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 Abstract 

 The aim of this paper is to define the gamma rings of quotients of a semiprime 

gamma ring and investigate some properties of gamma ring of quotients. 

 Keywords: Gamma Rings, Prime Gamma Rings, Semiprime Gamma Rings, 

Ring of Quotients. 

 

Yarıasal Gamma Halkalanın Kesirlerinin Gamma Halkaları Üzerine 

 Özet 

 Bu makalenin amacı yarıasal bir gamma halkasının kesirli gamma halkalarını 

tanımlamak ve kesirli gamma halkasının bazı özelliklerini araştırmaktır. 

 Anahtar Kelimeler: Gamma Halkaları, Asal Gamma Halkaları, Yarıasal Gamma 

Halkaları, Kesirli Halkalar. 

 1. Introduction 

 The notion of a ring was introduced by Nobusawa in [9]. Let M be an 

abelian additive group whose elements are denoted by  and  another abelian 

additive group whose elements are  Suppose that  is defined to be an 
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element of and that  is defined to be an element of  for every  and . If 

the products satisfy the following three conditions: 

      (i)  

     (ii)  

    (iii)  for all  implies  

then  is called a ring in the sense of Nobusawa. 

 After this research, in [2], Barnes defined the structure of rings in some 

different way from that of Nobusawa as follows: 

  Let  and be additive abelian groups. If there exits a mapping of  

to (the image of  being denoted by ( )) satisfying for all 

  

     (i)  

    (ii)  

then M is called a Γ-ring in the sense of Barnes. 

 In the present paper, the symbol stands for  is the ring in the sense 

of Nobusawa and the symbol  stands for M is the Γ-ring in the sense of Barnes. 

In [7], it is shown that for all  there exists Γ′ is an additive group such that 

 Therefore, if M is Γ-ring in the sense of Barnes, then M is Γ′-ring in the sense 

of Nobusawa. Thus, meaningful works on Γ-ring in the sense of Nobusawa. Throughout 

the present paper, M will a Γ-ring in the sense of Nobusawa and the symbol  

stands for the  

 Let  be a gamma ring in the sense of Nobusawa. A right (resp. left) ideal 

of M is an additive subgroup of U such that (resp. ). If U is both a 

right and left ideal of M, then we say that U is an ideal of M. An ideal P of a gamma 

ring is said to be prime if for any ideals  and  of   implies  

or  An ideal P of a gamma ring  is said to be semiprime if for any ideal U 
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of M,  implies  A gamma ring  is said to be semiprime if the 

zero ideal is semiprime. This definition is given as "A gamma ring  is said to be 

prime if  with , implies  or  and semiprime ) 

with , implies " in [4]. 

 In [7], Kyuno defined the notation of gamma ring homomorphism as follows: 

Let  and  be two gamma rings,  and  be two 

functions. Then an ordered pair of mappings is called a homomorphism of 

 into  if it satisfies the following properties: 

      (i)  is group homomorphism, 

     (ii) is group homomorphism, 

    (iii) for all  

    (iv) for all  

A homomorphism  of a gamma ring  into a gamma ring  is 

called a monomorphism if  and  are one-one. 

 We now turn our attention to the gamma module. Let  be a gamma ring. A 

commutative additive group N is called a right gamma M-module ( or right gamma M-

module) if for all  and  

      (i)  

     (ii)  

    (iii)  

    (iv)  

 Let  and  be two right gamma M-modules. Then θ is called a right gamma 

M-module homomorphism (or right gamma M-module homomorphism) of  into  

if it satisfies the following properties: 

     (i)  is group homomorphism, 
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    (ii) , for all  

 A great deal work has been done on gamma ring in the sense of Barnes and 

Nobusawa. The author studied the structure of gamma rings and obtained various 

generalizations analogous of corresponding parts in ring theory. The study of two-sided 

rings of quotients was initiated by W. S. Martindale [8] for prime rings and extented for 

semiprime rings by S. A. Amitsur in [1]. The concept of centroid of a prime gamma ring 

was defined and researched in [10, 11]. In [12], the authors proved that the generalized 

centroid of a semiprime gamma ring is a regular gamma ring. We introduced and 

investigated the rings of quotients of a semiprime gamma ring in [5]. In this paper, we 

will show that the rings of quotients of a semiprime gamma ring is a gamma ring and 

we shall prove several properties of gamma ring of quotients. 

