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Abstract
The aim of this paper is to define the gamma rings of quotients of a semiprime

gamma ring and investigate some properties of gamma ring of quotients.
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Yariasal Gamma Halkalanin Kesirlerinin Gamma Halkalar1 Uzerine

Ozet
Bu makalenin amaci yariasal bir gamma halkasinin kesirli gamma halkalarini

tanimlamak ve kesirli gamma halkasinin bazi 6zelliklerini aragtirmaktir.

Anahtar Kelimeler: Gamma Halkalari, Asal Gamma Halkalari, Yariasal Gamma

Halkalar1, Kesirli Halkalar.
1. Introduction

The notion of a I —ring was introduced by Nobusawa in [9]. Let M be an
abelian additive group whose elements are denoted by a, b, c,--- and I another abelian

additive group whose elements are v, f, a, ---. Suppose that ayb is defined to be an
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element of M and that yafs is defined to be an element of I" for every a, b,y and £. If

the products satisfy the following three conditions:
(i) (a + b)yc = ayc + byc,a(a + )b = aab + afib,ay(b + ¢) = ayb + ayc,
(ii) (ayb)Bec = a(ybf)c = ay(bfc),
(iii) aeb = 0 forall a,b € M impliesa = 0,
then M is called a I —ring in the sense of Nobusawa.

After this research, in [2], Barnes defined the structure of I" —rings in some

different way from that of Nobusawa as follows:

Let M and I" be additive abelian groups. If there exits a mapping of M X I' X M
to M (the image of (a,¥,b) a,b € M,y € I' being denoted by (ayb)) satisfying for all
ab,cEM, a B, yeTr:

(i) (a + b)yc = ayc + byc,a(a + f)b = aab + afib,ay(b + c) = ayb + ayc,
(i) (a¥b)Bfc = ay(bfc),
then M is called a I'-ring in the sense of Barnes.

In the present paper, the symbol (I, M), stands for M is the I —ring in the sense
of Nobusawa and the symbol (I", M)z stands for M is the I'-ring in the sense of Barnes.
In [7], it is shown that for all (I", M)z there exists I'" is an additive group such that
(I'",M), Therefore, if M is I'-ring in the sense of Barnes, then M is I"-ring in the sense

of Nobusawa. Thus, meaningful works on I'-ring in the sense of Nobusawa. Throughout

the present paper, M will a I'-ring in the sense of Nobusawa and the symbol (I", M)

stands for the (I", M) ,,.

Let (I', M) be a gamma ring in the sense of Nobusawa. A right (resp. left) ideal
of M is an additive subgroup of U such that UI'M < U (resp. MI'U = U). If U is both a

right and left ideal of M, then we say that U is an ideal of M. An ideal P of a gamma
ring (I, M) is said to be prime if for any ideals 4 and B of M, Al'B < F implies A = P

or B < P. Anideal P of a gamma ring (I, M) is said to be semiprime if for any ideal U
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of M, Uru < P implies /' & P. A gamma ring (I", M) is said to be semiprime if the
zero ideal is semiprime. This definition is given as "A gamma ring (I", M) is said to be
prime if al'b = (0) with a,b € M, implies @ =0 or b = 0 and semiprime al'a = (0)

with @ € M, implies @ = 0" in [4].

In [7], Kyuno defined the notation of gamma ring homomorphism as follows:
Let (I'1,M1) and (I'2,M2) be two gamma rings, g: 1 — 'z and 6: M1 — M> be two

functions. Then an ordered pair (¢, &) of mappings is called a homomorphism of
(I'1,Mq) into (I'2,M3) if it satisfies the following properties:
(i) 8: M1 — M> is group homomorphism,
(ii) g: 'y = I'zis group homomorphism,
(iii) B(xay) = B(x)@(a)8(v),forall x, y EM,a €T,
(iv) g(axf) = ¢(a)8(x)o(f),forall x € M,a,f € T.
A homomorphism (¢, &) of a gamma ring (I"'1,M4) into a gamma ring (I'z,Mz) is

called a monomorphism if ¢ and & are one-one.

We now turn our attention to the gamma module. Let (I", M) be a gamma ring. A

commutative additive group N is called a right gamma M-module ( or right gamma M-

module) if for all n, 1y, n2 € N,m,my, mp EMand a, f €T,
(i) nam € N,
(ii) (ny + n2)am = maam + nam,
(iii) n(a + fym = nam + nfim,
(iv) na(my + mz) = namy + namsa.

Let N1 and Nz be two right gamma M-modules. Then 6 is called a right gamma
M-module homomorphism (or right gamma M-module homomorphism) of N4 into Nz

if it satisfies the following properties:

(i) : Ny — N2 is group homomorphism,
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(i) @(xam) = B(x)am, forall x ENy,mE M,a €T.

