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Abstract 

In this article, we establish the singularity theory in a pseudo-Galilean space , a special case of Cayley-
Klein spaces. We consider the cases where the Darboux ruled surface in  is diffeomorphic to some 
surfaces in the neighbourhood of a singular point.  In addition, we investigate the relationship between 
singularities of discriminant, bifurcation sets of the function, and geometric invariants of curves in . 
Keywords — Height function, singularities, Darboux ruled surface, pseudo-Galilean space. 

 
 
1 Introduction 
The singularity theory of smooth mappings is 
strongly related to both the Morse theory and the 
theory of immersions and embeddings of manifolds. 
Indeed, these two theories are originated from the 
theory of smooth functions in one-variable. We recall 
that the roots of derivative of a function are called 
critical or singular points. The graph of function be-
haves differently in the vicinity of a singular point. 
This effects the shape of graph of the function in the 
neighborhood of a singular point. As a result, one 
can infer that singular points of a function reveals 
crucial information about the shape of graphs of the 
function. 
 
A family of functions containing  f  is called an un-
folding of  f : the family unfolds to reveal all these 
functions which are  f 's close relations. Singularity 
theory is more concerned with two other properties 
of such families. First, 'almost all' families of functi-
ons are universal unfoldings (strictly, 'versal' unfol-
dings) of each function in the family. Versal unfol-
ding has been a central tool in almost all applications 
of singularity theory inside and outside mathematics. 
Consequently one can expect these unfoldings to 
arise in virtually any situation when studying fami-

lies of functions. Secondly, these unfoldings are in a 
certain sense unique, that is, they depend only on the 
functions that they are unfolding. Thus one can 
expect same models, describing the geometry of the 
unfolding, to arise in many (almost all) situations. In 
other words, the bifurcation set or discriminant of 
the family is diffeomorphic to the bifurcation or disc-
riminant set of a “standard” versal deformation of a 
function having the same type of singuarity. For 
example, the standard  ℜe − versal deformation (i.e., 

deformation which is versal for  R − equivalence) of 

an   A3  singularity of  f (x) = x4  is 

  G(x,a,b,c) = x4 + ax2 + bx + c  and therefore any 

 ℜe − versal deformation 	F  of a function having an 

  A3  singularity has discriminant diffeomorphic to the 

discriminant 	SW  of  G . This is a well-known fact 
for swallowtail surface 	SW . For more details we 
refer the reader to [1].   
The aim of this article is to show that certain germs 
of geometrically defined subsets of the pseudo Gali-
lean space  are diffeomorphic to cusp, cuspidal 
edge and swallowtail singularities by using some 
standard arguments from singularity theory. Initial-
ly, we want to construct a germ of family of func-
tions    
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 on some space  X  (it doesn't matter what  X  is), 

with parameter space , such that the germ at   w0  

of the subset in question is the bifurcation set or disc-
riminant of the family. We then strive to show that 
the family of functions is a versal deformation (with 
respect to some notion of parametrised equivalence 
of unfoldings) of the germ at   x0  of the function 

  
fw0

 

defined by 
  
fw0

(x) = F(x,w0 ) . 

 
General theory of differential geometry of curves and 
surfaces in Cayley-Klein spaces can be found in [2]. 
 
Study of singularities of curves and surfaces in Eu-
clidean and non-Euclidean ambient spaces does not 
have a long history. There are some applications of 
singularity theory in the Euclidean and non-
Euclidean geometry.  Several references on these 
applications in Euclidean space, Minkowski space, 
and Galilean space can be found in [1, 3-8].   
 
