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Abstract 

In this study multifractal properties of S&P 500 sector indexes are investigated with Multifractal Detrended 
Fluctuation Analysis (MF-DFA). The MF-DFA is a signal processing technique that is used to describe the 
multifractal properties of a time series data. It is an extension of Detrended Fluctuation Analysis (DFA), which is 
a widely utilized method for estimating the scaling behavior of a time series. Main idea behind MF-DFA is to 
decompose a time series into multiple scales using a coarse-graining procedure, and then to estimate the scaling 
behavior of each scale using DFA. This gives a set of scaling exponents that describe the multifractal features of 
the time series. Our MF-DFA results indicates the presence of multifractality in all S&P 500 sector indexes. Since 
these indexes are multifractal, we can conclude that they possess properties such as scaling variability, nonlinear 
dynamics, self-similarity, long-range dependence, multiscale correlations and nonstationary. 
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Öz 

Bu çalışmada S&P 500 sektör endekslerinin çoklu fraktal özellikleri Çoklu Fraktal Eğilimden Arındırılmış 
Dalgalanma Analizi (ÇF-EADA) ile incelenmiştir. ÇF-EADA zaman serisi verilerinin çoklu fraktal özelliklerini tarif 
etmek için kullanılan bir sinyal işleme tekniğidir. Bu yöntem zaman serilerinin ölçekleme davranışını tahmin 
etmek için kullanılan Eğilimden Arındırılmış Dalgalanma Analizi (EADA) yönteminin bir uzantısıdır. ÇF-EADA 
yönteminin arkasında yatan temel fikir bir zaman serisini kaba ölçekli bir işlem kullanarak birden fazla ölçeğe 
ayırmak ve ardından EADA yöntemiyle her ölçeğin ölçeklenme davranışını tahmin etmektir. Bu, zaman serilerinin 
çok fraktal özelliklerini tanımlayan bir dizi ölçeklendirme üssü verir. ÇF-EADA sonuçlarımız, tüm S&P 500 sektör 
endekslerinde çoklu fraktalitenin varlığını göstermektedir. Bu indeksler çoklu fraktal olduğundan, ölçekleme 
değişkenliği, doğrusal olmayan dinamikler, kendine benzerlik, uzun menzilli bağımlılık, çok ölçekli korelasyonlar 
ve durağan olmama gibi özelliklere sahip oldukları sonucuna varabiliriz. 
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1. Introduction 

The efficient market hypothesis (EMH), which is suggested by Fama (1970), is a theory that 
asserts that financial markets are efficient in that they fully and immediately incorporate all 
publicly available information into asset prices. In other words, the market price of an asset 
reflects all information that is currently known about that asset, and it is impossible to 
consistently achieve returns that are higher than the market average by using information that 
is already publicly available. However, EMH is criticized in the literature (Malkiel, 2003; Degutis 
& Novickytė, 2014; Ying et al., 2019) and it is shown that some financial markets cannot be 
explained by EMH. Fractal theory, which is firstly proposed by Mandelbrot (1982), can be used 
to explain financial markets. Fractal theory is a field of mathematics work on complex and 
irregular shapes, which can be found in many natural and man-made systems. Fractals are 
geometric structures that display self-similarity and exhibit same structure at different scales. 
Fractal geometry was initially used to describe irregular patterns and shapes in nature, such 
as the branching of trees, the distribution of galaxies, and the contours of coastlines. However, 
fractal theory has since been applied to many other fields, including economics, physics, and 
computer graphics. Fractal theory has many practical applications, including in the design of 
computer graphics, the study of financial markets, and the analysis of natural phenomena 
such as earthquakes and weather patterns (Makletsov et al., 2019; Duan et al., 2021; Wang et 
al., 2021). 

Originally Hurst (1951, 1957) suggested rescaled range (R/S) analysis to analyze fractal systems 
in the hydrology. Rescaled range (R/S) analysis utilized to study the fractal properties of time 
series data. R/S analysis involves calculating the range of a time series over distinct time scales, 
and then rescaling this range to account for the size of the time scale. The R/S statistic is 
calculated specifically by splitting the time series data's range by its standard deviation. The 
R/S statistic is then plotted against the time scale on a log-log scale, and the slope of the 
resulting line is used to compute the Hurst exponent. Long term persistency of a time series 
can be evaluated by the Hurst exponent. A Hurst exponent value of 0.5 implies that the time 
series is uncorrelated and random, while values greater than 0.5 imply positive 
autocorrelation, and values less than 0.5 imply negative autocorrelation. R/S analysis has been 
successfully applied in the fields such as finance, hydrology, geology, and climate science, to 
study the properties of time series data (Outcalt et al., 1997; Gilmore et al., 2002; Resta, 2012; 
Raimundo & Okamoto Jr, 2018). It is particularly useful for studying phenomena that exhibit 
self-similarity or long-term memory, such as stock prices, river flows, and weather patterns.  