A great deal work has been done on gamma ring in the sense of Barnes and
Nobusawa. The author studied the structure of gamma rings and obtained various
generalizations analogous of corresponding parts in ring theory. The study of two-sided
rings of quotients was initiated by W. S. Martindale [8] for prime rings and extented for
semiprime rings by S. A. Amitsur in [1]. The concept of centroid of a prime gamma ring
was defined and researched in [10, 11]. In [12], the authors proved that the generalized
centroid of a semiprime gamma ring is a regular gamma ring. We introduced and
investigated the rings of quotients of a semiprime gamma ring in [5]. In this paper, we
will show that the rings of quotients of a semiprime gamma ring is a gamma ring and

we shall prove several properties of gamma ring of quotients.

2. Results

Throughout the present paper, M will a I'-ring in the sense of Nobusawa and the
symbol (I", M) stands for the (I, M) ;.

Definition 2.1 Let (I", M) be a gamma ring. If there exists e € M and & € I' such
that edx = x for all x € M, then (J,e) is said to be strong left identity element of
(I', M). Similarly, if there exists e € M and & € I such that xde = x for all x € M, then
(6,¢e) is said to be strong right identity element of (I, M). If (&, e) is both a right and
left strong identity element of (I', M), then we say that (&,e) is an strong identity

element of (I, M).
Definition 2.2 Let (I', M) be a gamma ring. For a subset S of M,
-(5) = {c € M|Syc=(0),Vy €T}
is called the right annihilator of S. A left annihilator I-(5) can be defined similarly.

Lemma 2.3 Let (I", M) be a semiprime gamma ring and

(M) = {U|U isanideal of M and l-(U) = ( 0)}.

If U,V € I(I', M), then UT'V € I(T, M).
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Proof. Let U,V € I{I', M).Thus U,V are ideals of M and I (U} = I-(V) = (0).
Clearly, UT'V is an ideal of M. We will show that I-(Ur'V) = (0). Let x be any element
of I.(UI'V). That is xy(Ur'v) = (0), for all y € I'and so (xyU)r'v = (0), for all
yET. Since (V)= 1(0) we have xyU =(0), for all ¥ €. Again using

I-(U)= (0), we get x = 0. Hence UT'V € I(I", M). This completes proof.
Let (I, M) be a semiprime gamma ring. Consider the set

L={fNUel(l'M),f:U— Misaright ' M — module homomorphism}.

We define "(f; U) = (g; V) = There exists W € I(I',M) such that W S U nV
and f =g on W." We can readily check that "=" is an equivalence relation. We let
{f; U} denote the equivalence class determined by (f; ) € L. Let @, be the set of all

equivalence classes. We now define addition of @,. as follow:

;U {@:Vi={f+gVIU, forall{f; U} {g:;:V}E Q..
We will show that addition is well defined. By Lemma 2.3, we see that VI'lU € I(I", M).

Forall {f; U1}, {f2: Uz} {g1: V1) {g2: V2] € @,.. we have

({fuUih{guVal) = ({f: Uz} {g2:Va)).
That is,

{f1iUs} = {fz; Uz} and {g1;V1} = {g2;V2}

(f1:U1) 2 (f2;U2) and (g1: V1) = (g2;V2).

Hence there exists Wi, W3 € I(I',M) such that Wi S Ui Nz, Wz S V1N Vz and
fi=fzon Wy, g1 = gz on W

Setting W = W2I'W1. By Lemma 2.3, we have W € I{I", M’). We will show that
W EVirusnVarUs. Let w be any element of W. Then w = waywi, where
wz EWa,yENwE Wi Thatisw: EW, EVinV; and wy € W, € Uy n Uz, Thus

wEV ' andw E Vol'llg,ie., w €Vt n Vartis,
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On the other hand, since Wi, W: are ideals of M, we have
wWEW=WTW,EW; and w e W = W', € Wy. Since f1=f2 on W; and

g1 = g2 on Wp, we have
(f1+ g0 (W) = Fr(w) + g1(w) = F2(w) + g2(W) = (F2+ g2) (w)-
Thatis f1+g1 = fz+ g=20nW, and so
(f1+ guVilUsl= {fa+ g2;V2I'ua}
We will prove that Q.. is abelian additive group.
i) Forall {f; U}, {g:V}, {W}E Q,
(iU +{g V) +{W} = {f +g;VIU} + (W} ={(f + g) + bW (VI'U)}

={f+ (g + h); (WrV)ruy
={fiU}+{g + WIV}
={fi U} + ({g:V} + {;W}).

ii) Now, let 0: M — M, 0(x) = 0. First of all we note that {0; M} € @... Indeed,
clearly M is an ideal of M. For x € I-(M), we have xyM = (0), for all y € I'. That is
xym = 0, for all ¥ € I'm € M. Replacing m by x in last equation, we have xyx = 0,
forall y € I' and so, xI"x = (0}). By the semiprimeness of (I", M), we have x = 0, i.e. I

(M)=(0). Consequently, M € I(I", M).