In this article, we apply elementary singularity theo-
ry techniques, along the lines developed in the basic 
book [1], to the study of geometrical invariants of 
curves in . To this purpose, we introduce the no-
tion of height function on space curves in . The 
height function is quite useful for the study of singu-
larities of the spherical Darboux ruled (we abbreviate 
as s.D.r.) surface of space curves in .  We also in-
troduce the notion of the line of striction of the s.D.r. 
surface and the spherical Darboux images of space 
curves in    As a result, we establish several rela-
tionships between the singularities of the above two 
subjects and geometric invariants of a curve under 
the action of   group as applications of ordinary 
techniques of singularity theory for the above func-
tion.  Therefore, the singularities of the spherical 
Darboux image describe how the shape of a curve is 
similar to helix.  

 
The main result in this paper is Theorem 3.1. The 
theorem is about the singularities of the spherical 
Darboux ruled surface. We describe the geometric 
interpretation of Theorem 3.1 in section 3.1 and 3.2. 
Our basic techniques here follow those of Bruce and 
Giblin [1]. For this paper, we are inspired by [5-6]. 

 

2 Preliminaries on pseudo-Galilean Geometry 

The pseudo-Galilean space  is one of the Cayley-
Klein spaces equipped with the projective metric of 

signature 
 
0,0,+,−( )  [9]. Note that  is called the 

Galilean space of index 1. The absolute figure of the 
pseudo-Galilean space is the ordered triple 

  {w, f , I} , where  w  is an ideal (absolute) plane, in 

the real three-dimensional projective space   f   
is a line (absolute line) in  w , and  I  is a fixed hyper-
bolic involution of points of  f . 
 
In non-homogeneous coordinates the group of mo-

tion of  (i.e. the group of isometries of ) has the 
form define:  
 

  

x = a1 + x,

y = a2 + a3x + ycoshϕ + z sinhϕ ,

z = a4 + a5x + ysinhϕ + zcoshϕ ,

                       (2.1) 

 
where   a1,a2 ,a3,a4 ,a5  and ϕ  are real numbers [10]. 

If the first component of a vector is not zero, then the 
vector is called as non-isotropic, otherwise it is called 
isotropic vector [10].  
 
The scalar product of two vectors    v = (v1,v2 ,v3)  

and    w = (w1,w2 ,w3)  in is defined by 

 

   

v ⋅pG w =
v1w1, if v1 ≠ 0 or w1 ≠ 0

v2w2 − v3w3, if v1 = 0 and w1 = 0.

⎧
⎨
⎪

⎩⎪
  

 
If    

v ⋅pG w = 0 , then  v  and  w  are perpendicular. In 

particular, every isotropic vector is perpendicular to 
every non-isotropic vector. The norm of  v  is defined  

by 
    
‖v‖pG= | v ⋅pG v |.   

 

Let  and let   α : I → G1
3  be a curve parametri-

zed by arc length (we abbreviate as p.b.a.l) with cur-
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vature  κ > 0  and torsion τ . If α  is a curve p.b.a.l. 
that is,  
 

  
α x( ) = x, y x( ), z x( )( ),   

 
then the Frenet frame fields are given by 
  

   

T (x) =α ′ (x),

N (x) = ′′α (x)
‖ ′′α (x)‖pG

,

B(x) = 1
κ (x)

0,ε z ′′ (x),ε y ′′ (x)( ),

                         (2.2) 

 

where 
 
κ x( )  and 

 
τ x( )  are defined by 

 

   

κ x( ) =‖ ′′α (x)‖pG ,

τ x( ) = det α ′ x( ),α ′′ x( ),α ′′′ x( )( )
κ 2 x( ) .