However, Lo (1991) subsequently showed the shortcomings of R/S analysis such as sensitivity 
to short-term autocorrelation. To avoid these shortcomings Peng et al. (1994) suggested a 
method called Detrended Fluctuation Analysis (DFA). DFA is like R/S analysis in that it is used 
to evaluate the long-term persistence in a time series, but it differs in its approach to 
detrending the data. In DFA, the time series is first split into equal-sized segments, and each 
section is then fitted with a polynomial trend line. The trend line is then subtracted from the 
data, leaving only the fluctuations around the trend. The root mean square deviation of these 
fluctuations is then calculated over different time scales, and the results are plotted on a 
logarithm-logarithm scale. The slope of the resulting line is used to calculate the scaling 
exponent, which reflects the long-term persistence in the time series. Like R/S analysis, DFA 
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applied in various of fields like finance, neuroscience, and geophysics, to study the properties 
of time series data (Ivanova & Ausloos, 1999; Talkner & Weber, 2000; Kurnaz, 2004; De Moura 
et al., 2009; Kuznetsov & Rhea, 2017). It is particularly useful for analyzing non-stationary time 
series, where the statistical characteristics of the data change over time. DFA can help identify 
long-range correlations in the data that are not easily captured by traditional statistical 
methods. 

It was later revealed that the data encountered in many fields did not show monofractal 
scaling behavior. Since such systems cannot be expressed with a single scaling coefficient, 
these systems are called multifractal. To analyze such multifractal systems Multifractal 
Detrended Fluctuation Analysis (MF-DFA) method was suggested by Kantelhardt et al. (2002). 
MF-DFA is an extension of DFA, which is a widely utilized technique for studying the scaling 
characteristics of a time series. The basic idea of MF-DFA is to divide a time series into non-
overlapping segments with same length and then calculate the local fluctuation of the data 
within each segment after removing the local trend by detrending. The detrending procedure 
involves fitting a polynomial function of a certain order to each segment and subtracting it 
from the data. Once the local fluctuation of the data has been calculated for each segment, 
the scaling exponent is estimated for each scale by using a weighted least-squares regression 
method. The scaling exponent at each scale is then used to estimate the singularity spectrum. 
The singularity spectrum provides a way to describe the multifractal features of the time 
series, including the degree of heterogeneity and the degree of self-similarity at different 
scales. A time series with a broad singularity spectrum is said to be highly multifractal and a 
time series with a narrow singularity spectrum is said to be less multifractal. MF-DFA has been 
used in many applications, including in the analysis of financial markets, where it has been 
used to study the multifractal properties of stock returns, volatility, and trading volume (Cao 
et al., 2013; Rizvi et al., 2014; Stošić et al., 2015; Mensi et al., 2017; Shahzad et al., 2017; Ali 
et al., 2018; Mensi et al., 2018; Ruan et al., 2018; Zhu & Zhang, 2018; Tiwari et al., 2019; Milos 
et al., 2020). 

Multifractal time series have several key properties: 

Scaling Variability: Multifractal time series exhibit scaling variability, meaning that the 
statistical characteristics of the data change at different scales or resolutions. 

Nonlinear Dynamics: Multifractal time series are often generated by nonlinear systems with 
complex dynamics. The nonlinear nature of these systems can give rise to long-term 
correlations, non-Gaussian distributions, and other statistical properties that are not observed 
in linear systems. 

Self-Similarity: Although multifractal time series exhibit scaling variability, they also display 
some degree of self-similarity. This means that the statistical characteristics of the data are 
similar across different scales, albeit with different scaling exponents. 

Long-Range Dependence: Multifractal time series often exhibit long-range dependence, 
meaning that the autocorrelation function decays slowly over time. This property can have 
important implications for forecasting and risk management. 
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Multiscale Correlations: Multifractal time series exhibit correlations at multiple scales or 
resolutions. These correlations can be positive or negative and can be characterized by a 
multifractal correlation function. 

Nonstationarity: Multifractal time series are typically nonstationary, meaning that the 
statistical characteristics of the data vary over time. This nonstationarity can be caused by 
changes in the underlying dynamics of the system or by external factors that affect the time 
series. 