One easily checks that 0: M — A is a right gamma M-module homomorphism.
Hence {0; M} € Q... We will prove that,
Ul {oGMl={f+0;MIu} ={f; UL
Indeed, let W = MI'U. Clearly, W = MIrunU. Then
(f + 0)(w) = f(W) + 0(w) = f(w), for allwE W.

That is f + 0 = f on W. Moreover, by Lemma 2.3, we have W € I(I", M). In similar

fasion,
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{O; M} +{f; U} ={f; U}

Hence {0; M} is the identity element of @,..

iii) For any {f; U} € @,.. we will show that {—f; U} € @,.. One easily checks that
(—f):U — M is aright I' M-module homomorphism and U € I(I", M. Also

iU+ (=i Uy={f +(=f) U} = {0; M}.
Indeed, let W = UT'U and w € W. We get
(f + (=FW)=Ffw) + (=H(w) = f(w) - f(w) =0=0(w).

Moreover, W S Urn M and W € I(I', M). Hence {—f; U} is the inverse of {f; Ul.

iv) Forall {f; U}.{g;V} € @,,

U+ {gVi={ +aVIU} (2.2)

and
g:Vi+{f;U}={g+ f;Urvy. (2.2)
We will prove that (2.1) and (2.2) are equal. Let W = UI'VI'VIU and w € W. Since
(f +9)(w) =Ff(w) +g(w) =g(w) +f(w) = (g + flw),

wehave f +g =g+ fonW.

Moreover, clearly W & Urvrvru. By Lemma 2.3, we have W € I{I". M).

Hence @,. is an abelian group.
In the same way, let (M, ") be a semiprime gamma ring,
I(M, I = {0 isan ideal of I and r,,(17) = (0)}

and

F={(MNel(MTI):2—=Tisaleft M I'— module homomorphism}.

Lemma 2.4 Let (M,I") be a semiprime gamma ring. If 2,4 € I(M,I"), then

OMA € I(M,T).
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Proof. The procedures in Lemma 2.3 can be exactly applied in set I{M,I") and
the same results are obtained. This completes proof.

We define

"(7;01) % (o; A) © There exists I €I(M,I") suchthatI S NnAand t=0c onll."

Clearly, " = " is an equivalence relation. Let {; 12} denote the equivalence class
determined by (7;12) € F and 4, denote the set of all equivalence classes. We then
define addition of A, as follow:

1; 0} + {o; A} = {1 + o; AMO}.
We will prove that addition is well defined. By Lemma 2.4, we have
AM2 € I(M, T). For all {T1; 21}, {12; 22}, {o1; A1}, {o2: A2} € A}, we get
({11; 21} {o1; A1}) = ({12; 22}, {02; A2})
and so
f11; 11} = {12; 2>} and {o41; A1} = {o2; A2}
That is
(T1;021) = (12; 22) and (o1;41) = (g2; 42).

Hence there exists 1, T2 € I(M,I") such that 11 S 21 N2, M2 E A1 N Az and T1=12
on M1, o1= oz on IIz. Setting [T = M:MI11. By Lemma 2.4, we have IT € I{M,I"). We
will show that IT S A3 M2, N AzM123. Let o be any element of I1. Then a = mammy,
where mz €E M, mEM, w1 € T1. That is, mz € T E A1 N Az and w1 € M1 € 27 N 125,

We conclude that @ € A;M21and @ € AsM2q,ie., @ € ALM2, N A2 M5,

Let o be any element of II. Using 1,1l are ideals of I, we have

o €=Ml EM:and e € T = [I[MII1 € IT,. Thus

(11 + o1 )() = 11(a) + o1(ax) = T2(a) + o2(a) = (12 + g2)(x).

Then 11 + 1 = 12 + gz on I1. That is

{11 + o1; A1M01} = {12 + g2; A2 M 125}
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We will prove that 4, is abelian additive group.
i) For all {r; 02}, {o; A},{6; I} € 4,,
({0} + {0; AD) + {6: T} = {t 4 0; AMD} + {6; T} = { (1 + &) + 6; EM(AMD)}
={r4 (o + 8); EMAMA)} = {1; N} + {o + §; TMA}
= {1; 0} + ({o; A} + {6; 2Y).

ii) Let 0: ' = I, 0(y) = 0. We will show that {0; I'} € 4,. Indeed, clearly I is an
ideal of I'. For a € 1, (I"), we have I'ma = (0), for all m € M. Thus yma = 0, for all
y € I''m € M. Replacing y by a in last equation, we get ama = 0, for all m € M. That
is aMa= (0). By the semiprimeness of (M,I'), we obtain that « =0, i.e.,

1y (I') = (0). Consequently, I' € I(M,I).