                     (2.3) 

 
Also, where  ε = ±1  determined by the criterion 

  det(T , N , B) = ±1 . The vectors   T , N and  B  are 
called the vectors of the tangent, the principal nor-
mal and the binormal vector field, respectively [10]. 
Therefore, the Frenet-Serret formulas can be written 
as 
 

  

T
N
B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′

=
0 κ 0
0 0 τ
0 τ 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T
N
B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.                         (2.4) 

 

If  D  is the vector field 
 
−τ x( )T x( ) +κ x( )B x( )  on 

a unit speed curve α , then we can show that Frenet 
formulas become   
 

  

′T = D × pG T ,

′N = D × pG N ,

′B = D × pG B

                                                        (2.5) 

 

 The vector field  D  is called a Darboux vector ofα  
[5].  
Also, where  

× pG  is the pseudo-Galilean cross pro-

duct  defined by  
 

   

v × pG w =

0 e2 −e3

v1 v2 v3

w1 w2 w3

                                         (2.6) 

 
for 

   
v = v1,v2 ,v3( )  and 

   
w = w1,w2 ,w3( )  [11]. The pseu-

do-Galilean Sphere 
  
SpG

2  with center   x0  and radius r 

is defined by 
  
SpG

2 = x, y, z( )∈G1
3  | x − x0 = r{ }.  

 
We refer to [10-12, 13] for detailed treatment of Gali-
lean and pseudo-Galilean geometry. 
 
3 Singularities of the Darboux ruled surfaces 

in   G1
3  

 
Ruled surfaces are the classical subject in differential 
geometry.  There are important classes of  ruled sur-
faces defined by Frenet vectors of a given regular 
curve such as natural developable (tangent, focal and 
rectifying) and Darboux ruled surfaces. Recently 
there appeared several articles concerning on singu-
larities of these ruled surfaces (ruled surfaces are also 
special surfaces in general singular surfaces) in Euc-
lidean and Non-Euclidean geometry [4-8]. 
 

We define a spherical curve 
  
d : I → SpG

2  by  

  
d(x) = D(x)

D(x)
pG

, where   D(x)  is the Darboux vector, 

and surface 
 

 
 
and curve  

  
γ (x) ={d(x)− 1

τ (x)
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

(x)N (x) : x ∈I}.  
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We call the image of  d  as the pseudo-Galilean sphe-
rical Darboux image, the surface   dR(α )  as the pse-
udo-Galilean spherical Darboux ruled (s.D.r.) surface  
of γ and the curve   γ (x)  as the line of striction of the 
Darboux ruled surface. The following is the main 
theorem of this paper.    
 

Theorem 3.1  Let   α : I → G1
3  be curve p.b.a.l.  with 

  κ (x) ≠ 0 , and we assume    τ (x) ≠ 0 . Then we have:  
1) The line of striction of the pseudo-Galilean s.D.r. 
surface image is locally diffeomorphic to the ordi-

nary cusp  C  at 
  
α x0( )  iff  

  

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′

x0( ) = τ ′

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x0( )    and 

  

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′′

x0( ) ≠ τ ′′

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x0( ) . 

 
2-a) The pseudo-Galilean s.D.r. surface is locally 

diffeomorphic to the cuspidal edge   at  
 

  d(x0 )+ λ0N (x0 )  iff  

  
λ0 = − 1

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x0( )  and  

  

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′

x0( ) ≠ τ ′

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x0( ).    

 
2-b) The pseudo-Galilean s.D.r. surface is locally 
diffeomorphic to the swallowtail 	SW   at 

  d(x0 )+ λ0N (x0 )  if and only if  

 

  
λ0 = − 1

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

'⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(x0 ),  

  

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′

(x0 ) = τ ′

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(x0 )  and 

  

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′′

(x0 ) ≠ τ ′′

τ
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(x0 ).  

 

Here, 
  
C = x, y( ) : x2 = y3{ }  is ordinary cusp and 

  
SW = x, y, z( ) : x = 3u4 + u2v, y = 4u3 + 2uv, z = v{ }
 is the swallowtail. 
 

 
 
Figure 1:  The cusp curve, cuspidal edge and swal-
lowtail surface 
 
The main goal of this paper is to give a proof for the 
Theorem 3.1. To this purpose, we shall study the 

singularities of the height function in  in section 

3.1. Since we need unfoldings of  functions in , we 
describe them in detail in section 3.2. 
 
3.1 Families of smooth functions on a space curve 

in  G1
3  

 
From now on, unless we explicitly state otherwise, 
we will only consider curves parametrized by arc 
length (p.b.a.l.) with    κ (x) ≠ 0 , and we assume  

  τ (x) ≠ 0.  
In this part, we now introduce some families of func-
tions that useful for the study of singularities of a 
space curve. Such functions are.  
  