In this study multifractality and efficiency of the S&P 500 sector indexes are investigated by 
using MF-DFA. The investigation of multifractality in financial time series is a subject of interest 
for researchers and practitioners due to several important reasons. Our motivations for 
investigating the multifractality in S&P 500 sector indexes are listed below: 

a) Capturing Complexity: Financial markets are highly complex systems with various agents 
and factors influencing their behavior. Traditional linear models often fail to fully capture the 
intricate dynamics present in financial data. Multifractal analysis allows researchers to explore 
and model this complexity better. 

b) Non-Stationarity: Financial time series often exhibit non-stationary behavior, meaning their 
statistical properties change over time. Multifractal analysis helps to characterize this varying 
behavior and provides insights into the underlying mechanisms driving the changes. 

c) Risk Management: Understanding the multifractal nature of financial data can have 
significant implications for risk management. It helps to identify periods of increased market 
risk or instability, which can be crucial for investors, traders, and financial institutions. 

d) Market Efficiency and Anomalies: Studying multifractality can shed light on the efficiency of 
financial markets and the presence of anomalies. If certain time series exhibit strong 
multifractal properties, it may indicate inefficiencies that could be exploited for profit or that 
market participants should be cautious about. 

e) Portfolio Diversification: Multifractal analysis can also be used to assess the diversification 
potential of different assets in a portfolio. Understanding how different assets' multifractal 
properties interact with each other can provide valuable insights into portfolio risk and 
performance. 

f) Modeling and Prediction: Multifractal analysis can lead to the development of more 
accurate and robust models for financial time series. These models may provide better 
predictions of market movements and assist in making more informed investment decisions. 

g) Market Microstructure: Studying multifractality can reveal underlying characteristics of 
market microstructure, such as trading patterns and liquidity dynamics, which can be essential 
for understanding market behavior. 

h) Behavioral Finance: The multifractal approach can help researchers explore the 
psychological and behavioral aspects of financial markets, as it provides a more 
comprehensive view of market dynamics beyond traditional linear methods. 
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In summary, investigating the multifractality of financial time series is essential for gaining a 
deeper understanding of market behavior, improving risk management strategies, enhancing 
prediction models, and advancing the overall knowledge of complex financial systems. 

In this study also market efficiencies of the S&P 500 sector indexes are investigated. The 
investigation of market efficiency is essential for several reasons as it provides valuable 
insights into the functioning and behavior of financial markets. Our motivations for 
investigating the market efficiencies of S&P 500 sector indexes are listed below: 

a) Resource Allocation: Efficient markets are believed to allocate resources more effectively. 
In an efficient market, prices quickly adjust to new information, reflecting the true underlying 
value of assets. This facilitates better allocation of capital, promoting investments in 
productive and profitable ventures. 

b) Investment Decisions: Understanding market efficiency is crucial for investors when making 
investment decisions. If a market is highly efficient, it becomes challenging to consistently 
outperform the market through stock picking or timing strategies, as asset prices already 
incorporate all available information. 

c) Price Discovery: Efficient markets are better at discovering the true prices of assets. Market 
participants continuously incorporate new information into asset prices, leading to more 
accurate valuations. 

d) Market Integrity: Market efficiency is linked to market integrity. In efficient markets, there 
is less room for price manipulation or insider trading, as prices rapidly adjust to new 
information. 

e) Risk Management: An understanding of market efficiency is essential for risk management. 
Inefficient markets may be subject to greater price volatility, making risk assessment and 
hedging more challenging. 

f) Financial Stability: Efficient markets contribute to financial stability as asset prices reflect 
relevant information, reducing the likelihood of price bubbles or crashes based on 
misinformation or speculative behavior. 

g) Market Regulation: Regulatory authorities investigate market efficiency to ensure fair and 
transparent markets. By understanding market efficiency, regulators can identify potential 
areas of concern and implement appropriate measures to maintain market integrity. 

h) Academic Research: Market efficiency has been a significant subject of research in finance 
and economics. Understanding the efficiency of different markets helps academics develop 
theories and models that explain market behavior and dynamics. 

i) Behavioral Finance: Investigating market efficiency allows researchers to explore deviations 
from efficiency, leading to insights into behavioral biases and irrational investor behavior that 
might affect asset pricing. 

j) Portfolio Management: Market efficiency affects portfolio management strategies. In 
efficient markets, passive investment strategies like index funds become more popular, while 
in inefficient markets, active management might offer opportunities for outperformance. 
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In summary, investigating market efficiency is crucial for various stakeholders, including 
investors, regulators, academics, and financial institutions. It provides valuable information 
about market functioning, influences investment decisions, and helps maintain market 
integrity and stability. Understanding market efficiency is an ongoing endeavor, and research 
in this area continues to evolve as markets and financial instruments change and adapt over 
time. 

Our paper is structured as follows: In section two literature is reviewed. In section three 
methodology is presented. In section four data are described. In section five empirical results 
are given. Finally, section six concludes the study. 