One easily checks that 0: I' — I' is a left M I"-module homomorphism. Therefore

{0; '} € 4,. Also,
(L0} +{0:} = {t+0;TMQ} = {1; 2}.
Indeed, let IT = 'M 2. Clearly, IT & 'M12 n f1. Hence
(t+0)(a) =1(a) +0(a) =1(a),forallaell
and so, T + 0 = 1 on II. Also, by Lemma 2.4, we have IT € I{M, ). In similar fasion,
{0; I} +{; N} ={; N}
We arrive at {0; I'} is the identity element of 4,.

iii) For any {; 2} € 4,, we will prove that {—1; 12} € 4,. One easily checks that

(—1): 2 = I' is aleft M I'-module homomorphism and 12 € I(M,I"). Also

;0 +{—0}={t+(—1);2MQ} = {0; 'L
Indeed, let T = M2 and « € IT. We get

(z+ (=2)(a) =t(a) + (-7)(a) = (a) —7(a) = 0 = 0(a).
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Also, T € NMA nT and T € I{M, I'). Hence {—T; 2} is the inverse of {1; 1}.

iv) For all {t; 2}, {o; A} € 4,,

;0 +{o; A} = {t + 7; AM} (2.3)
and
{o; A} + {1; 0} = {o + T; NM A} (2.4)
We will prove that (2.3) and (2.4) are equal. Let [T = AMOMNMA and « € II.
We get

(t+o)(a)=1(a) +o(a)=c(a) +1(a) = (g + 1)(a)
andso, t+oc=acg+tonll
Moreover, clearly IT & AMQMNRMA. By Lemma 2.4, we get IT € I{M,I"). Hence

4, is abelian additive group.

Let :12 = I'be a left M I'-module homomorphism. Define : MM — M

defined by 7(myn) = mz(y)n forallmn € M,y € 0.

We now define multiplication of equivalence classes as follow:

{f: UHr: 0Hg: V} = {ftg: VOU}, for all {f;U}.{g: V} € Q, .{1: 0} € 4,.
We  first prove that multiplication is  well  defined. Let
UL {2 Uk {91 Vil {ig2: Vo) € @, and {11; 21} {12;12:} € 4,. Suppose
(fuUsd At M} {gu Vi) = ({f2: Uz} {72: 22}, {g2: V2}).
We get
FuUs} = {fai Uz} {r1: 01} = {12: 22}, {g1:V1} = {92V}
Then
(f1:Us) 2 (f2;Uz2), (725 021) = (12:02),(91: V1) 2 (g2;V2),

i.e., there exists Wi, W2 € I(I', M) such that W1 S Uy NU, W2 S V1N Vo, fy = fa20n

Wi, g1 =gzonWszand T € I(M,I")suchthat T & 2, nN2,, 7, = 1, 0n1I.
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Let W = W-oITW,. We will show that W € I(I", M). Clearly, W is an ideal of M.
If x € I (W), then xyW = (0), for all y € I, i.e., xy(W2lIW,) = (0),forall y € I

Since I1 is an ideal of I', we get
(xyW2)[IMT' W, € xy(W.IIW1) = (0).
That is
(xyW2)IMITWq = (0).
By I-(W1) = (0], we have
(xyWo)[IM = (0),forally e I'.
Again, since II is an ideal of I', we obtain that
(xyW2)[MIIM < (xyW2)IIM = (0)

and so

(xyWo)rMIIM = (0),forally €r.
Using the last equation, we see that
MIIMT (xyW2) T MIIMT (xyW2) = (0).
Since (I, M) is semiprime gamma ring, we get
MIOMI (xyW2) = (0),forally €r.
Since Wz is an ideal of M, we find that
MIMTxyW,I'M S MIMT (xyWs) = (0).

That is

MIOMIxyW.I'M = (0),forally €eT.
Since (I, M) is gamma ring, we get
NMIxyW.I' = (0), forally €T.

By my, (IT) = (0], we have
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FxyWol' = (0),forally €r.
Using the above equation, we see that
(xyWolxyWo I (xyWolxyWs) = (0).

Again using the semiprimenessly of (I", M), we get xyW2 = (0), for all ¥ € I'. Then
x € l-(W2), and so x = 0 by I-(W2) = (0). Thus we must have I-(W) = (0), and so
W € I(T, M).

Now we show that W € V102,U; N V202:Us. Let w be any element of W. Thus
w = waywy, Where wz € Wa, ¥ € IT,wy € W1. Therefore, we get wz € W2 S VNV,
YEMN SR, NA,and w1 € Wy € Ui NUz2. Hence w € V102:U; and w € V22213, ie.,

w E VU1 n Vallalls,

On the other hand, we will show that f1T1g1 = fzT292 on W. For any w € W,

taking w by waywy where wa € W,y € II, wy € W1, we have

(fiTigl)(w) = (frtigs) (weywa) = f1(Ti(gr(wzywi))) = fa(Ti(gi(wz)ywi)).

