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Abstract  Öz 

In this study, performance of meta-heuristic methods on optimum 
design of reinforced concrete (RC) retaining wall has been investigated 
with respect to minimizing the cost and the CO2 emission. Biogeography 
Based Optimization (BBO) and Social Spiders optimization (SSO) 
methods utilized for investigation. The minimizations of the cost, the 
CO2 emission and multi-objective of the cost+CO2 functions are described 
as objective functions of the optimization problem. There are thirteen 
design variables are defined in the optimization problem. Eight of these 
variables are the cross sectional dimensions of the retaining wall. The 
other five design variables are the reinforcement detailing of wall 
members. Flexural and shear strength requirements, minimum and 
maximum cross section areas of the reinforcement bar, the requirement 
length for reinforcement details and the factor of safety for failure 
modes  are defined as constraints functions of the optimization problem. 
The Flexural and shear strength requirements, minimum and maximum 
limitations of the reinforcement bar areas are adopted from American 
Concrete Institute (ACI 318-14) design code. In order to test 
performance of the presented optimization methods literature design 
examples are used. In addition, efficiency of steel and concrete classes 
on optimum CO2 emission and cost have been investigated by using 
different steel and concrete classes. 

 Bu çalışmada, meta-sezgisel optimizasyon yöntemlerinin betonarme 
konsol istinat duvarlarının minimum maliyet ve CO2 salınımına göre 
optimum tasarımı problemindeki performansları araştırılmıştır. 
Araştırma için, biyo-coğrafya tabanlı ve sosyal örümcek optimizasyon 
algoritmaları kullanılmıştır. Minimum maliyet fonksiyonu, minimum 
karbondioksit salınımı fonksiyonu, minimum maliyet ve 
karbondioksitin salınımını içeren çok amaçlı fonksiyon optimizasyon 
probleminin amaç fonksiyonları olarak tanımlanmıştır. Optimizasyon 
probleminde on üç adet tasarım değişkeni tanımlanmıştır. Bunlardan 
sekiz tanesi istinat duvarının en kesitini oluşturan değişkenlerdir. Diğer 
beş tanesi ise duvar elemanların donatı detaylandırmasıdır. Eğilme ve 
kesme kapasite sınırlayıcıları, minimum ve maksimum donatı alanları, 
donatı detaylandırılmasında gerekli donatı uzunlukları ve göçme 
modların güvenlik katsayıları optimizasyon probleminin tasarım 
sınırlayıcıları olarak tanımlanmıştır. Eğilme ve kesme kapasitesi 
sınırlayıcıları ve donatı alanlarının minimum ve maksimum sınır 
değerleri Amerikan beton enstitüsü (ACI 318-14) tasarım 
şartnamesinden alınmıştır. Sunulan optimizasyon yöntemlerinin 
performanslarını test etmek için literatürdeki tasarım örnekleri 
kullanılmıştır. Buna ek olarak farklı beton ve çelik malzemeleri 
kullanılarak malzeme sınıflarının optimum CO2 salınımı ve maliyeti 
üzerindeki etkinliği araştırılmıştır. 

Keywords: Biogeography, Social spider, Optimization, Reinforced 
concrete retaining walls, Sustainable design 

 Anahtar kelimeler: Biyo-coğrafya, Sosyal örümcek, Optimizasyon, 
Betonarme istinat duvarları, Sürdürebilir tasarım 

1 Introduction 

RC cantilever retaining wall is one of the favorite type of 
retaining structure. Although concrete material seems to be 
less expensive than steel, it causes more CO2 emissions to 
environment and also global warming. Thus, minimizing CO2 
emissions and cost should be considered in the optimum design 
of the RWs. However, reaching these objectives is difficult as 
discrete design variables and nonlinear functions are included 
in the optimization problem. Stochastic search techniques are 
great tools for the solution of the optimization problem. Ant 
colony optimization, hunting, particle swarm, firefly and bat 
algorithms are popular stochastic search techniques that have 
been mostly used in structural optimization problems for 10 
years. 

The BBO method [1] is the recent stochastic search technique 
which mimics the theory of island biogeography. The theory 
consist two main behaviors. These are speciation (the 
determine performance of new animals), the extinction of 
animals and the migration of animals between islands. Despite 
being the recent optimization algorithm, the BBO has been used 

in many optimization problems such as: economic dispatch 
solution [2], power flow problem [3], cognitive radio systems 
[4], security audit trail analysis [5], satellite remote sensing 
images [6], AC transmission system devices [7], approach for 
segmentation of human head [8], profit maximization of a 
generation company [9], flexible job shop scheduling problem 
[10], mirrored traveling tournament problem [11]. However, 
there is no major study about application of BBO for optimum 
design of RC structures. Hence, this study is an original study as 
it includes application of BBO in the optimizations of the RC 
structures. 

A new stochastic search algorithm and an innovative approach 
called Social Spider Optimization (SSO) technique has been 
developed in 2013 by adopting movement and mating 
behaviors of spider colony [12]. Despite being the new 
technique, the SSO algorithm has been applied on many fields 
such as: dispatch of thermal power unit [13], design of plug-in 
electric vehicle [14], wind tribune systems [15], feed forward 
neural networks learning [16], optical flow methods 
parameters [17], field weakening control of a DC motor [18] 
and energy theft detection systems[19]. However, any article 
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about an application of the SSO algorithm for RW design 
problems has been found in the literature. Hence, this study is 
the first study which uses the SSO algorithm to the RW design. 