 

2. Literature Review 

Rizvi et al. (2014) investigated market efficiencies of 22 stock market indexes belong to 
developed and Islamic countries by utilizing MF-DFA methodology. They indicated that level 
of market development is connected with the market efficiency and higher development 
corresponds to higher efficiency. Milos et al. (2020) realized a comparative investigation of 
the multifractal features of seven Eastern and Central European stock markets by utilizing MF-
DFA. They detected multifractality in these markets and concluded that these stock markets 
are not efficient and mature. By utilizing asymmetric multifractal detrended fluctuation 
analysis Cao et al. (2013) investigated multifractal properties of Chinese stock markets. They 
detected multifractality in these stock markets an found multifractality degree is higher in the 
uptrends than downtrends. Mensi et al. (2017) investigated efficiencies of Islamic stock 
markets by using ten sectoral stock indexes. By utilizing MF-DFA authors demonstrated time-
varying efficiency in these indexes. In the long term they detected high efficiency and in the 
short term they detected moderate efficiency. They also found that efficiency decreases after 
the beginning of the global financial crisis. Zhu and Zhang (2018) explored multifractal 
properties of Chinese stock market by using MF-DFA. They detected multifractal behavior in 
this market. They showed that multifractality is connected to the weighing order. Mensi et al. 
(2018) investigated efficiencies of five Gulf Council Cooperation (GCC) stock markets by 
utilizing MF-DFA. They demonstrated multifractality in the returns of these stock markets. 
They discovered persistence that varies over time and is more pronounced in the short term 
than the long term. Also, they showed efficiencies of GCC stock markets are less than regional 
and Islamic markets. Shahzad et al. (2017) analyzed power law features of eleven US stock and 
credit markets by using MF-DFA. They established that CDS markets exhibit lower levels of 
efficiency than stock markets. Also, they found that Financial and Banks credit markets possess 
highest efficiency and Basic Materials markets possess lowest efficiency. By using MF-DFA, 
Stošić et al. (2015) investigated auto-correlations in the changes of prices and volumes for 
thirteen global stock market indexes. They found different multifractal properties in the 
changes of prices and volumes. They demonstrated that price changes possess higher 
complexity than volume changes. Ali et al. (2018) compared the efficiencies of twelve 
conventional and Islamic stock markets by utilizing MF-DFA. They demonstrated that the 
equity markets in developed countries are more efficient than those in the BRICS. Additionally, 
they discovered that Islamic stock markets outperform their traditional peers in terms of 



 
 

Ünal, B. (2023). Fractal Analysis of S&P 500 Sector Indexes. 
Fiscaoeconomia, 7(3), 2128-2148. Doi: 10.25295/fsecon.1303067 

2134 
 

efficiency. By utilizing MF-DFA, Ruan et al. (2018) demonstrated the multifractal behaviors of 
Hong Kong and Shanghai stock markets. They also showed that after the Connect Program 
efficiency of Shanghai stock market increased. Utilizing MF-DFA, Tiwari et al. (2019) looked 
into the multifractality and efficiency of stock markets in eight established and two emerging 
countries. Authors showed that considered stock markets possess multifractal and persistent 
properties. Also, they found that most markets possess higher efficiencies in the long-term. 

 

3. Methodology 

MF-DFA consists of several steps. Let’s assume that 𝑥௧ is a time series with 𝑡 = 1,2, … , 𝑁. 

1. Step: Compute profile with the following formula: 

𝑋௜ = ෍(𝑥௧ − �̅�)

௜

௧ୀଵ

 (1) 

In the above formula �̅� denotes the mean of the observations and computed with the 
following formula: 

�̅� =
1

𝑁
෍ 𝑥௧

ே

௧ୀଵ

 (2) 

2. Step: Divide the profile into non-overlapping windows of equal size of 𝑠. By this division 
𝑁௦ = 𝑖𝑛𝑡(𝑁/𝑠) non-overlapping segments are obtained. There might be a little residue at the 
conclusion of the profile since the length of the series 𝑥௧ might not be multiple of the time 
scale 𝑠. The identical process used at the end of the series was repeated in order to account 
for this residue. By this calculation 2𝑁௦ segments are acquired. 

3. Step: Compute variances by using following formulas for the segments 𝑣 = 1,2, … , 𝑁௦ and 
𝑣 = 𝑁௦ + 1, 𝑁௦ + 2, … , 2𝑁௦. 