Since g1 = g2 on Wy, we find that

fi(Fi(gi(w2ywi)) = f1(Fi(gz(w2)ywa)) = fa(gz(wa)Ta(¥)wa)-

Using T, = T, on 1, we obtain that

f1(gz(wz)Ta(¥)wi) = fi(gz(wz)T2(¥)w1).

Since gz(wz)T2(¥)wi € Wy and f; = f2 on W1, we have

filgz(w2)t2(¥)wi) = f2(g2(w2)T2(y)wi) = fa(f2(g2(wa2)ywi)) = (faTzg2)(w).

This implies that f1T191 = f27292 on W. Hence

{f1Tigy Vi Us} = {fatag2; Vai2alUs}
and so, the multiplication is well defined.

We now show that (4,,@,.) is a gamma ring.

a)i)Forall {f; U}, {g;V}.{h:K} € Q. and {1; 0} €4,
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(U + (g VD{m O K} = {f + g: VIUHzm O}k K}
= {(f + g)th; KQ(VIU)} (2.5)

Also,

{f; U¥r; 0¥h; K} + {g;: VHr; 0} h; K} = {fth; KQU} + {gth; KOV}

= [fth+ gth; (KQV)I (KQU)}. (2.6)

We will prove that (2.5) and (2.6) are equal. Choosing W = (KQV)I'(KQU).

Clearly, W € I(I', M) and W € ((KQV)I'(KQU)) n KR (VI'U). Moreover, we get
((f + g)th)(w) = (fth + gth)(w),for allw € W.
i) For all {f; U}, {g; V} € Q,and {1;0},{a; A} € 4,
{f; UY{z: 2} + {o: ADgs V3 = {f; Uz + 05 AMOYHg; V}
= {f(FT+0)g: V(AMQ)U} 2.7)

and

U UHm OHg: VY + {f; UHos AH{g: VY = {frg: VRUY + {fag; VAU}

= {ftg+ fég; (VA)T(VAU)).  (2.8)

We will show that (2.7) and (2.8) are equal. Let W = (VAU)I'(VQU). By

Lemma 2.3, we get W € I(I", M). Since
W = (VAU)T(VRU) = VA(UTV)RU € V(AM?)U,
we have
W S V(AMD)U n (VAU)T (VRU).
Also, we get f(T+ &)g = ftg + fég on W.

iii) For all {f; U}, {g; V},{l: K} € Q,and {1; 0} € 4,,

Um0y {g; Vi+ (kKD ={f; UHn; nHg + h; KTV}

= {ft(g + h); (KTV)QU]
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= {fig + fth; (KoU)r(vou)}
={fig;VRU}+ {fth; KQU}
={fiU{{r; B}{g: V} + {f; U{{m: 2} {h; K}.

Setting W = (KQU)I'(VU). Using the same arguments in the proof (ii), we find the

required result.
b) i) Forall {f; U}, {g;:V}.{h;: K} € Q.and {1; 0},{a; A} € 4,,
(f; Uz 23{g; ViHo; AH{k; K} = {f1g; VAU Ha; AJth; K}
= {(ftg)dh; KA(VRU)}
= {f£(géh); (KAV)QU}
={f; UHT; D H{gdh; KAV}
= {f; U{{z: 0}({g: V}{o; AH{h; K}).
ii)Forall {f; U} {g;: V] {h; K} € Q, and {t; 2}, {o; A} € 4,,
(Ufs Uz Hg: Vios AJ{hs K} = {f1g; VU AJ{h; K}
= {(fig)éh; KA(VRU))
= {f(Tgd)h; K(AV)U}
={f; UHtgd; AV Hh; K}
= {f; U}({z; 2}{g; V}{o; AP{h; K}

c) Let {fiUHmRHg:V}I={0;M} for all {f;UL{g;:V}€Q, and
{1; 7} € A,. Replacing {f; U}, {g; V} by {I,;; M} where I,,: M — M is an identity right I

M-module homomorphism, we obtain that
{Ly s M}{7; Q{1 ; M} = {0; M}.
That is

(2l s MOM} = {0; M},
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(L thy s MOM) = (0;M).

Hence, there exists W € I(I", M) such that W & (Ma2M) nM and [, I, = 0on
W, i.e., I, tl,, (w) = 0(w), for all w € W. Since W & MM, we get w € W & MAM.

Thus, w = miymz € MM, where my,mz € M,y € 2. We have

Lytly (W) = Iytly (miymz) = 0(miymz)
and so
maT(y)mz =0, for all my,mz € M and y € 1.
Using (I", M) is gamma ring, we get =(y) = 0,for all y € 12,i.e.,7 = 0. Hence we

have {T; 2} = {0; I'}.

Thus, we shown that (4,,@,.) is a gamma ring. We shall denote the gamma ring
costructed above by (4,, @,.) and we call the two sided right gamma ring of quotients of

(r, M).