3.1.1 Height function in   G1
3

 
 
Consider the folowing two-parameter family of 
smooth functions on  I : 

 

 with .   We call  as 
the height function on α . We use the notation 

   hw(x) = H (x,w)  for any 
   
w ∈SpG

2 .  Then, we obtain 

the following proposition. 
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Proposition 3.2 Let   α : I → G1
3  be a curve. Then, 

1)    hw
′ (x) = 0  iff there exists a real number   

such that    

2)  
   
hw
′ x( ) = hw

′′ x( ) = 0  iff 

   
w = ± T (x)+ 1

τ x( )
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

(x)N (x)− κ
τ

⎛
⎝⎜

⎞
⎠⎟

(x)B(x)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. 

3)  
   
hw
′ x( ) = hw

′′ x( ) = hw
′′′ x( ) = 0  iff  

 

   

w = ± T (x)+ 1
τ (x)

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

(x)N (x)− κ
τ

⎛
⎝⎜

⎞
⎠⎟

(x)B(x)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′

(x) = τ ′ (x)
τ (x)

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

(x).n
 

  

 4)  
   
hw
′ x( ) = hw

′′ x( ) = hw
′′′ x( ) = hw

(4) (x) = 0  iff 

 

   

w = ± T (x)+ 1
τ (x)

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

(x)N (x)− κ
τ

⎛
⎝⎜

⎞
⎠⎟

(x)B(x)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,

κ
τ

⎛
⎝⎜

⎞
⎠⎟
′′

(x) = ′τ (x)
τ (x)

κ
τ

⎛
⎝⎜

⎞
⎠⎟
′
(x),

κ
τ

⎛
⎝⎜

⎞
⎠⎟
′′′

(x) = ′′τ (x)
τ (x)

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

(x)
 

 
Proof.  From the Frenet-Serret formula we have: 
 
i. 

   hw
′ (x) =κ (x) N (x) B(x) w +τ (x) T (x) N (x) w  

 
ii. 

   

hw
′′ (x) = κ ′ (x) N (x) B(x) w

+τ ′ (x) T (x)N (x) w

+τ 2(x) T (x) B(x) w

 

 
iii. 

   

hw
′′′ (x) = κ ′′ (x)+κ (x)τ 2(x)( ) N (x) B(x) w

+ τ 3(x)+τ ′′ (x)( ) T (x) N (x) w

+3τ (x)τ ′ (x) T (x) B(x) w .

 

 
iv. 

   

hw
4( )(x) = κ ′′′ +κ ′τ 2 +5κττ ′( )(x) N (x) B(x) w

+ τ ′′′ (x)+ 6τ 2(x)τ ′ (x)( ) |T (x) N (x) w |

+ 3τ ′2 +τ 4 + 4ττ ′′( )(x) |T (x) B(x) w | .

 

 
Now we prove each part of the theorem: 
 
1) The assertion is trivial by the formula   (i) . By the 

assumption 
   
w ∈SpG

2 , we have  

   
w = ±T x( ) + µN x( ) + λB(x) . It follows from   (i)  

that 
   
hw
′ x( ) = ±κ x( ) + λτ x( ).  Therefore we have 

   

2) By  (1)  in   (ii) , we get 

  
µ = ± 1

τ x( )
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

x( ).   

Therefore, we have  
 

   
w = ± T x( ) + 1

τ x( )
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

x( )N x( )− κ
τ

⎛
⎝⎜

⎞
⎠⎟

x( )B x( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.  