 2. Results 

 Throughout the present paper, M will a Γ-ring in the sense of Nobusawa and the 

symbol stands for the  

 Definition 2.1 Let  be a gamma ring. If there exists  and  such 

that  for all  then  is said to be strong left identity element of 

 Similarly, if there exists  and  such that  for all then 

is said to be strong right identity element of  If  is both a right and 

left strong identity element of  then we say that  is an strong identity 

element of  

 Definition 2.2 Let  be a gamma ring. For a subset S of M, 

 

 is called the right annihilator of S. A left annihilator  can be defined similarly. 

 Lemma 2.3 Let  be a semiprime gamma ring and 

 

If  
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 Proof. Let Thus U,V are ideals of M and . 

Clearly,  is an ideal of M. We will show that . Let  be any element 

of . That is  for all and so , for all 

. Since , we have  for all  Again using 

, we get . Hence  This completes proof. 

 Let  be a semiprime gamma ring. Consider the set 

 

 We define  There exists  such that  

and  on W." We can readily check that "≃" is an equivalence relation. We let 

 denote the equivalence class determined by  Let  be the set of all 

equivalence classes. We now define addition of  as follow: 

 

We will show that addition is well defined. By Lemma 2.3, we see that  

For all  we have 

. 

That is, 

 

 i.e., 

 

Hence there exists  such that  and 

 on   

 Setting  By Lemma 2.3, we have  We will show that 

. Let w be any element of W. Then  where 

 That is  and  Thus 

i.e.,  
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 On the other hand, since ,  are ideals of M, we have 

 and  Since  on  and 

 we have 

 

That is  on W, and so 

 

 We will prove that  is abelian additive group. 

i) For all  

 

 

 

  

ii) Now, let  First of all we note that . Indeed, 

clearly M is an ideal of M. For  we have  for all That is 

 for all  Replacing m by x in last equation, we have  

for all  and so,  By the semiprimeness of  we have , i.e.  

(M)=(0). Consequently,  

 One easily checks that  is a right gamma M-module homomorphism. 

Hence We will prove that, 

 

 Indeed, let  Clearly, . Then 

 

 That is  on W. Moreover, by Lemma 2.3, we have  In similar 

fasion, 
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 Hence  is the identity element of  

iii) For any we will show that One easily checks that 

is a right Γ M-module homomorphism and Also 

 

 Indeed, let  We get 

 

 Moreover,  and  Hence  is the inverse of  

iv) For all , 

    (2.1) 

 

 and 

.    (2.2) 

We will prove that (2.1) and (2.2) are equal. Let  and  Since 

 

 we have  

 Moreover, clearly  By Lemma 2.3, we have  

Hence is an abelian group. 

 In the same way, let  be a semiprime gamma ring, 

 

and 

 

 Lemma 2.4 Let  be a semiprime gamma ring. If  then 
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 Proof.  The procedures in Lemma 2.3 can be exactly applied in set  and 

the same results are obtained. This completes proof. 

 We define 

 

Clearly,  is an equivalence relation. Let  denote the equivalence class 

determined by  and  denote the set of all equivalence classes. We then 

define addition of  as follow: 

. 

 We will prove that addition is well defined. By Lemma 2.4, we have 

 For all , we get 

 

and so 

. 

That is 

 

Hence there exists  such that and =  

on , =  on  Setting  By Lemma 2.4, we have  We 

will show that  Let α be any element of Π. Then  

where   That is,  and  

We conclude that  and  i.e.,  

 Let α be any element of Π. Using  are ideals of Γ, we have 

 and  Thus 

 

Then on  That is 
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We will prove that  is abelian additive group. 

i) For all  

 

   

          

ii) Let  We will show that Indeed, clearly Γ is an 

ideal of Γ. For  we have  for all . Thus  for all 

 Replacing γ by α in last equation, we get  for all . That 

is . By the semiprimeness of , we obtain that , i.e., 

. Consequently,  

 One easily checks that  is a left M Γ-module homomorphism. Therefore 

 Also, 

 

 Indeed, let  Clearly,  Hence 

 

 and so,  Also, by Lemma 2.4, we have In similar fasion, 

 

 We arrive at  is the identity element of  

iii) For any { we will prove that One easily checks that 

 is a left M Γ-module homomorphism and  Also 

 

 Indeed, let  We get 
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 Also,  and Hence  is the inverse of  

iv) For all  

    (2.3) 

and 

.    (2.4) 

 We will prove that (2.3) and (2.4) are equal. Let  and  

We get 

 

and so,  

 Moreover, clearly  By Lemma 2.4, we get ). Hence 

is abelian additive group. 