Similarly, using the following operations, the two sided left gamma ring of

quotients of (M, I") may be defined:

[1; QWS ; UMo; A} = {tfo; AUN}
where f: TUT = T, f(ymf) = yf (m)B.

We will prove that multiplication is well defined. For all
{11 213 {12: 122}, {o1; A1}, {o2; A2} € Ay and{f1; U1}, {f2: U2} € @,., we get

(v 2} {fu Ui} {ou Ai)) = ({t2: D2} {f2: Uz} {g2: 12 }).
This implies that

{t1; 21} = {12223, {f1; U1} = {F2; Uz}, {o0; M} = {02; A2},
and so

(T1;021) = (12; 22), (f1;U1) 2 (f2;:Uz), (o1 A1) 2 (02;42).
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Hence there exists [T1,M1; € I{M,)such that [y S 23N, € A1 N Az and

Ty =Tponlly, o0 =gz onllzand W € I(I',M) suchthat W S Uy nUsz f; = fzon W.

Setting I7 = M W;. We will prove that IT € I(M, ). Clearly, IT is an ideal of
[. If @ € ny (IT), then Ima = (0), for all m € M. That is ([I:WII)ma = (0), for all

m € M. Since W is an ideal of M, we have

MoMIW(Iyme) € (W )mea = (0),

and so

HoMI'W(Hymea) = (0), for allm e M.
Using m, (I72) = (0), we get
r'w(fyma) = (0),forallme M.
Again, since W is an ideal of M, we see that
rWrM(Myma) S F'W(dyma) = (0).

That is

r'wrM(fima) = (0),for allme M.
By the above equation, we find that

(Myma)MTWT'M (Myma)MIWT = (0).
Since (M, I") is semiprime gamma ring, we get

(Mima)MI'Wr = (0),for allme M.

Since T4 is an ideal of I, we have

M (Iyma)MTWT € (Iyma)MTWT = (0),

rM(Iyma)MI'Wr = (0),for allme M.

Using (M, I") is gamma ring, we obtain
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M(Iyma)MI'W = (0),for allme M.
By I-(W) = (0), we see that
M(Izma)M = (0),forallm e M.
By the last equation, we see that
(MymaMIIyme)M ([TymaMIymea) = (0), for allm € M.

Again using the semiprimenessly of (M, I"), we arrive at Tyma = (0), for all m € M.
Then a € 1y (IT1) and so, a=0 by 1, (IT1) = (0). Thus we must have 7, (IT) = (0) and

so, 1 € I(M,T).

We show that IT © A1U1021 N AzU202. Let o be any element of I1. That is,
@ = TaWTT1, where 1 E M1, w E W, w2 € IT5. Hence we have
MEMEMNN,m M E AN A and weWE Unls. Then

g € AU and a € AsUalls, and so a € A U024 N Az Ui,

We will prove that 71f101 = 12f202 on I1. Let & € IT. Replacing a by mawm,

where 71 € IT1,w € W, ma € [T2. This implies that

(t1f101)(@) = (Taf101) (mawm1) = 11 (F1(on(mawm))) = Ta (F1 (o1 (mw2)wrr)).

Since o1 = g2 on 12, we get
1 (Fi(o1(m)wr)) = t1(Fi(o2(m)wm)) = Ta(o2(m2) F1(w)m).
Using f; = f; on W, we have
T1(oz(m2) f1(w)m) = T1(02(m2) f2 (W) 1)

Since oz(m2)f2(w)my € Iy and Ty = 12 on 11, we have

71(02(m2) f2 (W) 1) = T2 (02 (72) f2(W) 1) = T2(F2(02(m2) W) = (12f202)(a).

Hence 7, f101 = 12f 202 on II. Therefore

{Tlﬁﬂliﬂlulﬂl} = {Tzﬁﬂz:ﬂzuzﬂz}-
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We conclude that the multiplication is well defined. Also, for all
{1; 0}, {o; A} € A, ,{f; U} € @, we obtain that {T; 2}{f; UH{a; A} € 4,.

We now show that (@,., 4;) is a gamma ring.
a)i)Forall {f; U} € @, and {t; R}, {g; A},{5; X} € 4,
({r; 2} + {o; AN UHSG I} = {1+ o, AMOHf, UHS; I}
={(t+ 0)f&; ZU(AMM)). (2.9)
Also,
(0K UHGE + {o; AHSf UHG XY = {Tfﬁ';EUﬂ} + {JFS;EUA}
={1f6 + of5; (ZUAM(ZUN)}. (2.10)

We will show that (2.9) and (2.10) are equal. Setting T = (ZUA)M(ZU). Clearly,
e (M) and I S ((EUAYM(ZUQ)) N ZU(AMR). Then we have