 
3) By writing  
 

   
w = ± T x( ) + 1

τ x( )
κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

x( )N x( )− κ
τ

⎛
⎝⎜

⎞
⎠⎟

x( )B x( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

 

in  
iii( ) ,  we get 

 

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′

x( ) = τ ′ x( )
τ x( )

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

x( ) .    

 

4) By using 
 
3( )  in  

iv( )  then we get  
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κ
τ

⎛
⎝⎜

⎞
⎠⎟

′′′

x( ) = τ ′′ x( )
τ x( )

κ
τ

⎛
⎝⎜

⎞
⎠⎟

′

x( ) .                                 

 
3.2 Unfoldings of functions by one-variable 
 
We start with covering some fundamental results on 
singularity theory. For more details, we refer the 
reader to [1].  

Tanım 3.1 [1].  Let  be a smo-

oth function.   We write   for the func-

tion 
  
fw0

(x) = F(x,w0 ) .  F  as above is called 

an r − parameter unfolding of 
  
fw0

. From now on  f  

will stand for 
  
fw0

 unless otherwise stated.  Let  

 be a function germ. We say 
that  f  has  Ak − singularity at   x0  if 

  ′f (x0 ) = ′′f (x0 ) =…= f (k ) (x0 ) = 0   

and   f
(k+1) (x0 ) ≠ 0.  Let  F  be an unfolding of   f  

and let   f (x)  have  Ak − singularity 
  

k ≥1( )  at   x0.  

Let us denote the 
  

k −1( )− jet of the partial derivati-

ve  

 

∂F
∂wi

  at   x0  by  

  
J k−1 ∂F

∂wi

x,w0( )⎛

⎝⎜
⎞

⎠⎟
x0( ) = α ij

j=1

k−1

∑ x j , i = 1,...,r.   

 

Tanım 3.2 [1]. The unfolding , given 

by    G(t,x) = ±t k+1 + x1t + x2t
2 +!+ xk−1t

k−1  is a 

  ( p)− versal unfolding of   g(t) = ±t k+1  at   t0 = 0 .  

The unfolding , given by 

   G(t,x) = ±t k+1 + x1 + x2t +!+ xkt
k−1  is a versal 

unfolding of   g(t) = ±t k+1  at   t0 = 0  [1].  

 
Next, we will give matrix criterion for versality and 

  ( p)−  versality.   
 

Then  F  is called  {a   ( p)− versal unfolding }if the 

  
k −1( )× r  matrix of coefficients 

 
α ij( )  has rank 

  k −1  
  

k −1≤ r( ).  Under the same conditions as the 

above, then  F  is called  {a versal unfolding} if the 

 k × r  matrix of coefficients 
  
α0i ,α ij( )  is of rank  k  

  
k ≤ r( ),  where 

  
α0i =

∂F
∂wi

x0 ,w0( ).   In the fol-

lowing, we describe a set of results related to forego-

ing notions. The discriminant set of  is the set  
 

 
 

and the bifurcation set  of  is the set  
 

. 

 
What follows is an interpretation of uniqueness theo-
rems for bifurcation and discriminant sets given in 

[1]. Now let  and  be any two  versal  r −  
parameter unfoldings of  f  (at   t0 ) and  g  (at   t1) 

respectively, both of type   Ak  (k ≥1) .  

 
Thus the discriminant sets  DF  and  DG  (bifurcation 

sets  BF  and  BG ) are locally diffeomorphic: the local 

picture is the same up to diffeomorphism for any 
 r −  parameter versal (  ( p)−  versal) unfolding of 

any  Ak  singularity. That is, we can say that the bi-

furcation set (or discriminant) of the family is diffe-
omorphic to the bifurcation set (or discriminant) of a 
"standard" versal deformation of a function having 
the same type of singularity. For example, the stan-
dard 

 ℜe
−  versal deformation (i.e. deformation 

which is versal for ℜ−  equivalence) of an   A3  singu-

larity  is   F(x,a,b,c) = x4 + ax2 + bx + c  

and thus any 
 ℜe

−  versal deformation  G  of a func-

tion having an   A3  singularity has discriminant diffe-

omorphic to the discriminant 	SW   of F, which is the 
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well-known swallowtail surface. Then we have the 
following well-known result [1]. 
 