There are numerous studies on optimum design of RC retaining 
walls: [20]-[27]. However, few researches [28] took into 
account the environmental effects of retaining wall design. In 
structural engineering, the environmental aspects have been 
considered in the recent years [28]-[36]. It is concluded from 
these studies that RC structure designs having economically 
low-CO2 emission can be obtained even from complex design 
problems. 

Outline of the remainder of the study is described as follows. 
Section 2 briefly describes mathematical modeling of the 
optimization problem. The BBO and SSO algorithms for the RC 
Cantilever Retaining Walls are described in the Sections 3 and 
4. Parametric study of the optimization algorithm is given in the 
Section 5. Details of the design examples and their results are 
given in Section 6. Conclusions of the study are provided in 
Section 7. 

2 Mathematical model 

Optimum design of RC retaining wall problems are defined as 
the selection of dimensions of retaining wall, number and 
diameter of reinforcements such that safety, stability and stress 
limitations specified by the concrete building code are satisfied. 
It is also necessary to consider the economic and environmental 
aspects in this selection. In this study, three objective functions 
are defined. The first is the minimization of the cost of the 
retaining wall which is expressed in Equation (1). 

𝑓𝑐𝑜𝑠𝑡(𝐗) = 𝐶𝑠𝑊𝑠𝑡 + 𝐶𝑐𝑉𝑐 (1) 

Where, X is the vector which contains the sequence numbers of 
design variables, Cs is the unit cost of steel, Cc is the unit cost of 
concrete, Wst is the weight of steel per unit length of the wall, 
and Vc is the volume of concrete per unit length of the wall. 

The second objective function is minimization of the CO2 
emission of the retaining wall which is expressed in Equation 
(2). 

𝑓𝐶𝑂2
(𝐗) = ∑ 𝐴𝑖

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑖=1

𝜌𝑖𝐸𝐶𝑂2𝑖 
(2) 

Where A, 𝐸𝐶𝑂2
and  are the cross sectional area, CO2 emission 

and density of the structural materials respectively. Nmaterial is 
the number of materials defined in the structure design 
problem. CO2 emissions of the structural materials are adopted 
from literature studies [33],[36] which are shown in Table 1. 

In the study, weighted aggregate of the cost and the CO2 
functions of the RC retaining walls are also considered as the 
objective function. Mathematical formulation of the objective 
function is described in Equation (3). 

𝑓𝑎𝑔𝑔𝑟 = 𝜁𝑐𝑜𝑠𝑡𝑓𝑐𝑜𝑠𝑡 + 𝜁𝐶𝑂2
𝑓𝐶𝑂2

 (3) 

Where ζcost and ζCO2 are non-negative weights which are taken 
as 1 in this study [31]. 

Thirteen design variables are defined in this mathematical 
model. Eight of these variables describe geometry of the RC 
cantilever retaining wall and the other five design variables are 
the reinforcement detailing of wall members (see Figures 1 and 
2). Upper and lower limits of cross section dimensions of the 
retaining wall are illustrated in Table 2. 

Reinforcement design variables are considered as discrete 
design variables which are defined as nϕd (n: number of bars, 
d: diameter of bars): the number and diameter of the first stem 
reinforcement which extends to toe (R1), the number and 
diameter of the second stem reinforcement which extends to 
toe (R2), the number and diameter of additional toe 
reinforcement together (R3), the number and diameter of heel 
reinforcement together (R4), and the number and diameter of 
key reinforcement together (R5). Pool of reinforcement design 
variables are shown in Table 3. 

Table 1: Unit CO2 emissions and unit price of the structural 
materials. 

Material Strength  Unit Price CO2emission  

Concrete 24 MPa 59.76 $/m3 304.75 CO2/m3 
 27 MPa 62.50 $/m3 324.76 CO2/m3 
 30 MPa 65.65 $/m3 344.54 CO2/m3 
Steel 400 MPa 0.742 $/kg 0.3857 CO2/kg 
 500 MPa 0.770 $/kg 0.3962 CO2/kg 

Table 2: Lower and upper limits of cross sectional design 
variables [20],[24],[39],[40]. 

Design Variables Lower Bound Upper Bound 

X1 0.40H 0.80H 
X2 0.10H 0.60H 
X3 0.20 m 0.50 m 
X4 0.20 m 0.40 m 
X5 0.20 m 0.3H 
X6 0.5H 0.8H 
X7 0.20 m 0.40 m 
X8 0.20 m 0.90 m 

 

Figure 1: Design variables of the retaining wall. 

There are thirty one constraint functions defined in the 
optimization. First three of them can be grouped into stability 
constraint functions which are described as: overturning, 
sliding and bearing capacity constraint functions in (4)-(6). The 
fourth constraint function is defined from the “no tension” 
condition (see Equation (7)). 
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Figure 2: Reinforcement description. 

Table 3: Reinforcement design variables. 

# Value # Value 
1 No Bar 34 330 
2 110 35 332 
3 112 . . 
4 114 . . 
. . 78 730 
. . 79 810 
. . . . 

13 210 100 930 
14 212 101 1010 

. . . . 

