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Abstract: Lung fibrosis is a highly heterogeneous and life-threatening disease in patients.  Studies on the molecular pathogenesis of 

lung fibrosis have more often focused on the mechanisms regulating the increase of extracellular matrix and collagen. Although 

these studies have been conducted in this way, many different new studies are also being conducted. These studies have focused 
more on the mechanisms regulating fibroblast activation and differentiation, how fibrosis starts and how it progresses. In this 

review, especially the molecular mechanisms of lung fibrosis are emphasized and examined. 
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Özet: Akciğer fibrozisi oldukça heterojen ve yaşamı tehdit eden bir hastalıktır. Akciğer fibrozisinin moleküler patogenezi üzerine 

yapılan çalışmalar daha çok hücre dışı matriks ve kollajen artışını düzenleyen mekanizmalara odaklanmıştır. Bu çalışmalar var olsa 
da, birçok farklı yeni çalışma da yapılmaktadır. Bu çalışmalar daha çok fibroblast aktivasyonunu ve farklılaşmasını düzenleyen 

mekanizmalara, fibrozisin nasıl başladığına ve nasıl ilerlediğine odaklanmaktadır. Bu derlemede özellikle akciğer fibrozisinin 

moleküler mekanizmaları üzerinde durulmuş ve mekanizmaları incelenmiştir. 
Anahtar Kelimeler: Akciğer fibrozisi, akciğer fibrozisi patolojisi, moleküler mekanizma 
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1. Introduction  

Lung fibrosis, which occurs in patients with 

alveolar fibrosis, is quite resistant to treatment 

and has a high mortality. In patients, this 

process includes the progression of fibrosis in 

the lung, respiratory distress, and irreversible 

serious damage to the lung. Although the 

etiology of lung fibrosis is not yet known, 

idiopathic pulmonary fibrosis (IPF), a serious 

disease form, is predicted to live maximum 6 

years after diagnosis (1). 

 

Lung Fibrosis Pathology 

 

Studies on lung fibrosis and responsible 

molecular mechanisms are ongoing. The 

fibrotic process can arise from many different 

etiologies. In particular, patients with acute 

respiratory distress syndrome (ARDS) (2) 

experience an increase in many factors 

leading to lung fibrosis. In other patients with 

pulmonary fibrosis, irradiation to the chest 

may occur from environmental factors such as 

exposure to asbestos or silica. Although very 

rare, lung fibrosis can develop very rapidly 

with unknown damage and this is mostly IPF. 

The pathology that causes lung fibrosis has 

become more complex over the years. Over 

the years, the number of cellular and 

molecular hypotheses of the disease has 

increased. In lung fibrosis, age-related loss of 

function occurs at the molecular, cellular and 

tissue levels (3, 4).  

 

Lung Fibrosis and Molecular Mechanisms 

 

Wound healing and fibrosis, effective in lung 

fibrosis, are characterized by complete 

inflammation, tissue injury, myofibroblast 

transformation, fibroblast migration, 

extracellular matrix deposition (ECM), and 

ECM remodeling. These pathological 

processes cannot be considered independent 

of each other and are mechanisms that trigger 

each other, thus exacerbating fibrosis. 

Fibrosis, characterized by these mechanisms, 

can occur in many vital organs such as the 

skin, lung, and liver, and plays an active role 

in many diseases. During fibrosis, fibroblasts, 

immune, epithelial, and endothelial cells are 

very actively involved (5, 6). Many 

environmental factors, such as exposure to 

organic and inorganic harmful compounds, 

infection, smoking, cause damage to the lung 

epithelium.  It is here that tissue healing is 

activated in response to the damaged lung 

tissue. This process actually facilitates the 

repair of lung tissue and its transformation 

and adaptation to damage (7). In all fibrotic 

processes, the underlying mechanism of 

fibrosis is not fundamentally different, 

although the etiologies or causes of 

occurrence may differ. In summary, cellular 

fibrosis is mainly characterized by abnormal 

deposition of ECM components, especially 

collagen. There is an age-dependent 

irreversible breakdown of lung fibrosis as 

described above.  In lung fibrosis, age-

dependent inability to repair damaged tissue, 

resolve fibrosis, tissue scarring, disruption of 

tissue homeostasis and ultimately organ 

damage (8). In lung fibrosis, it can be said that 

the degree of damage and pathology increases 

with aging in the damaged lung. Under 

normal lung injury conditions, alveolar 

epithelial cell 2s (AEC2s) are replaced by 

proliferating and differentiating AEC2 cells 

and some stem cells, and new vessel 

formation, coagulation, migration and 

transformation of fibroblast cells, collagen 

synthesis in endothelial cells are stimulated. 