Theorem 3.3 [1]. Let  F    be an  r − parameter unfol-

ding of 
 
f x( )  having an  Ak −  singularity at   x0 . 

Suppose that  F  is a   ( p) - versal unfolding. Then,  

a) If   k = 1  (  k = 2 ), then  DF  ( BF ) is locally diffeo-

morphic to .  
b) If   k = 2  (  k = 3), then  DF  ( BF ) is locally diffeo-

morphic to . 
c) If   k = 3  (  k = 4 ), then  DF  ( BF ) is locally diffeo-

morphic to . 

Here,  is the ordinary cusp and 

  is the swallowtail as shown in Figure 1. 
 
In order to apply the results of singularity theory, we 
need to decide whether  H  is a versal unfolding of 

   
hv0

 at   x0  by finding 
 

∂H
∂wi

 and using matrix criterion 

given above. If the criterion is satisfied then locally 
(near   x0 ) the bifurcation set or discriminant set is 

diffeomorphic to the standard model applicaple to 
the values of  r  and  k  in question. For the proof of 
Theorem 3.1, we have the following key propositi-
ons. 
 
Proposition 3.4 Let   α (x)  be curve and assume that 

  is the height function on   α (x) . If 

   
hw0

 has  Ak −  singularity 
  

k = 2,3( )  at the point   x0 ,  

then  H  is a   ( p)− versal unfolding of 
   
hw0

.
 

 

Proof: Let   α (x) = (x, y(x), z(x))   

and   w = (1,w2 ,w3) .  By definition,   

 

   

H (x,w) = T (x) B(x) w

= 1
κ (x)

[y ′ (x)y ′′ (x)− z ′ (x)z ′′ (x)+ z ′′ (x)w3 − y ′′ (x)w2].
 

 

Let 
   
J k−1 ∂H

∂wi

x,w0( )⎛

⎝⎜
⎞

⎠⎟
x0( )  be the 

  
k −1( )− jet of  

 

∂H
∂wi

 

at   x0  
  
i = 2,3( ) .  Then,  

 

   
J 3 ∂H

∂wi

x,w0( )⎛

⎝⎜
⎞

⎠⎟
x0( ) = −1( )i+1

Ni
′ x0( )x + 1

2
Ni

′′ x0( )x2 + 1
6

Ni
′′′ x0( )x3⎡

⎣
⎢

⎤

⎦
⎥
 

 
with   i = 2,3.  Here, 

  
N x( ) = 0, N2(x), N3(x)( ) = 1

κ x( ) 0, y ′′ x( ), z ′′ x( )( )  

by  equation (2.4). In the following, we investigate 
two important cases: 
 
Case 1: Suppose that 

  
hv0

 has   A2 − singularity at   x0.  

We let a  1× 2−matrix   M1  be 

  

M1 = −
y ′′ x0( )
κ x0( )

⎛

⎝
⎜

⎞

⎠
⎟

′
z ′′ x0( )
κ x0( )

⎛

⎝
⎜

⎞

⎠
⎟

′⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.
  

By equation (2.4), we get 
  
N ′ x( ) = τ x( )B x( ) ≠ 0 , 

and therefore,    rankM1 = 1  
 
Case 2: Suppose that 

   
hw0

 has   A3 − singularity at the 

point   x0.  We let a   2× 2−  matrix be  

  

M2 =

−
y ′′ x0( )
κ x0( )

⎛

⎝
⎜

⎞

⎠
⎟

′
z ′′ x0( )
κ x0( )

⎛

⎝
⎜

⎞

⎠
⎟

′

−
y ′′ x0( )
κ x0( )

⎛

⎝
⎜

⎞

⎠
⎟

′′
z ′′ x0( )
κ x0( )

⎛

⎝
⎜

⎞

⎠
⎟

′′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.
  