. . 109 1026 
23 230 110 1028 
24 310 111 1030 

 

𝑔1(𝑿) =
𝐹𝑆𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔

𝐹𝑆𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑓𝑜𝑟 𝑜𝑣𝑒𝑟
− 1 ≥ 0 (4) 

𝑔2(𝑿) =
𝐹𝑆𝑠𝑙𝑖𝑑𝑖𝑛𝑔

𝐹𝑆𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑓𝑜𝑟 𝑠𝑙𝑖𝑑𝑒
− 1 ≥ 0 (5) 

𝑔3(𝑿) =
𝐹𝑆𝑏𝑒𝑎𝑟𝑖𝑛𝑔

𝐹𝑆𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑓𝑜𝑟 𝑏𝑒𝑎𝑟
− 1 ≥ 0 (6) 

𝑔4(𝑿) = 𝑞𝑚𝑖𝑛 ≥ 0 (7) 

The 5th-14th constraint functions, defined in the optimization 
problem, are capacity constraint functions which are 
formulized in Equation (8) and Equation (9), 

𝑔5−9(𝑿) = (
𝑀𝑑

𝑀𝑢
)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

− 1 ≤ 0 (8) 

𝑔10−14(𝑿) = (
𝑉𝑑

𝑉𝑢
)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

− 1 ≤ 0 (9) 

where Mu is the ultimate resistance moment, Md is the design 
moment, Vu is the ultimate shear capacity, Vd is the design shear 
force and 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 refers to either the stem, toe, heel, 
and key of the retaining wall (see Figure 1). Reinforcement 
arrangement constraint functions are also considered in this 
optimization problem which is described as: 

𝑔15−19(𝑿) = (
𝐴𝑠

𝑚𝑖𝑛

𝐴𝑠
)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

− 1 ≤ 0 (10) 

 𝑔20−24(𝑿) = (
𝐴𝑠

𝐴𝑠
𝑚𝑎𝑥)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

− 1 ≤ 0 

where Asmin and Asmax are the minimum and maximum 
reinforcement areas defined in code [37]. The last five 
constraint function groups are the geometric limitation 
functions of size, reinforcement bars and clear cover limitation 
of the retaining wall which are formulated in (11)-(16). 

𝑔25(𝑿) =
𝑋2 + 𝑋3

𝑋1
− 1 ≤ 0 (11) 

𝑔26(𝑿) =
𝑋6 + 𝑋7

𝑋1
− 1 ≤ 0 (12) 

𝑔27(𝑿) =
𝐿𝑑𝑏

𝑋5 − (2. 𝑐)
− 1 ≤ 0 (13) 

or  

𝑔28(𝑿) =
𝑙𝑑𝑏

𝑋1 − 𝑋2 − 𝐶
− 1 ≤ 0  

and 

𝑔29(𝑿) =
12𝑑𝑏

𝑋5 − 𝐶
− 1 ≤ 0 

(14) 

𝑔30(𝑿) =
𝑆𝑚𝑖𝑛

𝑆𝑛𝑒𝑡
− 1 ≤ 0 (15) 

𝑔31(𝑿) =
𝑆𝑛𝑒𝑡

𝑆𝑝𝑚𝑎𝑥
− 1 ≥ 0 (16) 

where Ldb is the minimum development length; Ldh is the 
minimum hook development length; db is the diameter of the 
hooked bar; Snet is the clear spacing, and Spmax is the maximum 
clear spacing (See Figure 3). 

 

Figure 3: Reinforcement details. 

3 Bio-geography based optimization algorithm 

BBO algorithm is firstly introduced by D. Simon in 2008 [1], 
[38] by adopting the theory of island biogeography. The BBO 
algorithm describes the extinction and migrations of species 
between islands. The island is defined as an isolated area for 
species. Two main indexes are related to the extinction and 
migrations of species between islands. These are habitat 
suitability index (HIS) and suitability index variables (SIV). HIS 
parameter describes life quality of habitats in Islands. SIV index 
characterize habitability which can be considered as 
independent variables of the habitat. If the habitats have high 
HIS index, the islands provide good life standards to the species 
and a large number of them live in the habitats. These habitats 
have a low species immigration rate because they are already 
nearly saturated. This assumption is used in the BBO algorithm 
for carrying out migration. Relationship between number of 
species and rate of emigration and immigration is illustrated in 
Figure 4 [1]. 

In the Figure 4,  is the immigration rate;  is the emigration 
rate; I is the maximum immigration rate; E is the maximum 
emigration rate; S0 is the equilibrium number of species and 
Smax is the maximum number of species.  
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Figure 4: Species model of a single habitat. 

In the BBO algorithm, the new candidate design is generated by 
modifying the independent design variable of the old design 
which is related to the immigration rate of the design variable. 
If an independent variable is to be modified, then the 
emigrating candidate design is chosen by using the roulette 
wheel selection method that is related to the emigration 
probability (see Equation (17)). 

𝑃(𝑥𝑗) =
𝜇𝑗

∑ 𝜇𝑖
𝑁
𝑖=1

, 𝑗 = 1, … , 𝑁 (17) 

Where N is the size of population. One more factor is related to 
the generation of the new design called Mutation. This factor is 
used to increase the number of species in the islands. Mutation 
probability of each design is described as follows: 

𝑚(𝑠) = 𝑚𝑚𝑎𝑥 (
1 − 𝑃𝑠

𝑃𝑚𝑎𝑥
) (18) 

Where mmax maximum mutation probability defined by user Ps 
probability of species and Pmax is the maximum probability 
species. 

The optimization method based on BBO algorithm tries to find 
the optimum geometry and reinforcement details of the RC 
Cantilever Retaining Walls. The steps of the optimization 
method are described as follows: 

Step1: In first step, number of population size (N) RC cantilever 
retaining wall designs are generated randomly using Equation 
(19).  Then, the designs are evaluated and penalized values of 
their objective functions are calculated using Equation (20). 