𝐹௑
ଶ(𝑠, 𝑣) =

1

𝑠
෍[𝑋(௩ିଵ)௦ା௝ − 𝑋෠௝

௩]ଶ

௦

௝ୀଵ

 (3) 

𝐹௑
ଶ(𝑠, 𝑣) =

1

𝑠
෍[𝑋ேି(௩ିேೞ)௦ା௝ − 𝑋෠௝

௩]ଶ

௦

௝ୀଵ

 (4) 

In the formulas above 𝑋෠௝
௩ shows a polynomial of order 𝑚 that fits the section 𝑣. 

4. Step: Compute fluctuation function 𝐹௑
௤

(𝑠) with the formulas below for 𝑞 ≠ 0 and 𝑞 = 0. 

𝐹௑
௤(𝑠) = ቐ

1

2𝑁௦
෍[𝐹௑

ଶ(𝑠, 𝑣)]௤ ଶ⁄

ଶேೞ

௩ୀଵ

ቑ

ଵ ௤⁄

 (5) 
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𝐹௑
௤(𝑠) = 𝑒𝑥𝑝 ቐ

1

4𝑁௦
෍[𝐹௑

ଶ(𝑠, 𝑣)]

ଶேೞ

௩ୀଵ

ቑ (6) 

5. Step: Create a log-log plot between 𝐹௑
௤(𝑠) and 𝑠 for each value of 𝑞. If there is a linear 

relationship between these variables create a power-law relationship denoted with the 
following formula: 

𝐹௑
௤(𝑠)~𝑠௛(௤) (7) 

In the equation above ℎ(𝑞) denotes generalized Hurst exponent which measures power-law 
auto correlation. In monofractal time series ℎ(𝑞) do not vary with 𝑞. However, for multifractal 
time series ℎ(𝑞) varies with 𝑞. Singularity spectrum which is denoted with 𝑓(𝛼) can be utilized 
to characterize a time series. Singularity spectrum is computed with the following formulas: 

𝛼(𝑞) = ℎ(𝑞) + 𝑞ℎ′(𝑞) (8) 

𝑓(𝛼) = 𝑞[𝛼(𝑞) − ℎ(𝑞)] + 1 (9) 

In the formula above ℎ′(𝑞) indicates the derivative of ℎ(𝑞) according to 𝑞. The Hölder 
exponent 𝛼(𝑞) measures the singularity's strength, while the singularity spectrum 𝑓(𝛼) 
measures the Hausdorff dimension of the time series which is described by 𝛼(𝑞). The 
calculation of the mass function 𝜏(𝑞) is as follows: 

𝜏(𝑞) = 𝑞ℎ(𝑞) − 1 (10) 

Degree of multifractality can be measured by multifractal spectrum (∆𝛼) which can be 
calculated as below: 

∆𝛼 = 𝛼௠௔௫ − 𝛼௠௜௡ (11) 

Value of ∆𝛼 reflects the strength of the multifractality and a high ∆𝛼 value implies high 
multifractality degree and a low ∆𝛼 value implies low multifractality. Also ∆ℎ value defined 
below can be used to measure the degree of multifractality. 

∆ℎ = maximum(ℎ(𝑞) ) − minimum(ℎ(𝑞) ) (12) 

Similar to the ∆𝛼, a high ∆ℎ value implies high multifractality degree and a low ∆ℎ value 
implies low multifractality. The skewness of the spectrum provides details on the main 
fluctuations. Right-skewed spectrum suggests that minor variations will predominate, while 
left-skewed spectrum suggests that huge fluctuations will. 

 

4. Data 

In this study S&P 500’s sector indexes’ daily closing prices of data are used. The data cover the 
period between 8th May 2003 and 7th February 2023 and contain 4960 observations. Data 
are obtained from the https://tr.investing.com/ web site. Before the analyses differences of 
logarithms of the data are taken with the following formula: 

𝑟௧ = ln(𝑃௧ିଵ) − ln(𝑃௧) (13) 

List and the explanations of the used sector indexes are given in the Table 1. 
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5. Empirical Results 

