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Abstract:  Numerical solutions are obtained for the time dependent one dimensional 
Advection-Diffusion equation (ADE) using the least squares method (LSM). After the 
time-integration of the ADE by use of the Crank-Nicolson technique, the combination of 
the quartic B-splines as a trial function is substituted in the time discretized ADE and for 
the LSM procedure, a weight function is obtained by taking derivative of the integrand 
of integral of squared ADE with respect to time parameters of the trial functions. Thus 
solution of obtained recursive system of the unknown parameters provides solutions of 
the ADE at discrete times. Achievement is displayed by studying three test problems.  

  
  

(Araştırma Makalesi) 
 

Adveksiyon Difüzyon Denkleminin Kuartik B-Spline En Küçük Kareler Metodu ile Sayısal 
Çözümü 

 
 

Anahtar Kelimeler: 
Advection-diffusion  
denklemi,  
En küçük kareler metodu,  
Kuartic B-spline  

Özet: En küçük Kareler metodu (LSM) kullanılarak zamana bağlı bir boyutlu Advection-
Diffusion denklemi (ADE) için yaklaşık çözümler elde edilmiştir. Crank-Nicolson 
yöntemi ile ADE’in zaman ayrıştırması yapıldıktan sonra, Kuadratik B-spline 
fonksiyonların kombinasyonundan oluşan deneme fonksiyonu zaman ayrışmış ADE’nin 
bilinmeyen fonksiyonuna yerleştirilmiştir. Böylece elde edilen cebirsel ifadenin karesi 
alınmış integralinin integrantının deneme fonksiyonun da tanımlı zaman parametresine 
göre türevi alınarak ağırlık fonksiyonu belirlenmiştir. Bulunan iterative sistemin 
çözümlerinden ADE’nin ayrık zamanlardaki çözümlerini elde edilir.  Metodun başarısı 
üç test problem çalışılarak gösterilmiştir.    

  
 

1. INTRODUCTION 
 
The ADE is the time dependent one-dimensional partial 
differential equation which models many problems of 
physics, chemistry and biology. It describes advection-
diffusion processes depending on the given parameters 
such as heat, energy, mass, etc. It indicates combination 
of both non-dissipative (hyperbolic) advective and a 
dissipative (parabolic) diffusive behaviors. The ADE, as 
an mathematical model, is used to designate water transfer 

in soils, heat transfer in draining film, spread of pollutants 
in rivers, dispersion of tracers in porous media, the 
Timoshenko beam problem, the Reissner-Mindlin plate, 
the arch problem and the axisymmetric shell problem. It 
is known that the numerical solution is obtained well 
when the diffusion is dominant whereas for the larger 
advection coefficient taken, numerical methods produce 
higher error solutions. The effort has been made on 
producing the efficient numerical methods. Various 
numerical techniques including B-splines have been set 
up for solving the one-dimensional ADE of constant 

J ESTUDAM Information, 2023; 4(3); 9-14. ESTUDAM Bilişim Derg, 2023; 4(3); 9-14. 

*Sorumlu Yazar/Corresponding Author: idag@ogu.edu.tr  

http://orcid.org/0000-0002-2533-4934
http://orcid.org/0000-0002-2533-4934
http://orcid.org/0000-0002-2533-4934
http://orcid.org/


I. Dag vd. / Numerical Solution of Advection-Diffusion Equation via Quartic B-spline Least Squares Metho 

10 
 

coefficients with appropriate initial and boundary 
conditions [1]. 
 
The numerical solution of the advection-diffusion 
problem is provided by use of both quadratic and cubic B-
spline finite element methods in which Taylor series 
expansion is used for the time discretization [2]. Cubic B-
spline collocation methods are build up for solving 
convection diffusion equations in the studies [3,4]. The 
differential quadrature methods based on the cubic B-
splines is constructed for the advection-diffusion equation 
[5]. ADE is solved by using the extended cubic B-spline 
collocation method [6] . Differential quadrature together 
with B-spline functions of degree four and five have been 
designed to compute advection-diffusion equation 
numerically [7]. ADE is integrated using the extended 
cubic B-spline Galerkin method to find its numerical 
solutions [8]. The fourth order single step methods for 
time integration and cubic B-spline Galerkin method for 
space integration is used to solve ADE in the work [9]. 
The cubic trigonometric B-spline for space discretization 
and finite difference scheme for time discretization is 
established to discretize the ADE fully [10]. ADE is also 
handled by means of the least squares method. A space 
time least-squares finite elements scheme is constructed 
for advection-diffusion equation [11], space-time 
Galerkin least squares method for the one-dimensional 
ADE is proposed in the works [12,13]. The space time 
least squares method was set up by way of both linear and 
quadratic B-spline shape functions for computing 
numerical solutions of the ADE [14]. A p-version based 
space-time least-squares finite-element method is applied 
to solve the unsteady convection-diffusion equation [15] . 
The linear and quadratic B-spline basis functions have 
been used in the space time least squares formulation for 
solving the ADE in the study [16]. The cubic B-spline 
leasts square finite element method is established for 
solving the ADE [17]. The Nonic B-splines are adapted to 
form the collocation method for solving ADE numerically 
[18] 
 