𝑥𝑖 = 𝑥𝑙𝑖 + 𝑟(𝑥𝑢𝑖 − 𝑥𝑙𝑖) , 𝑖 = 1, … , 𝑁 (19) 

𝑓𝑝 = 𝑓 ∙ (1 + 𝐶)𝜀  (20) 

Where f is value of the objective functions described in 
Equations (1-3), C is the summation of constraint violations 
calculated using constraint functions stated by Equations  
(4-16),   is penalty coefficient which is taken as 2 and r is a 
random number between {0, 1}. In general form, constraint 
violations are calculated as: 

𝐶𝑖 = {
0 𝑔𝑖(𝑿) ≤ 0

𝑔𝑖(𝑿) 𝑔𝑖(𝑿) > 0
 𝑖 = 1,2, … , 𝑁𝐶 (21) 

Where, gi(x) is the i th constraint function and NC is the number 
of constraint functions defined in the optimum design problem. 

Step2: Firstly the elite designs which have the lowest penalized 
objective function values are determined in this step. Then, 

immigration and emigration rates of the designs are calculated 
as follows: 

𝜇𝑗 =
𝑁 + 1 − 𝑗

𝑁 + 1
, 𝜆𝑗 = 1 − 𝜇𝑗 , 𝑗 = 1,2, … , 𝑁 (22) 

Step3: The immigration and the emigrations parts are 
performed in the step. In the immigration part, the RC 
cantilever retaining wall designs are updated with respect to 
their immigration rates by modifying the independent design 
variables. A change criterion for the independent design 
variable is described as: 

𝑟 < 𝜆𝑗
𝑘 , 𝑗 = 1,2, … , 𝑁, 𝑘 = 1,2, … , 𝑁𝐷𝑉 (23) 

Where NDV is number of design variables defined in the 
optimization problem. In emigration part, the designs are 
modified by using the roulette wheel selection method that is 
related to the emigration probability described in the Equation 
(17). 

Step4: The designs are mutated in this step. Mutation 
probabilities of the designs are calculated using Equation (18). 
If mutation is performed, new RC cantilever retaining wall 
design is generated randomly. 

The steps 2 to 4 are repeated until a pre-assigned maximum 
number of iterations are completed. 

4 Social spider optimization algorithm 

Social spider optimization (SSO) algorithm is one of the newest 
meta-heuristic search algorithm mimics the behaviors of a 
spider colony. In the spider colony, male and female spiders 
perform different tasks called movement and mating.  In the 
movement stage, each spider moves to new position which is 
related to vibrations of its and other colony members. The 
vibrations of the spiders depend on the gender, distance 
between the spiders and their weights. In the mating stage, the 
each male spider having higher weight (dominant males) finds 
the suitable female spiders in its range and generates a new 
spider. 

The main steps of the SSO algorithm for the optimum design of 
the optimization problem are described as follows; 

Step 1: Initial parameters of the SSO algorithm, which are the 
number of female spiders (Nf) and the number of male spiders 
(Nm), are determined in this step using equations (24) and (25) 
respectively. 

𝑁𝑓 =  𝑟𝑜𝑢𝑛𝑑((0.9 − 0.25 ∙ 𝑟)𝑁𝑆) (24) 

𝑁𝑚 = 𝑁𝑆 − 𝑁𝑓 (25) 

Where, round is a function which rounds to the value of the 
nearest integer. 

Step 2:  Initial retaining wall designs, assigned to the female (fi,j) 
and the male (mi,j) spiders, are generated randomly using 
equations (26) and (27). Then, penalized objective function 
values of the designs (fp) are calculated using equation (20). 

𝑓𝑖𝑗 = 𝑥𝑙𝑖 + 𝑟(𝑥𝑢𝑖 − 𝑥𝑙𝑖) 𝑖 = 1, … , 𝑁𝑓 𝑗 = 1, … , 𝑁𝐷𝑉 (26) 

𝑚𝑘𝑗 = 𝑥𝑙𝑖 + 𝑟(𝑥𝑢𝑖 − 𝑥𝑙𝑖), k=1,…,Nm j=1,…,NDV (27) 

Step 3: After the evaluation process, the spider having the 
lowest objective function value and called the best spider (Sb) 
and the spider having the highest objective function value and 
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called the worst spider (Sw) are determined. Then, the weights 
of the spiders are calculated as follows: 

𝑤𝑖 =
𝑓ℎ𝑖𝑔ℎ − 𝑓𝑖

𝑓ℎ𝑖𝑔ℎ − 𝑓𝑙𝑜𝑤
 𝑖 = 1, … , 𝑁𝑠 (28) 

Where, fhigh, flow and fi are objective function values of the worst 
spider, the best spider and the ith spider respectively. 