 Let be a left M Γ-module homomorphism. Define  

defined by  

 We now define multiplication of equivalence classes as follow: 

 

 We first prove that multiplication is well defined. Let 

 and  Suppose 

 

 We get 

 

 Then 

 

 i.e., there exists  such that  on 

,  on  and ) such that   on . 
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 Let  We will show that  Clearly, W is an ideal of M. 

If  for all , i.e., for all . 

Since Π is an ideal of Γ, we get 

 

 That is 

 

 By , we have 

 

Again, since Π is an ideal of Γ, we obtain that 

 

and so 

 

Using the last equation, we see that 

 

Since  is semiprime gamma ring, we get 

 

Since  is an ideal of M, we find that 

 

That is 

 

Since  is gamma ring, we get 

 

By  we have 
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Using the above equation, we see that 

 

Again using the semiprimenessly of , we get , for all . Then 

 and so  by . Thus we must have  and so 

 

Now we show that  Let  be any element of W. Thus 

 where Therefore, we get , 

and  Hence  and , i.e., 

 

 On the other hand, we will show that  on W. For any , 

taking  by  where  we have 

 

Since  we find that 

 

Using on , we obtain that 

 

Since  and  on , we have 

 

This implies that  on W. Hence 

 

and so, the multiplication is well defined. 

 We now show that is a gamma ring. 

a) i) For all  
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         (2.5) 

Also, 

  

       (2.6) 

 We will prove that (2.5) and (2.6) are equal. Choosing  

Clearly,  Moreover, we get 

 

ii) For all  

   

   (2.7) 

and 

  

  (2.8) 

 We will show that (2.7) and (2.8) are equal. Let  By 

Lemma 2.3, we get  Since 

 

we have 

 

 Also, we get  

iii) For all  
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Setting Using the same arguments in the proof (ii), we find the 

required result. 

b) i) For all  

   

                                                                              

                                                                             

                                                                             

                                                                              

ii) For all  

   

             

              

             

              

c) Let  for all  and 

Replacing  by  where is an identity right  

M-module homomorphism, we obtain that 

 

That is 

 

i.e., 
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 Hence, there exists  such that  and  on 

W, i.e.,  for all . Since  we get  

 Thus,  We have 

 

and so 

 

Using  is gamma ring, we get Hence we 

have  

 Thus, we shown that  is a gamma ring. We shall denote the gamma ring 

costructed above by ( ) and we call the two sided right gamma ring of quotients of 

. 

 Similarly, using the following operations, the two sided left gamma ring of 

quotients of  may be defined: 

 

where  

We will prove that multiplication is well defined. For all 

 and  we get 

 

This implies that 

 

and so 
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Hence there exists such that and 

  and  such that  

 Setting  We will prove that  Clearly, Π is an ideal of 

Γ. If  then  for all . That is ), for all 

. Since W is an ideal of M, we have 

 

and so 

 

Using , we get 

 

Again, since W is an ideal of M, we see that 

 

That is 

 

By the above equation, we find that 

 

Since  is semiprime gamma ring, we get 

 

Since  is an ideal of Γ, we have 

 

i.e., 

 

Using  is gamma ring, we obtain 



  

28 

 

 

By  we see that 

 

By the last equation, we see that 

 

Again using the semiprimenessly of , we arrive at  for all . 

Then and so, α=0 by  Thus we must have  and 

so,  

 We show that  Let α be any element of Π. That is, 

 where  Hence we have 

 and  Then 

 

 We will prove that  Let  Replacing α by  

where  This implies that 

 

Since  we get 

 

Using on W, we have 

 

Since and  on , we have 

 

Hence  on Π. Therefore 
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We conclude that the multiplication is well defined. Also, for all 

 we obtain that . 