Chemokines such as transforming growth 

factor (TGF), platelet-derived growth factor 

(PDGF), vascular endothelial growth factor 

(VEGF) and fibroblast growth factor (FGF) 

are involved in this entire fibrotic process. In 

the development of lung injury, inflammation 

is increased and levels of interleukin-1 (IL-1) 

and tumor necrosis factor-alpha (TNF-), 

which are characterized by inflammation, are 

increased. The whole process creates an 

environment that favors alveolar regeneration 

and lung tissue remodeling (9). 

TGF- cytokine is mainly involved in lung 

fibrosis. The TGF- family are 

multifunctional cytokines that exist in three 

isoforms: TGF- 1, TGF- 2 and TGF- 3. 

The molecular and biological activities of the 

three isoforms differ from each other, but 

TGF- 1 plays a dominant role in pulmonary 

fibrosis (10). In the extracellular matrix, TGF-

 plays very important roles and is the most 
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important promoter of the entire fibrotic 

process. It is also considered the most potent 

chemotactic factor for immune cells such as 

monocytes and macrophages. In monocytes 

and macrophages, TGF-  activates the 

release of cytokines such as PDGF, IL-1, 

basic FGF (bFGF) and TNF- and 

automatically regulates its own cascade (10). 

TGF- is increased in the lung tissue of 

patients with IPF (11) and increases in TGF- 

generation are consistently observed in 

rodents with bleomycin-induced pulmonary 

fibrosis (12). TGF- is increased in the lung 

tissue of patients with idiopathic pulmonary 

fibrosis (11) and increases in TGF-  

generation is consistently observed in rodents 

with bleomycin-induced pulmonary fibrosis 

(12). The TGF- Smad cascade is actively 

involved from the membrane to the nucleus 

(13). In this pathway, activated TGF- 

receptors are translocated to the nucleus by 

regulating other Smad proteins, leading to the 

phosphorylation of Smad-2 and Smad-3.  

One study shows that Smad-3 deficiency 

attenuates bleomycin-induced pulmonary 

fibrosis in mice (14) and that the inhibitor 

Smad-7 prevents phosphorylation of Smad-2 

and Smad-3 through activated TGF-’s 

receptors (15, 16). In lung fibrosis, TGF-1 is 

considered the most important chemokine. 

AEC2s produce TGF-1 following actin-

myosin-mediated cytoskeletal contractions 

induced by the unfolded protein response 

(UPR) following six integrins activation. 

 v6 integrin & TGF- 1 pathway, a 

pathway ready to recognize damaging stimuli, 

is actually a molecular sensing mechanism 

(17). In lung fibrosis, it is the most important 

profibrotic mediator that activates the 

profibrotic cascade, triggers myofibroblast 

transformation, promotes epithelial-

mesenchymal transition (EMT), circulating 

fibrocyte recruitment, fibroblast activation, 

and proliferation and epithelial cell apoptosis, 

epithelial cell migration, and production of 

pro-angiogenic factors (17). 

In lung fibrosis, another important factor is 

PDGF. It increases the proliferation of 

fibroblasts while inducing ECM synthesis. 

Alveolar macrophages with IPF produce 

higher amounts of PDGF-B mRNA and 

protein level (18, 19). Impaired PDGF levels 

have been observed in animal models, 

particularly in AEC2 and mesenchymal cells 

(20). PDGF-B transgenic mice have been 

observed to develop lung disease 

characterized by diffuse emphysematous lung 

lesions and inflammation/fibrosis in focal 

areas (21).  

In another study, intratracheal instillation of 

recombinant human PDGF-B in rats produces 

fibrotic lesions in blood vessels and airways 

(22).  In a bleomycin-induced experimental 

mouse model, gene transfer of the 

extracellular domain of the PDGF receptor 

ameliorated pulmonary fibrosis (23). Insulin-

like growth factor (IGF)-1, which promotes 

fibroblast proliferation, has also been 

observed to work synergistically with PGDF 

(24).According to this study, alveolar 

macrophages from patients with IPF 

expressed higher levels of IGF-1 mRNA and 

protein than normal alveolar macrophages 

(24, 25). 

In normal fibroblasts, after stimulation with 

TGF-β, increased phosphorylation of JAK-2 

was observed to induce subsequent activation 

of STAT-3 and transcription of collagen. 

Selective inhibition of JAK-2 blocks TGF-β-

induced collagen release in vitro and prevents 

experimental fibrosis in vivo (26). However, 

different studies may show that tumor cells 

and fibroblasts can become resistant to JAK-2 

inhibitors in long-term treatment, which is 

essential for chronic fibrotic diseases (27, 28). 