Step 4: In this step, all spiders move to new positions (generate 
new designs).  In the colony, the female and the male spiders 
use different movement strategies given as follows: 

f
i,j

k+1= {
fi,j

k+α∙vibci(xc,j-fi,j
k)+vibbi(xb,j-fi,j

k)+δ(r-0.5)←PF      

fi,j
k+α∙vibci(xc,j-fi,j

k)+vibbi(xb,j-fi,j
k)+δ(r-0.5)←1-PF 

 

i=1,…,Nf,  j=1,…,n 

(29) 

mi,j
k+1= {

mi,j
k +α∙vibfi(xf,j-mi,j

k )+δ(rand-0.5)  if wnf+i>wmed  i=1,…,Nm

mi,j
k +α∙ (

∑ mh,j
k ∙wnf+h

Nm
h=1

∑ wnf+h
Nm
h=1

-mi,j
k )  if wnf+i≤wmed j=1,…,n

 

i=1,…,Nm ,  j=1,…,n 

(30) 

Where, α, β and  rand are the random numbers between {0, 1}; 
xc,j and xb,j are the jth design variable of the nearest and the best 
spider; vibci is the vibration between the ith spider and the 
nearest spider to the ith spider calculated using equation (31); 
vibbi is the vibration between the ith spider and the best spider 
calculated using equation (32); vibfi is the vibration between 
the ith spider and the nearest female spider to the ith spider 
calculated using equation (33); wmed is the weight of the median 
spider; k is the iteration number; PF is the female movement 
parameter  between {0, 1}. 

vibci=0 if(wi≥wc) 

vibci=wc∙e- ∑ (xc,j-xi,j)²n
j=1 if(wi<wc)

 (31) 

vibbi=wb∙e- ∑ (xb,j-xi,j)²n
j=1  (32) 

vibfi=wf∙e
- ∑ (xf,j-xi,j)²n

j=1  (33) 

Where xf,j is the jth design variable of the nearest female spider; 
wc, wb and wf are the weights of the nearest spider, the best 
spider and the nearest female spider respectively. After the 
movement, the new designs are evaluated, their penalized costs 
are calculated using equation (20) and the colony is updated.  

Step 5: In this step, the mating is performed by the dominant 
male spiders and the female spiders within the range of the 
dominant spiders. The dominant male spiders are determined 
by selecting male spiders whose weights are heavier than 
weight of the median spider. The female spiders in the range of 
the dominant male spiders are determined using following 
conditions: 

if√∑ (xm,j-xf,j)²

n

j=1

≤
∑ (𝑥𝑢𝑗 − 𝑥𝑙𝑗)n

j=1

2 ∙ 𝑁𝐷𝑉
  

 m=1,…,NDm, f=1,…,Nf 

(34) 

Where, xm,j is the jth design variable of the mth dominant spider;  
xf,j is the jth design variable of the female spider; and NDm is the 
number of dominant male spiders. If there are no female 
spiders in the range of the dominant male spiders, mating 
operation is not performed for the dominant male spider. After 
determination of female spiders, the new design is generated. 

Then, the new design is evaluated, its penalized cost is 
calculated using equation (20). If cost of the new design is less 
than the worst design in the colony, the worst design is replaced 
with the new design and the colony is updated. 

Step 6: The termination criteria, which is the reaching 
maximum iteration number, is checked. If the termination 
criteria are satisfied, the algorithm is stopped. Otherwise, steps 
3 to 6 are repeated. 

5 Parametric study of the optimization 
algorithms 

The selection of the search parameters values is considerably 
vital on the performance of the optimization algorithms. Thus, 
parametric study is demanded to find suitable values of the 
search parameters. The cost optimization the 3.5 m height 
cantilever RW is selected for the parametric study. Detail of the 
structure is described in section 6.1. The RW is optimized by 
using the optimization algorithms with different values of the 
search parameters: N=25, 50 and 100, mutation 
probability=0.1%, 0.5% 1% and 5% and number of elite 
population=0.04*N, 0.1*N for the BBO algorithm; Ns=25, 50 and 
100, PF=0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 for the SSO algorithm. In 
each test, the example is optimized 50 times using different 
seed values. The average and best optimum costs obtained from 
these tests are illustrated in Tables 4 and 5. According to the 
tables, the most convenient search parameters are bolded in 
the tables. 

Table 4: Minimum cost values for the BBO algorithm with 
respect to different internal parameters.  

   Mutation Probability 

Elite D.  N 0.1% 0.5% 1% 5% 10% 

0
.0

4
*N

 B
es

t 

25 116.1 115.2 116.3 114.3 114.7 

50 114.4 114.4 114.6 114.1 113.7 

100 113.9 114.3 113.7 113.9 113.8 

M
ea

n
 25 120.6 120.2 121.1 119.5 118.8 

50 118.9 118.7 119.1 117.4 116.6 

100 117.1 116.8 116.3 116.6 116.5 

0
.1

*N
 B

es
t 

25 115.5 115.8 114.8 116.3 113.9 

50 114.5 114.7 114.6 114.4 113.8 

100 115.3 114.2 113.9 114.2 113.8 

M
ea

n
 25 121.6 122.1 121 120.8 118.3 

50 118.1 119.8 118.2 118.2 117.1 

100 117.9 117.3 116.8 117.1 116.8 

Table 5: Minimum cost values for the SSO algorithm with 
respect to different internal parameters. 

𝑃𝐹  
0.3 0.4 0.5 0.6 0.7 0.8 

𝑁𝑠 

25 

B
es

t 117.8 117 119.1 117.1 118.2 114.6 
50 119.2 116.3 119.1 119.8 119.8 118.1 
100 123.9 117.1 120.3 119.8 118.5 118.9 
25 

M
ea n
 

122.2 117 120.9 117.9 119.4 116.8 
50 123.3 118.8 120.7 120.8 122.1 119.4 
100 124.4 122 122 124.9 121.4 124.1 

6 Design examples 

6.1 Case 1: Comparison of metaheuristics on cost 
optimization of retaining walls 

In this case, two design examples (3.5 m and 5.2 m Height 
Retaining Walls) are solved using presented algorithms which 
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are previously used in literature [24],[39],[40]. Only cost 
optimizations are performed in these design examples and 
obtained results are compared to literature results (Harmony 
Search (HS) [24], Classical Firefly Algorithm (CFFA) and 
Adaptive Firefly Algorithm (AFFA) [39]). The input data of the 
examples are shown in Table 6. The search parameters of the 
literature algorithms are illustrated in Table 7. 