To apply MF-DFA to a time series firstly three parameters must be determined. These 
parameters are vector of scales (𝑠), q-order of the moments (𝑞) and polynomial order for the 
detrending (𝑚). In this study scales values are selected from 10 to 1240 in steps of 20, q-order 
of the moment values are selected from -10 to +10 in steps of 1 and polynomial order for the 
detrending is selected as 1. Plots obtained from MF-DFA of each sector index are presented in 
Figure 1-11. In the upper right panels of the Figures log-log plots between time scale and 
fluctuation function are plotted for q=-10 (in black), q=0 (in red) and q=10 (in green). In all 
figures it is seen that there are linear relationships between logarithms of time scales and 
fluctuation functions. This indicates the presence of power-law cross-correlations between 
time scales and fluctuation functions. In these panels slopes of the fitted lines indicates 
generalized Hurst exponents for q=-10, q=0 and q=10. As revealed in these panels fitted lines 
have different slopes and depends on q values. This implies multifractality in sector index time 
series. This situation is seen more clearly in the upper right panels of the figures. In these 
panels relationship between q-order of the moments versus generalized Hurst exponents ℎ௤ 
are plotted. As seen in all Figures generalized Hurst exponent values depend on q values and 
these are evidences of multifractal behavior in all the time series. The interval between the 
highest generalized Hurst exponent value (ℎିଵ଴) and the lowest generalized Hurst exponent 
value (ℎଵ଴), namely ∆ℎ used to measure the multifractality degree. Higher ∆ℎ implies higher 
multifractality and lower ∆ℎ implies lower multifractality. ∆ℎ values for each sector index are 
presented in Table 2. As seen from this table S&P 500 Energy Index (SPNY) has the highest 
multifractality degree, S&P 500 Materials Index (SPLRCM) has the second highest 
multifractality degree and S&P 500 Utilities Index (SPLRCU) has the third highest 
multifractality degree. Also, S&P 500 Industrials Index (SPLRCI) has the lowest multifractality 
degree, S&P 500 Real Estate Index (SPLRCREC) has second lowest multifractality degree and 
S&P 500 Financials Index (SPSY) has third lowest multifractality degree. Generalized hurst 
exponent for 𝑞 = 2 (ℎଶ) is called the Hurst exponent. The Hurst exponent can be utilized to 
determine how persistent a time series is over the long run. The Hurst exponent can take 
values between zero and one, values close to zero imply anti-persistent or mean-reverting 
behavior, values close to one imply persistent or trend-following behavior, and values around 
0.5 imply a random walk or white noise process. In Table 1 Hurst exponent values for each 
sector are presented. As seen in this table Hurst exponent values for SPSY, SPLRCREC and 
SPLRCI are greater than 0.5 which implies persistent behavior and Hurst exponent values for 
SPLRCS, SPLRCU, SPXHC, SPNY, SPLRCT and SPLRCD are less than 0.5 which implies anti-
persistent behavior. Additionally, Hurst values for SPX and SPLRCM are very close to 0.5 which 
implies random walk and efficient market. Generalized Hurst exponents are also presented in 
Table 3. In the lower right panels of Figure 1-11 relationship between q order moments and 
mass exponents (𝜏(𝑞)) are presented. As seen in these panels there are nonlinear 
relationships between q order moments and mass exponents and this is evidence of 
multifractality in the sector indexes. In the lower right panels of Figure 1-11 multifractal 
spectrums are presented. In these panels width of the multifractal spectrum (∆α) measures 
the multifractality degree and positive ∆α values imply the existence of multifractality. The ∆α 
values for each sector index are presented in Table 1. Looking at the ∆α values in this table, it 
is seen that SPNY has the highest multifractality degree, SPLRCM has the second highest 
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multifractality degree and SPLRCU has the third highest multifractality degree. Also, according 
to the ∆α values SPLRCI has the lowest degree of multifractality, SPLRCREC has second lowest 
degree of multifractality and SPSY has third lowest degree of multifractality. Therefore both 
∆ℎ and ∆α values give the same results for the degree of the multifractality. Additionally, all 
multifractal spectrums in Figure 1-11 exhibits left-skewed spectrum indicate that large 
fluctuations are dominant in all sectors. 

Table 1: Indexes of S&P 500 sectors 

Symbol of the S&P 500 Sector Index Explanation of the Index 
SPLRCD Consumer Discretionary 
SPLRCI Industrials 

SPLRCM Materials 
SPLRCREC Real Estate 

SPLRCS Consumer Staples 
SPLRCT Information Technology 
SPLRCU Utilities 

SPNY Energy 
SPSY Financials 
SPX Whole Index 

SPXHC Health Care 

Figure 1: MF-DFA Results for S&P 500 Consumer Discretionary Index (SPLRCD) 
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Figure 2: MF-DFA Results for S&P 500 Industrials Index (SPLRCI) 

Figure 3: MF-DFA Results for S&P 500 Materials Index (SPLRCM) 
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Figure 4: MF-DFA results for S&P 500 Real Estate Index (SPLRCREC) 

Figure 5: MF-DFA results for S&P 500 Consumer Staples Index (SPLRCS) 
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Figure 6: MF-DFA Results for S&P 500 Information Technology Index (SPLRCT) 

Figure 7: MF-DFA results for S&P 500 Utilities Index (SPLRCU) 
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Figure 8: MF-DFA Results for S&P 500 Energy Index (SPNY) 