((t +0)fd)(a) = (1f6 + of 6)(a).for all a € 1.
i) For all {f; U}, {g; V} € @, and {r; 2}, {o; A} € 4,,
(iU} + {g: Vi{a: A} = {1 2H{f + g: VI UH{o; A}
= {z(f + g)o; A(VTU) 2} (2.11)
and
{r; O}{f: UYo; A} + {1: QY g: V}{o: A} = {1f0; AUN} + {1§0; AVQ}
={tfo +1§o; (AVR)M(AUN)). (2.12)

We will show that (2.11) and (2.12) are equal. Let [T = (AVR2)M(AU2). By Lemma

2.4, we get IT € I{M, I"). Moreover

I = (AV)M(AUS) = AV(2MA)UR S A(VIU)A.
Thus

TS A(VIU)N N (AVR)M(AUR),

Also, we have (f + g)o = tfo + 1§ on 1.
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iii) For all {f; U} € Q,. and {1; 0}, {o; A},{6; Z} € 4,,
o 01 UY({o; A} + {6; 2}) = {; 2}{f; UHo + 8; ZMA)}
= {tf (o + &); (ZMA)UN}
= {1fo +1f8; (ZUQ)M(AUN)}
= {1f0; AUN} + {f6; ZUN}
={n2H{f; U{o: A} + {m: {5 UHG; T}

Let T = (ZUR)M(AULR). Using the same arguments in the proof (ii), we find the

required result.
b) i) For all {f; U}, {g; V} € @, and {r; 2}, {o; A}, {56; Z} € 4,,
({r: 2}f: UYo: AN{g: V}{8: £} = {cfo: AUQYg:; V}{5; T}
= {(zf0)§6; ZV(AUM)}
= (of (0§6); (ZV U}
= {5 0}{f; U{o§ §; TVA}
= {n 2Hf: U3({o; AHg: VIHE ).
ii) Forall {f; U}, {g:V} € @, and {T; 1}, {o; A} {6;Z} € 4,,
({r: Q}f; UMos AD{g: VIS £} = {fo; AULYg; VI{S; £}
= {(1f0)§6; ZV(AUQ)}
= {t(fo§)s; Z(VAV) 2}
= (t: 0}{fo§; VAUYS: I}
= {n 2} ({f; UHo; AHg VG I
¢) Let {r; Q}F; UMo; A} = {0;T} for all {f;UYE @ and {r; 2}, {o; A} € A,.

Replacing {z; 2}, {o; A} by {I-; '}, where I.:I' = I is an identity left M I'-module

homomorphism, we get
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U THAUHIE T ={0; T},
and so
(I fI;TUr} = {0;I'}.
Thus
(I-fI.; TUr) & (0;I).
Therefore, there exists [T € I(M,I") such that T © (rurynrand I.fI- =0 on Tl ie.,

I.fl-(a)=0(a),for all a €0. By I STUr, we get @ €1 <STUr. That is

a = yiuyz € I'UTr', where y1,¥2 € I',u € U. We obtain that
I fIr (@) = I fI(vauyz) = 0(yauyz),
and so
vif(u)yz=0,forallyy,y: Eruel.
Since (M, I") is gamma ring, we have f(u) =0, forall u € U, i.e., f = 0. We conclude

that {f; U} = {0; M}

Hence we proved that (.., 41;) is a gamma ring. We shall denote the gamma ring
costructed above by (2,..4;) and we call the two sided left gamma ring of quotients of

(M,I).

In what follows, we will see several properties of two sided right gamma ring of

quotients. Firstly, we observe the following important remarks.

Remark 2.5 Let (I', M) be a gamma ring, £ € I',e € M. If (£,¢) is the strong

right identity element of (I', M), then (e, £) is the strong left identity element of (M, I").

Proof. Assume that (=, e) is the strong right identity element of (I, M). Thus we

get xee = x forall x € M.Forany y € I', x, v € M, we have

x(zey —y)y = x(zey)y — xyy = (xge)yy — xyy = xyy —xyy =0

and so
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M(zey — y)M = (0).
Since (', M) is gamma ring, we get sey = y, for all y € I'. This completes proof.

Using the similar arguments as above, we can prove the following remark:

Remark 2.6 Let (I", M) be agammaring, £ € I',e € M. If (=, e) is the strong left

identity element of (I", M), then (&, £) is the strong right identity element of (M, I"}.

Let (= ) is the strong right identity element of (I", ). For a fixed element a in
M, consider a mapping A,.: M — M defined by 4,.(x) = asx for all x € M. It is easy to

prove that the mapping 4. is a right I M-module homomorphism. For all m € M,
A(aspye(m) = (a+ b)em = asm +bem = Ay (m) + 1, (M) = (Ag, + 4,.) (m),
and so
Alarpys = Ags T Ay

Now, we consider a mapping p.g: I" =T defined by pg(a) = aeff forall @ € I'. g is

a left M I'-module homomorphism. Using arguments as above, we can prove that

He(pty) = Hep T Hay-
Let's define
9 = {Ala € M} and U= {u | € T}
§ and U are additive groups. Defining the mappings
PRUOXP =@, (Aearlblayidys) 2 Apayye = Aiyye
and
UXP XU = U, (R Ararblap) ™ Hoyrzap = Hoyxp

It can be shown that (U, 2 is a gamma ring.