Table 6: Search parameters of literature algorithms. 

Algorithm Parameter Ex1. Ex.2 

HS 
HMS 15 20 

HMCR 0.9 0.75 
PAR 0.3 0.4 

CFFA 

NFF 80 100 
B0 0.5 0.5 

ACoeff 10 10 
RP 0.4 0.4 

AFFA 

NFF 80 100 
B0 0.5 0.5 

ACoeff 10 10 
RPmin 0.1 0.1 
RPmax 0.8 0.8 

Shrinkage and temporary reinforcement area are computed as 
0.002% of the cross-sectional area of the retaining wall and the 
length of these bars is taken as 100 cm (per meter). The design 
examples are optimized 50 times using different seed values. 
After 50 runs, the average costs and corresponding standard 
deviations on optimized costs are illustrated in Table 8. Design 
variables and cost details of the best optimum design and 
literature results are illustrated in Tables 8-11. The search 
histories of the best optimum designs of each algorithm are 
shown in Figures 5 and 6. 

In First example, the minimum cost is obtained as $113.67 by 
utilizing the BBO algorithm. This value is 3.79% less than the 
cost of HS’s optimum design, 0.69% less than the cost of AFFA’s 
optimum design, 0.82% less than the cost of SSO’s optimum 
design and 15.1% less than cost of CFFA’s optimum design. In 
the second example, the best design obtained using the SSO 
algorithm ($171.89). It is also remarked that all obtained 
designs satisfy design limitations described in section 2. 

 

Figure 5: Search histories of the best design for the ex. 1*. 

 
Figure 6: Search histories of the best design for the ex.2*. 

*:Search history data of other algorithms are taken by authors of the literatüre. 

Table 7: Statistical results of examples. 

  
Best Average 

St. 
Deviation 

Ex.1 BBO 113.93 118.70 3.71 
SSO 114.6 117.00 1.92 

Ex.2 BBO 180.16 198.40 13.21 
SSO 171.89 182.16 10.16 

Table 8: Cost details of the optimum designs for the ex. 1. 

Cost Details HS[24] BBO SSO CFFA[39] AFFA[39] 

Vol.Conc.(m3) 2.03 1.89 1.94 2.17 1.93 

Weightst.(kg) 92.20 95.21 77.47 110.05 93.24 

CostConc.($) 81.10 75.58 92.82 86.78 77.17 

Costst. ($) 36.88 39.09 37.13 44.02 37.29 

CostTotal ($) 117.98 113.67 114.60 130.80 114.46 

Table 9: Optimum values of design variables for the ex.1. 

Des. Var. HS[24] BBO SSO CFFA[39] AFFA[39] 

X1 2.70 2.61 2.63 3.26 2.91 

X2 1.60 1.42 1.48 1.47 1.46 

X3 0.35 0.32 0.34 0.46 0.46 

X4 0.20 0.20 0.20 0.20 0.20 

X5 0.35 0.31 0.32 0.35 0.34 

X6 1.90 2.40 2.40 2.80 2.61 

X7 0.20 0.20 0.20 0.20 0.20 

X8 0.60 0.84 0.76 0.20 0.64 

R1 1010 318 1010 226 516 
R2 710 912 810 816 816 
R3 110 - 110 - - 

R4 1012 614 912 914 912 
R5 710 710 710 710 710 

Table 10: Cost details of the optimum designs for the ex.2. 

 HS[24] BBO SSO CFFA[39] AFFA[39] 

Vol.Conc.(m3) 2.84 2.87 2.27 2.89 2.85 

Weightst.(kg) 154.62 163 202.48 160.72 150.27 

CostConc.($) 113.50 114.84 90.90 115.75 113.93 

Costst. ($) 61.85 65.32 80.99 64.29 60.10 

CostTotal ($) 175.35 180.16 171.89 180.04 174.03 

Table 11: Optimum values of design variables for the ex. 2. 

Des. 
Var. 

HS[24] BBO SSO CFFA[39] AFFA[39] 

X1 2.85 3.25 3.05 3.26 2.91 
X2 1.40 1.44 1.56 1.47 1.46 
X3 0.45 0.45 0.21 0.46 0.46 
X4 0.20 0.20 0.20 0.20 0.20 
X5 0.35 0.34 0.36 0.35 0.34 
X6 2.65 2.83 2.71 2.88 2.61 
X7 0.20 0.20 0.20 0.20 0.20 
X8 0.75 0.31 0.60 0.20 0.64 
R1 516 516 916 226 516 
R2 816 916 620 816 916 
R3 - - - - - 
R4 912 1014 816 914 714 
R5 710 710 512 710 710 