Figure 9: MF-DFA Results for S&P 500 Financials Index (SPSY) 
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Figure 10: MF-DFA Results for S&P 500 Index (SPX) 

Figure 11: MF-DFA Results for S&P 500 Health Care Index (SPXHC) 
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Table 2: Multifractal Spectrum (Δα), Interval Between Minimum and Maximum 
Generalized Hurst Exponent (Δh) and Hurst Exponent 

Sector Index Δα Δh Hurst Exponent 
SPLRCD 0.38 0.2387 0.4814 
SPLRCI 0.3288 0.1902 0.5234 

SPLRCM 0.426 0.2667 0.5099 
SPLRCREC 0.3615 0.2049 0.5288 

SPLRCS 0.3743 0.2384 0.4269 
SPLRCT 0.3627 0.2196 0.4780 
SPLRCU 0.3907 0.2422 0.4299 

SPNY 0.4827 0.3207 0.4778 
SPSY 0.3346 0.2059 0.5360 
SPX 0.3543 0.2103 0.5034 

SPXHC 0.3641 0.2291 0.4362 
Table 3: Generalized Hurst exponents 

q SPLRCD SPLRCI SPLRCM SPLRCREC SPLRCS SPLRCT SPLRCU SPNY SPSY SPX SPXHC 
-10 0.5928 0.573 0.6517 0.583 0.533 0.6036 0.5334 0.5859 0.5812 0.582 0.5272 
-9 0.5857 0.5668 0.6427 0.5752 0.5266 0.5962 0.5257 0.579 0.5754 0.5745 0.521 
-8 0.5774 0.5598 0.632 0.5662 0.5193 0.5876 0.517 0.5711 0.569 0.566 0.5139 
-7 0.5678 0.5519 0.6193 0.5557 0.5111 0.5775 0.507 0.5622 0.5619 0.5563 0.5058 
-6 0.5567 0.5433 0.6045 0.5435 0.5019 0.5656 0.4958 0.5523 0.5543 0.5453 0.497 
-5 0.5441 0.5342 0.5876 0.5296 0.4917 0.5519 0.4837 0.5416 0.5468 0.5333 0.4876 
-4 0.5301 0.5253 0.5694 0.5142 0.4808 0.5364 0.4714 0.5308 0.5401 0.5207 0.4784 
-3 0.5156 0.5179 0.5512 0.4981 0.4695 0.5196 0.4595 0.5211 0.5359 0.5086 0.4704 
-2 0.5019 0.5139 0.5351 0.4836 0.4587 0.5029 0.4495 0.5143 0.5363 0.4989 0.4643 
-1 0.4916 0.5153 0.5235 0.4764 0.4498 0.4889 0.4425 0.5111 0.543 0.4943 0.4599 
0 0.4876 0.5225 0.5178 0.4874 0.4433 0.4807 0.4395 0.5092 0.554 0.4977 0.4562 
1 0.4878 0.5292 0.516 0.517 0.4376 0.4788 0.438 0.5011 0.5566 0.5055 0.4498 
2 0.4814 0.5234 0.5099 0.5288 0.4269 0.478 0.4299 0.4778 0.536 0.5034 0.4362 
3 0.4637 0.5029 0.4942 0.5094 0.4074 0.4718 0.4092 0.4387 0.5009 0.4858 0.4143 
4 0.441 0.4771 0.4727 0.4799 0.3833 0.4592 0.3828 0.3954 0.468 0.4614 0.3891 
5 0.4193 0.453 0.4511 0.4529 0.3607 0.4437 0.3588 0.3583 0.4419 0.4382 0.3658 
6 0.4007 0.4329 0.4323 0.4309 0.3417 0.4282 0.3391 0.3294 0.422 0.4188 0.3463 
7 0.3855 0.4164 0.4168 0.4133 0.3263 0.4144 0.3233 0.3072 0.4064 0.4032 0.3304 
8 0.373 0.403 0.4041 0.3992 0.3137 0.4025 0.3105 0.29 0.394 0.3905 0.3175 
9 0.3627 0.392 0.3937 0.3877 0.3033 0.3925 0.3 0.2763 0.3838 0.3802 0.3069 
10 0.3541 0.3828 0.385 0.3781 0.2946 0.384 0.2912 0.2652 0.3753 0.3717 0.2981 

