholding, NLM, and BM3D 
methods in σ = 20 (low-moderate levels of noise) and σ = 50 
(moderate-high levels of noise) cases, respectively.

Figure 13. Denoised Lena images (σ = 20) (a) Original Lena image (b) Noisy (c) Wiener (d) Wavelet soft thresholding (e) NLM (f) BM3D.

Figure 14. Denoised Lena images (σ = 50) (a) Original Lena image (b) Noisy (c) Wiener (d) Wavelet soft thresholding (e) NLM (f) BM3D.
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Average denoised image quality for each method is cal-
culated by averaging the SSIM values obtained at each σ va-
lue of noise interference in the robustness curves over the N 
benchmarking images. Let the iSSIMσ  denote the SSIM va-
lue of  the ith image in the dataset obtained at the σ standard 
deviation of noise interference. Then the average denoised 
image quality, DIQ is given as:

20

5
1 1

1 / 20
i N

i
Method

i
DIQ SSIM

N

σ

σ
σ

= =

= =

= ∑ ∑               (13)

Table 1 shows DIQ scores of the methods. As one wo-
uld expect, although soft thresholding gets more high deno-
ising score, the performances of both wavelet thresholding 
methods are quite similar. The denoising score of Wiener 
filter is remarkable which is higher than the remaining 
three methods except BM3D.

Computation Time

For a sample image, Table 2 gives the computation times 
of sizes 256x256 and 512 x512 or when the size is doub-
led. Experiments were carried out in MATLAB R2018 
environment on an Intel Core i5-6200U CPU @ 2.3 GHz 
computer with 8 GB RAM. The experiments were repeated 
a hundred times and averaged. If the first case is examined, 
it can be deduced that Wiener filter is approximately 20x 
(20 times) faster than Wavelet-based methods, 120x faster 
than NLM method, and 150x faster than BM3D method. It 
is observed that NLM and BM3D methods are quite slow 
with respect to Wiener filter and Wavelet-based methods.

In the second case, when the image size is doubled, this 
would ideally give 4x extra computational burden. From the 
computation times it can be deduced that Wiener, Wavelet, 
and BM3D methods keep their computational burdens in 
this case. But, NLM cannot keep its computational burden 
in which case yields 6x extra computational burden.

Fig. 15 shows the DIQ values versus computation times 
of the respective methods for images of the size 256x256.  
Optimal algorithms are supposed to have less computatio-
nal times and at the same time high DIQ scores. According 

to the figure, Wiener filter satisfies this criterion as much as 
possible. In this respect, it is observed that NLM is far away 
from satisfying this criterion.

CONCLUSION

In time-constrained blind image denoising operations, 
both image quality and computational burden are impor-
tant factors. Also, denoising algorithms must be robust to 
varying noise interference. Due to this, an optimal per-
formance is desired. In this study, we have derived the 
robustness, image quality, and computational time effi-
ciencies of the image denoising algorithms employed for 
these goals. From the experimental works, we can conc-
lude that up to moderate noise levels, i.e. σ = 30, NLM is 
superior to other denoising algorithms, namely, Wiener, 
Wavelet-based and BMD methods. At high noise levels, 
especially higher than σ = 50, BM3D performs best in 
terms of image quality. It is interesting to note that Wi-
ener filter also performs better from Wavelet-based and 
NLM methods in high noise levels. When the computati-
on times are considered, Wiener filter is far away efficient 
from the other algorithms. Especially, NLM and BM3D 
methods are approximately 120x ~ 150x slower than the 
Wiener filter. We can deduce that under low-moderate 
noise levels, if the image quality is more important 
than the computation time NLM can be chosen. Under 
moderate-high noise levels, if the same goals are required, 
BM3D is the selection. But, for optimality, Wiener filter 
is the figure of merit and is considered to satisfy both cri-
terions as much as possible.
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Table 1. DIQ scores of the methods.

Wiener Wavelet H Wavelet S NLM BM3D

0.5327 0.3795 0.4230 0.3811 0.6523 

Table 2. Average computational burdens of the methods (in terms of 
seconds)

Image 
size Wiener Wavelet H Wavelet S NLM BM3D

256x256 0.0052 0.1081 0.1051 0.6479 0.7863

512x512 0.0181 0.4479 0.4027 3.7751 3.3097

Figure 15.  DIQ values versus computation times of the corresponding 
methods.
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