6.2 Case 2: Efficiency of steel and concrete classes on 
optimum CO2 emission and cost 

In this case, a new retaining wall having 4.0m height are 
optimized using the BBO and the SSO algorithms by considering 
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minimizing the cost, minimizing the CO2 emission and 
minimizing both the cost and the CO2 emission objective 
functions. In each optimization test, the example problem is 
optimized using different concrete and steel material types 
which are described in Table 1. The unit weight of concrete and 
steel are taken as 2300 kgf/m3 and 7850 kgf/m3 respectively. 
Other parameters are same as the first example of the case 1. 
Optimum cost, CO2 emission and multi-objective function 
values of all optimum solutions of the presented algorithms are 
illustrated in Tables 13 and 14. According to the tables that 
optimum costs which are obtained by considering different 
objectives vary from 0.29% (for C27, S400 materials) to 3%  
(for C30, S500 materials) for the BBO algorithm; from 1.52% 
(for C24, S400 materials) to 3.93% (for C30, S400 materials) for 
the SSO algorithm. These differences are not significant. 
However, the differences between maximum and minimum 
values of optimum CO2 emission are 3.44% (for C27, S400 
materials) and 8.23% (for C30, S400 materials) for the BBO 
algorithm; 3.71% (for C27, S400 materials) and 24.4% (for C30, 
S400 materials) for the BBO algorithm. These are considerably 
high. In addition there is not supremacy of any optimization can 
be concluded in the tables. 

Table 12: The objective function values of the BBO algorithm 
for case 2. 

Objective 
Material 

C24 
S400 

C27 
S400 

C30 
S400 

C24 
S500 

C27 
S500 

C30 
S500 

Cost 

Cost 241.7 264.1 269.4 241.2 277.1 281.8 

CO2 804.4 815.3 888.1 781.7 792.2 866.0 

Multi 1046.1 1079.4 1157.5 1022.9 1069.3 1147.8 

CO2 

Cost 244.6 271.7 274.0 241.9 279.5 282.6 

CO2 743.0 752.1 853.3 754.7 764.1 807.3 

Multi 987.6 1023.8 1127.3 996.6 1043.6 1089.9 

Multi. 

Cost 241.8 269.0 269.7 241.8 277.2 281.9 

CO2 744.2 753.6 857.3 760.1 765.9 810.1 

Multi. 986.0 1022.6 1127.0 1001.9 1043.1 1092.0 

Table 13: The objective function values of the SSO algorithm 
for case 2. 

Objective 
Material 

C24 
S400 

C27 
S400 

C30 
S400 

C24 
S500 

C27 
S500 

C30 
S500 

Cost 

Cost  227.8 255.2 261.4 229.4 241.7 259.7 

CO2  750.6 807.8 871.6 761.9 800.3 879.5 

Multi 978.4 1063.0 1133.0 991.4 1042.0 1139.2 

CO2 

Cost  231.5 261.7 267.4 235.2 252.1 264.6 

CO2  714.2 735.2 831.2 732.1 741.2 832.2 

Multi 945.7 996.9 1098.7 967.3 993.3 1096.8 

Multi. 

Cost  229.5 257.1 263.4 231.2 247.3 260.0 

CO2  715.9 738.7 835.3 735.5 741.7 836.1 

Multi. 945.4 995.8 1098.7 966.6 989.0 1096.2 

Distribution of optimum values with respect to different 
materials in case of the minimizing cost and the minimizing CO2 
objectives are plotted in Figures 7,  8 respectively. It is 
concluded from the figures that the lowest cost value is 
obtained using the C24 and S400 materials. The second lowest 
cost is obtained using the C24 and S500 materials which is close 
to the lowest cost value of the C24 and S400 materials. 
Moreover, the lowest CO2 emission is obtained using the C24 
and S400 materials.  In addition, the optimum cost and CO2 
values increase when concrete strength is increased. On the 
contrary, any relationship between the steel class and the 
optimum cost values cannot be defined. 

 

Figure 7: Variations of optimum cost values with respect to 
different materials. 

 

Figure 8: Variations of optimum CO2 values with respect to 
different materials 

Concrete and steel costs/CO2 emissions of the optimum designs 
are illustrated in Figures 9-14 respectively. Five inferences are 
concluded from these figures. The first one is: concrete cost rate 
is generally higher than steel cost rate.  The second one is: steel 
cost rate generally increases in higher steel classes.  The third 
one is: steel cost rate for minimize cost and multi objective 
functions is higher than steel cost rate for minimize cost 
objective function. The fourth one is: the concrete CO2 emission 
rate for minimize cost and multi objective functions is lower 
than the concrete CO2 emission rate for minimize cost objective 
function. The fifth one is: the CO2 emission of concrete much 
higher than CO2 emission of steel. 

 

Figure 9: Concrete and steel costs of optimum designs 
(Objective function: Minimize cost). 
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Figure 10: Concrete and steel costs of optimum designs 
(Objective function: Minimize CO2 emission). 

 
Figure 11: Concrete and steel costs of optimum designs 

(Objective function: Multi objective). 

 
Figure 12: Concrete and steel CO2 emissions of optimum 

designs. (Objective function: Minimize cost). 

 

Figure 13: Concrete and steel CO2 emissions of optimum 
designs. (Objective function: Minimize CO2 emission). 

 

Figure 14: Concrete and steel CO2 emissions of optimum 
designs. (Objective function: Multi objective). 

7 Conclusion 

In this study, the BBO and the SSO algorithms are proposed and 
utilized to calculate the cost and the CO2 emission for the RC 
retaining wall design through investigation of two main 
subjects. First is the comparison performance of the meta-
heuristic search algorithms for retaining wall design problems 
and the second is the optimization of the retaining wall under 
environmental considerations. 