From (2.4), we obtain 

  
M2 = T (x0 ) N ′′ (x0 ) N ′ (x0 ) .  

By plugging in the necessary derivatives above, we 

obtain 
  
M2 = τ 3 x0( ) . Since  

  
τ x( ) ≠ 0 , we conclude 

that   rankM2 = 2 .   

 

Let 
   
!H : I × SpG

2 ×"→ " , be a function such that  
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!H x,w,v( ) = H x,w( )− v  and write  

    
hw,v x( ) = !H x,w,v( ) .    

 
Proposition 3.5  If 

   
hw0 ,v0

 has  Ak − singula-

rity
  

k = 1,2,3( )  at   x0 ,  then  H  is a versal unfolding 

of 
   
hw0 ,v0

.
 

 
Proof:  We follow the similar notations used in pro-
position 3.4, 
 

    
!H (x,w,w1) = 1

κ (x)
[y ′ (x)y ′′ (x)− z ′ (x)z ′′ (x)+ z ′′ (x)w3 − y ′′ (x)w2]− w1.

 

  

Let 
    
J k−1 ∂ !H

∂wi

x,w0( )⎛

⎝⎜
⎞

⎠⎟
x0( )  be the 

  
k −1( )− jet of 

  

∂ !H
∂wi

 

at   x0  
  
i = 1,2,3( ) . Then, 

    

∂ !H
∂w1

x0 , w0( ) + J 2 ∂ !H
∂w1

x, w0( )⎛
⎝⎜

⎞
⎠⎟

x0( ) = −1  and, 

    

∂ !H

∂w
i

x
0
, w

0( ) + J 2 ∂ !H

∂w
i

x, w
0( )⎛

⎝⎜
⎞
⎠⎟

(x
0
) =

−1( )i+1[N
i
(x

0
) + N

i

′ (x
0
)x +

1

2
N

i

′′ (x
0
)x 2]

 

with   i = 2,3 . We now consider the following cases: 
 
Case 1: Suppose that 

   
hw0 ,v0

 has    A1 − singularity 

at  x0 .  

If   M3  is defined as  

  
M

3
= −1 −

y ′′ x
0( )

κ x
0( )

⎛
⎝⎜

⎞
⎠⎟

z ′′ x
0( )

κ x
0( )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   

then   rank( M3) = 1 .   

 
Case 2: Suppose that 

   
hw0 ,v0

 has   A2 − singularity 

at  x0 . 

We define a  2× 3  matrix   M4  by 

  

M
4
=

−1 −
y ′′ x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟

z ′′ x
0( )

κ x
0( )

⎛
⎝⎜

⎞
⎠⎟

0 −
y ′′ x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟

′

z ′′ x
0( )

κ x
0( )

⎛
⎝⎜

⎞
⎠⎟

′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

By the Case 1 of Proposition 3.4, the second row 
of  M4  does not vanish. So,   M4  is of rank  2 . 

 
Case 3: Suppose that 

   
hw0 ,v0

 has    A3 −  singularity at 

the point   x0.  Let   M5  be defined as  

  

M
5
=

−1 −
′′y x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟

′′z x
0( )

κ x
0( )

⎛
⎝⎜

⎞
⎠⎟

0 −
′′y x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟
′ ′′z x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟
′

0 −
′′y x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟
′′ ′′z x

0( )
κ x

0( )
⎛
⎝⎜

⎞
⎠⎟
′′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 
By the Case  2  Proposition 3.4,   M5  is non-singular 
and hence   M5  has full rank.  

 
Corollary 3.7: The proof of Theorem 3.1 follows Pro-
position 3.2, 3.4, 3.5 and Theorem 3.3.  
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