6. Conclusion 

Multifractality refers to the property of a system or signal where different parts exhibit 
different degrees of scaling behavior, as characterized by their fractal dimension. One 
important conclusion that can be drawn about multifractality is that it is often observed in 
complex systems and signals that exhibit self-similarity at multiple scales. These systems and 
signals are typically characterized by a high degree of variability and heterogeneity, which can 
make it difficult to capture their properties using traditional methods such as ARIMA. In this 
study we investigated multifractality in the S&P 500 sector indexes by using MF-DFA 
methodology. Our analysis express multifractality in all the sector indexes. Since all the sector 
indexes possess multifractality, we can conclude that these indexes possess the key properties 
such as scaling variability, nonlinear dynamics, self-similarity, long-range dependence, 
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multiscale correlations and nonstationarity. Another important conclusion that can be drawn 
is that multifractal properties can have important implications for the dynamics and behavior 
of complex systems. In finance, multifractal properties have been linked to market crashes 
and other extreme events. Overall, multifractality is a useful concept for analyzing and 
apprehending the complex scaling properties of systems and signals, and can shed light on the 
processes and behavior of these systems at their core.  

The results obtained from our analysis indicate that the SPX and SPLRCM markets are efficient. 
Market efficiency implies several key characteristics and outcomes for a market. These 
implications are essential for investors, regulators, and other market participants to 
understand how the market functions and what to expect. Here are the main implications of 
market efficiency: 

a) Quick Price Adjustments: In an efficient market, prices rapidly adjust to new information. 
This means that any relevant news, data, or events that affect an asset's value will be quickly 
incorporated into its price. As a result, it becomes challenging for investors to consistently 
earn abnormal returns based on publicly available information. 

b) Random Price Movements: Market efficiency implies that asset prices follow a random walk 
or a sequence of unpredictable movements. Price changes are not systematically predictable, 
and any past price patterns or trends cannot be reliably used to forecast future price 
movements. 

c) Fair Value: Efficient markets are believed to accurately reflect the fair value of assets. Prices 
reflect all available information, making it difficult for an asset to be significantly undervalued 
or overvalued in the long term. 

d) Limited Arbitrage Opportunities: Market efficiency reduces the presence of arbitrage 
opportunities. Arbitrage involves exploiting price discrepancies between related assets, but in 
an efficient market, such opportunities are short-lived and quickly eliminated. 

e) Active vs. Passive Investing: Market efficiency has implications for investment strategies. In 
highly efficient markets, passive investment strategies like index funds are more popular as 
they aim to replicate the overall market's returns. In less efficient markets, active 
management may be pursued to seek out mispriced assets. 

f) Market Stability: Efficient markets tend to be more stable as prices incorporate all available 
information, reducing the likelihood of sudden, large price swings driven by misinformation 
or speculative behavior. 

g) Market Integrity: Market efficiency is associated with market integrity. In efficient markets, 
there is less room for price manipulation or insider trading, as any attempts to distort prices 
are quickly corrected by new information. 

h) Information Processing: An efficient market indicates that information is processed and 
disseminated effectively. Market participants actively analyze and react to information, 
leading to a more informative and well-functioning market. 

Our results indicate that SPSY, SPLRCREC and SPLRCI markets are persistent. Since these 
markets are persistent, they exhibit positive autocorrelation, meaning that past values 
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influence future values. In other words, if an asset's price has been increasing (or decreasing) 
over recent periods, it is more likely to continue that trend in the near future. This implies the 
existence of trends and momentum in the market. Persistence can present opportunities for 
trend-following strategies, where investors try to capitalize on the continuation of existing 
price trends. However, it also carries risks, as persistently rising prices might lead to 
overvaluation, while persistent declines may result in undervaluation. Persistent trends may 
be driven by factors such as market sentiment, investor behavior, or fundamental changes in 
the underlying asset. Investors should be cautious when relying solely on historical price 
trends, as persistent patterns can contribute to higher levels of volatility and increased risk in 
the market. 

Also, our results imply that SPLRCS, SPLRCU, SPXHC, SPNY, SPLRCT and SPLRCD markets are 
anti-persistent. Since these markets are anti-persistent, they exhibit negative autocorrelation, 
meaning that past values have an inverse effect on future values. In other words, a price 
decrease (or increase) is more likely to be followed by a price increase (or decrease). Anti-
persistence implies mean reversion, where the market tends to revert to its average value. 
Anti-persistence can lead to opportunities for mean-reversion strategies. Investors may 
expect that extreme price movements will be followed by a correction towards the mean or 
average price. Mean-reversion strategies involve buying when prices are low and selling when 
they are high. Anti-persistence might arise due to profit-taking behavior after price 
movements, or when external factors drive temporary deviations from an asset's intrinsic 
value. 

In summary, persistence and anti-persistence in financial time series imply that markets may 
exhibit trends and momentum (persistence) or mean-reverting behavior (anti-persistence). 
Understanding these characteristics is crucial for investors, as they can inform trading 
strategies and risk management decisions. 
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