In first case, the 3.5 m and 5.2 m height retaining walls which 
are previously used in the literature, are optimized by 
considering minimizing the cost objective functions and taking 
unique material properties. The obtained results are compared 
to literature studies. In the first example, the BBO algorithm 
shows the best performance and the SSO algorithm has third 
best performance. Whereas, the SSO algorithm shows the best 
performance and the BBO algorithm has fifth best performance. 
Therefore, the supremacy between the SSO and BBO algorithms 
cannot be defined. However, it can be concluded that, the 
presented algorithms are powerful and efficient in finding the 
optimum solution for optimum cost design of RW problems. 

In the second case, the new example (4.0 m height retaining 
wall) is optimized using the presented algorithms by 
considering minimizing the cost, minimizing the CO2 and 
minimizing the weighted aggregate of the cost and the CO2 
objective functions. Three concrete material types (C24, C27 
and C30) and two steel material types (S400 and S500) are 
used. In total, the design example is optimized thirty six times 
by taking different objectives and different materials. 
According to obtained results from these runs, six main 
outcomes are obtained. The first outcome is that the 
optimization of the retaining wall considering the minimizing 
CO2 emission objective function does not have a material 
influence on the optimum cost of the retaining wall. Therefore, 
the minimizing CO2 emission objective function can be used in 
the cost optimization problem. The second outcome is that 
when lower material classes (especially concrete class) are 
used, better optimum cost values and optimum CO2 emissions 
are obtained. In summary, if lower class materials are used, 
lower cost and CO2 emissions are obtained. The third outcome 
is: usage of higher strength concrete increases steel material 
usage. The fourth outcome: concrete material cost constitute 
majority of total cost and amount of concrete has huge 
percentage in total CO2 emission. The fifth outcome: steel cost 
rate increases when the minimizing CO2 emission and multi-
objective functions are used. The sixth outcome: CO2 emission 
rate of concrete is decreases when the minimizing CO2 emission 
and multi-objective functions are used. 

8 List of symbols 
A: Cross sectional area of the structural material, 

ACoeff: Absorption coefficient, 

Asmin: Minimum reinforcement area, 

Asmax: Maximum reinforcement area, 

B0: Attractiveness at original location, 

C: Summation of constraint violations, 

Cs: Unit cost of steel, 

db: Diameter of the hooked bar, 
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Cc: Unit cost of concrete, 

𝐸𝐶𝑂2
: CO2 emission of the structural material, 

f: Value of the objective function, 

fi,j: Female spider, 

fhigh: Objective function of worst spider, 

flow: Objective function of best spider, 

fp: Penalized value of the objective function, 

gi: i th constraints function, 

H: Height of stem, 

HMS: Harmony memory size, 

HMCR: Harmony memory considering rate, 

I: Maximum immigration rate, 

k: Iteration number, 

Ldb: Minimum development length, 

Ldh: Minimum hook development length, 

Md: Design moment, 

mi,j: Male spider, 

mmax: Maximum mutation probability, 

Mu: Ultimate resistance moment, 

N: Size of population, 

NC: Number of constraint functions, 

NDm: Number of dominant male spiders, 

NDV: Number of design variables, 

Nf: Number of female spiders, 

NFF: Number of firefly, 

Nm: Number of male spiders, 

Nmaterial: Number of materials, 

Ns: Number of spiders, 

PAR: Pitch adjusting rate, 

PF: Female movement parameter between {0, 1}, 

Pmax: Naximum number of species, 

r: Random number between {0, 1}, 

round: Function which rounds to the value of the nearest integer, 

RP: Randomness parameter, 

RPmin: Minimum randomness parameter, 

RPmax: Maximum randomness parameter, 

R1: First vertical steel reinforcement in the stem, 

R2: Second vertical steel reinforcement in the stem, 

R3: Horizontal steel reinforcement in the toe, 

R4: Horizontal steel reinforcement in the heel, 

R5: Vertical steel reinforcement of key, 

Sb: Best spider, 

Smax: Maximum number of species, 

Snet: Clear spacing, 

Spmax: Maximum clear spacing, 

Sw: Worst spider, 

S0 : Equilibrium number of species, 

Vc: Volume of concrete per unit length of the Wall, 

Vd: Design shear force, 

vibci: Vibration between the ith spider and the nearest spider, 

vibbi: Vibration between the ith spider and the best spider, 

vibfi: Vibration between the ith spider and the nearest female 
spider, 

Vu: Ultimate shear capacity, 

wb:  Weight of the best spider, 

wc: Weight of the nearest spider, 

wf: Weight of the nearest female spider, 

wmed: Weight of the median spider, 

Wst: Weight of steel per unit length of the Wall, 

X: Vector of design variables, 

xb: Design variable of the best spider, 

xc: Design variable of the nearest spider, 

xf: Design variable of female spider, 

xl: Lower boundary of design variable, 

xm: Design variable of male spider, 

xu: Upper boundary of design variable, 

X1: Width of the base, 

X2: Toe projection, 

X3: Thickness at the bottom of the stem, 

X4: Thickness at the top of the stem, 

X5: Thickness of base slab, 

X6: Distance from toe to the front of the base shear key, 

X7: Width of the key, 

X8: Depth of the key, 

α: Random number between {0, 1}, 
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β: Random number between {0, 1}, 

: Random number between {0, 1}, 

: Penalty coefficient, 

ζcost: Non-negative weight coefficient of cost, 

ζCO2: Non-negative weight coefficient of CO2, 

: Immigration rate, 

: Emigration rate, 

: density of the structural material. 
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