Theorem 2.7 Let (I, M) be a semiprime gamma ring with strong right identity

element. Then (I, M) is a subring of (4,, @,).
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Proof. Let €_: M — @_.and ¢,:I'—4, be as defined below.

6.(a) = {A,; M}, forallae M
and
¢.(B) = {tp: T} forall BET.
We will prove that (¢,.6.) is a gamma ring monomorphism. It is clear that &, is well
defined. For all a, b € M, we get
.(a+b) ={Aasn)ss M} = {Agespi M), (2.13)
B.(a) +6.(b) ={A M} +{A, M} ={A, + A, ;MIM}. (2.14)

We show that (2.13) and (2.14) are equivalent. Setting W = MI'M. Once easily

checks that W S MI'M n M. Moreover, using 4,:5y: = A,- + 4., we get

Atasnye = Ags + Ap. ON W,

Hence 6. is a group homomorphism. Also, if 8.(a)=48.(b), then
A M} ={A,;M}, ie., (A,;M) = (4,_;M). Thus there exists W € I(I", M) such that
WEMnM and A, =4,. on W, ie., asw =besw, for all weW. That is
(a —b)sW = (0).Since W is a ideal of M, we have (a —b)sMI'W = (0),and so
(a—b)eM c I (W). By [.(W)=(0), we get (a—b)eM = (0). That is
(a —b)em = 0, for all m € M. Replacing m by e, we get (a — b)ze = 0. Hence a = b.

This implies that &, is one-one, and so &, is a group monomorphism.

In similar fasion, we can shown that ¢, is a group monomorphism. For all

FeErmneM

0.(mPn) = {Agngm M), (2.15)
and

8. (M), ()6, (1) = {A s MH{ptopi THA i MY = (Aol dnes MT M. (2.16)
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We will show that (2.15) and (2.16) are equal. We have W = MI'M. Clearly

WEMIrMnM and WelIr,M) by Lemma 2.3 Using

PXUXP— P, (“:l’xs’“a}r"‘:l’_}'sj = “:l’xsa}r}'s = ":l’:r}r_:.'EJ we QEt

AmelapAn: = Amespnz: = Aimpn)s
and so A, pdn: = Armeny- ON W. Appliying the same argument as used in the above,
we see that
¢, (amy) = ¢,(a)6.(m)¢,(v). foralla,y EI'm € M.
This implies that (¢,,6.) is a gamma ring monomorphism, and so (I", M) is a
subring of (4,,@..). This completes proof.

We now prove some properties of (4,,@,.) in the following theorem.

Theorem 2.8 Let (I', M) be a semiprime gamma ring with strong left identity
element.

i) If UeI(l,M)and f: U —+ M is a right ' M-module homomorphism, then
there exists an element g € @,. such that f(u) = geu for allu e U.
ii) There exists U € I(I', M) such that g=U = M forallg € Q..
iii) Then gelJ = (0) forallg € @, and U € I(I", M) if and only if g = 0.
Proof.
i) Let UEI(r,M),f:U—M be a right ' M-module homomorphism and

g ={f; U} Since M can be embedded in @,., we have u={4, _;M} such that

Ayo:M — M, x = usx forallu € U. We get

geu = {f; Upe: THA MY = {fii A, MTU} (2.17)
And

F) = A M} (2.18)
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We will prove that (2.17) and (2.18) are equivalent. Choose W = MI'U. It is a
direct compution to verify that W € I(I',M) and W EM nMI'U. For w € W and

w=myv,meE M,y €I, v € U, we have
(fliAu )W) = (FigAu) (myv) = (fi2) (usmyv)
= f(usmp, (y)v) = f(usmyesv)
= f(usmyv) = f(u)emyv
= f(u)ew = Apry (W)
Thus fa.zA,: = Agy: On W. Hence there exists an element g € @,such that

flu) =qgeu forallue U.

ii) For any q € @Q,there exists U € I(I',M) such that g = {f; U} and f: U = M
is a right I M-module homomaorphism. By Theorem 2.8 (i), we obtain f(u) = g=u for

all u € U. This shows that gslf = M forallg € @,.

iii) Suppose g=UJ = (0) for all g €@, and U €I(I',M). Since g € @,, we get
g ={f;U}. We have gsu = 0, for all u € U. By Theorem 2.8 (i), f(u) = gzu = 0, for

allu € U. That is f(u) = 0, forall u € U. Hence g = {0; U} = {0; M} = 0 .

Conversely, let g = 0. Then g = {f; U} = {0; M}, i.e,, f(u) =0 forall u € U.
Again using Theorem 2.8 (i), we get f(u) = gsu = 0, for all uw € U. That is g=U = (0).

This completes proof.
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