 We now show that ( )  is a gamma ring. 

a) i) For all  and , 

  

                                                     (2.9) 

Also, 

  

                                                                  (2.10) 

We will show that (2.9) and (2.10) are equal. Setting  Clearly, 

 Then we have 

 

ii) For all  and  

  

                                                                (2.11) 

and 

  

  (2.12) 

We will show that (2.11) and (2.12) are equal. Let  By Lemma 

2.4, we get  Moreover 

 

Thus 

 

Also, we have  
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iii) For all  

  

                                                             

                                                             

                                                             

                                                             

Let  Using the same arguments in the proof (ii), we find the 

required result. 

b) i) For all  

  

                                                                   

                                                                   

                                                                   

                                                                   

ii) For all  

  

                                                                   

                                                                   

                                                                   

                                                                   

c) Let  for all  and  

Replacing by  where :  is an identity left M Γ-module 

homomorphism, we get 
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and so 

 

Thus 

 

Therefore, there exists  such that  and  on Π, i.e., 

for all  By  we get  That is 

 where  We obtain that 

 

and so 

 

Since  is gamma ring, we have , for all  i.e., . We conclude 

that  

 Hence we proved that ( ) is a gamma ring. We shall denote the gamma ring 

costructed above by ( ) and we call the two sided left gamma ring of quotients of 

 

 In what follows, we will see several properties of two sided right gamma ring of 

quotients. Firstly, we observe the following important remarks. 

 Remark 2.5 Let (  be a gamma ring,  If  is the strong 

right identity element of then  is the strong left identity element of  

 Proof. Assume that  is the strong right identity element of ( . Thus we 

get for all  For any  we have 

 

and so 
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Since (   is gamma ring, we get  This completes proof. 

Using the similar arguments as above, we can prove the following remark: 

 Remark 2.6 Let  be a gamma ring, If  is the strong left 

identity element of  then  is the strong right identity element of  

 Let  is the strong right identity element of  For a fixed element  in 

M, consider a mapping  defined by  for all  It is easy to 

prove that the mapping  is a right  M-module homomorphism. For all  

 

and so 

 

Now, we consider a mapping Γ defined by  for all   is 

a left M Γ-module homomorphism. Using arguments as above, we can prove that 

 

Let's define 

 

 and  are additive groups. Defining the mappings 

 

and 

 

It can be shown that  is a gamma ring. 

 Theorem 2.7 Let (  be a semiprime gamma ring with strong right identity 

element. Then (  is a subring of ( . 
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 Proof. Let and :Γ→  be as defined below. 

 

and 

 

We will prove that  is a gamma ring monomorphism. It is clear that  is well 

defined. For all , we get 

    (2.13) 

  (2.14) 

 We show that (2.13) and (2.14) are equivalent. Setting  Once easily 

checks that  Moreover, using we get 

 on W. 

 Hence  is a group homomorphism. Also, if  then 

 i.e., . Thus there exists  such that 

 and  on W, i.e.,  for all  That is 

Since W is a ideal of M, we have and so 

. By  we get  That is 

for all  Replacing  by , we get (  Hence . 

This implies that  is one-one, and so is a group monomorphism. 

In similar fasion, we can shown that  is a group monomorphism. For all 

 

     (2.15) 

and 

 (2.16) 
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 We will show that (2.15) and (2.16) are equal. We have  Clearly 

 and  by Lemma 2.3 Using 

 we get 

 

and so on W. Appliying the same argument as used in the above, 

we see that 

 

 This implies that  is a gamma ring monomorphism, and so (  is a 

subring of  This completes proof. 

We now prove some properties of  in the following theorem. 

 Theorem 2.8 Let (  be a semiprime gamma ring with strong left identity 

element. 

   i) If  and  is a right  M-module homomorphism, then 

there exists an element  such that  

  ii) There exists  such that  

 iii) Then  and if and only if  

 Proof. 

 i) Let  be a right  M-module homomorphism and 

 Since M can be embedded in , we have  such that 

We get 

}   (2.17) 

And 

     (2.18) 
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 We will prove that (2.17) and (2.18) are equivalent. Choose  It is a 

direct compution to verify that  For  and 

 , we have 

   

                                                                                   

                                                                                   

                                                                                   

 Thus  on W. Hence there exists an element such that 

 

  ii) For any there exists  such that  and  

is a right  M-module homomorphism. By Theorem 2.8 (i), we obtain  for 

all  This shows that . 

 iii) Suppose  for all and . Since  we get 

 We have  By Theorem 2.8 (i),  for 

all  That is  for all . Hence  

 Conversely, let  Then  i.e.,  for all . 

Again using Theorem 2.8 (i), we get  for all . That is  

This completes proof. 
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