This resistance is not due to somatic 

mutations but to transactivation of JAK-2 by 

JAK-1 and subsequent activation of 

downstream signaling through STAT proteins 

(27, 28). This escape mechanism may be 

blocked by simultaneous inhibition of JAK-1 

and JAK-2 or by co-treatment with JAK-2 and 

heat shock protein-90 (HSP-90) inhibitors, 

which have promising antifibrotic effects in 

murine models of skin and lung fibrosis (28). 

Epithelial-mesenchymal transition (EMT) is 

the pathological phenomenon in lung fibrosis 

in which epithelial cells lose their normal 

phenotype and profibrogenic markers such as 

α-smooth muscle actin (α-SMA), fibroblast-

specific protein 1 (FSP1), collagen type 1 and 

fibronectin are highly secreted (29). Some 

studies have demonstrated the capacity of 
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alveolar epithelial cells to trans-differentiate 

into fibrogenic myofibroblasts (30, 31).  

In lung fibrosis, EMT stimulation is initiated 

by overexpression of TGF- β by damaged 

epithelial and endothelial cells as well as 

macrophages and fibroblasts, thus leading to a 

positive cycle of stimulation. With the 

induction of EMT, SMAD activation occurs 

in the "canonical" TGF- β signaling pathway 

(32). In addition, another pathway that 

promotes fibrosis is the "non-canonical" TGF-

β signaling involving the extracellular signal-

regulated kinase (ERK) pathway, which leads 

to EMT trans-differentiation (32).  

Furthermore, EMT induction is mediated by 

the cross-interaction of TGF-β1 with the 

canonical WNT/β-catenin pathway (33), 

through the interplay of WNT and TGF-β 

signaling pathways, β-catenin accumulates in 

the nucleus and promotes EMT in alveolar 

epithelial cells (34) , resulting in the 

transformation of alveolar cells into 

myofibroblasts characterized by ECM 

deposition and fibrosis. It is also known that 

EMT pathogenesis is linked to autophagy of 

alveolar epithelial cells, leading to fibrosis 

and other lung pathologies (35). Hedgehog 

signaling, an important regulator of tissue 

repair and EMT, is involved during fibrosis 

(36, 37). In the lung, normally, Hedgehog 

signaling ensures fibroblast normalization and 

maintains homeostasis (36). However, in 

pathological states of the lung, Hedgehog 

signaling is too overactive, as shown in 

bleomycin-induced lung fibrosis, and 

blocking hedgehog epithelium-fibroblast 

trans-differentiation can attenuate 

experimental pulmonary fibrosis (38, 39, 40). 

Fibroblast growth factor receptors (FGFR-1, -

2) have been found to be elevated in 

myofibroblast cells, which are fibrosis cells, 

and in patients with IPF. Also, basic fibroblast 

growth factor (bFGF) plays a role in lung 

fibrosis. In alveolar macrophages are a 

dominant source of bFGF in intra-alveolar 

fibrotic areas following acute lung injury (41). 

In a study of IPF, mast cells were found to be 

the predominant bFGF-producing cells and 

bFGF levels correlated with bronchoalveolar 

lavage cellularity and severity of gas 

exchange abnormalities (42). 

In fibrosis, there is resistance to apoptosis and 

this process exacerbates fibrosis.  Activation 

of the PI3K-AKT-mTOR signaling pathway 

reduces autophagy in fibrosis (43), and 

inhibition of EF2K and p38 MAPK signaling 

reduces autophagy, which in turn reduces lung 

fibroblast apoptosis (44). In the lung, this 

suppression of apoptosis and autophagy also 

exacerbates fibrosis and increases 

inflammation. 

In our knowledge, all over these molecular 

regulation of lung fibrosis, inflammation is so 

active and activator of fibrosis. In lung 

fibrosis, fibroblast proliferation and 

myofibroblasts, lymphocytic cytokines are 

active and act profibrotic. The role of Th-1, 

Th-2 and Th-17 T-cells in pulmonary fibrosis 

is known. The Th1 T-cell subset produces IL-

1, TNF- α, PDGF and TGF- 1 and has clear 

profibrotic effects. Th-2 and Th-17 responses 

appear to be more important in the 

pathogenesis of IPF.  They lead to direct 

activation of certain interleukins (IL-4, IL-5, 

IL-13) and fibroblasts (45-47). 

2. Conclusions 

In conclusion, lung fibrosis is a serious life-

threatening lung disease. Although many 

pathways involved in lung fibrosis are known, 

its etiology and pathology are not yet fully 

understood. Many molecular pathways in lung 

fibrosis exhibit heterogeneous behavior and 

there is a therapeutic need. The large number 

of therapeutic interventions suggests that in 

the near future there may be more specific 

therapeutic options for the disease. 
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