Linear joining of  ∂𝑈𝑈

∂𝑡𝑡
,  advection  ∂𝑈𝑈

∂𝑥𝑥
 and diffusion  ∂

2𝑈𝑈
∂𝑥𝑥2

  
terms constitute the ADE,   

 
𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑢𝑢𝑥𝑥 − 𝜆𝜆𝑢𝑢𝑥𝑥𝑥𝑥 = 0, 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏], 𝑡𝑡 >                        (1) 

 
where ε and 𝜆𝜆 are parameters, 𝑥𝑥 and 𝑡𝑡 are time and space 
coordinates respectively. The initial condition (IC) is 
given as, 
 
𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥).                                                                (2) 

 
Dirichlet boundary conditions (BCs) are, 
 
𝑢𝑢(𝑎𝑎, 𝑡𝑡) = 0, 𝑢𝑢(𝑏𝑏, 𝑡𝑡) = 0.                                            (3) 

 
The equation includes behaviors of both advection and 
diffusion processes depending upon value of 𝜀𝜀 (advection 
coefficient) and 𝛾𝛾 (diffusion coefficient). Numerical 
difficulties arise like exhibiting both spurious oscillations 

and excessive numerical diffusion when the advection 
becomes dominant. Thus, numerical methods have been 
constructed to overcome the adversity of advection 
domination for getting right solutions of the ADE. 
 
In this paper, fully-integration of ADE is managed by help 
of the Crank-Nicolson method in time and quartic B-
spline least squares method in space. Solution steps are 
illustrated in section 2. Three standard test problems are 
presented to show the performance of the suggested 
algorithm. 
 
2. THE QUARTIC B-SPLİNE LEAST SQUARE 

METHOD  
 
Let the interval [𝑎𝑎,𝑏𝑏] be partitioned into subintervals 
[𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖−1], 𝑖𝑖 = 1, . . .𝑁𝑁 at a uniformly distributed mesh 
points 𝑥𝑥𝑖𝑖 = 𝑎𝑎 + 𝑖𝑖ℎ, 𝑖𝑖 = 0, . . . ,𝑁𝑁 with 𝑥𝑥0 = 𝑎𝑎 and 𝑥𝑥𝑁𝑁 =
𝑏𝑏.  The quartic B-splines 𝑃𝑃𝑖𝑖4(𝑥𝑥), 𝑖𝑖 = −2, . . . ,𝑁𝑁 + 1 are 
defined at the defined mesh points and fictitious points 
𝑥𝑥−4, 𝑥𝑥−3, 𝑥𝑥−2, 𝑥𝑥−1, 𝑥𝑥𝑁𝑁+1, 𝑥𝑥𝑁𝑁+2, 𝑥𝑥𝑁𝑁+3, 𝑥𝑥𝑁𝑁+4 outside 
problem interval [𝑎𝑎, 𝑏𝑏] in the following form: 
 

[ ]

4
2 2 1

4 4
2 1 1

4 4 4
4 2 1 1

4 4 4
3 2 1 2

4
3 2 3

( ) [ , ]
( ) 5( ) , [ , ]
( ) 5( ) 10( ) , [ , ]1( )
( ) 5( ) , [ , ]
( ) , ,
0 , otherwise 

,i i i

i i i i

i i i i i
i

i i i i

i i i

x x x x
x x x x x x
x x x x x x x xP x

h x x x x x x
x x x x

− − −

− − −

− − +

+ + + +

+ + +

 −


− − −
 − − − + −= 

− − −
 −



 

  (4)  
 

𝑃𝑃𝑖𝑖4(𝑥𝑥) are basis functions for the functions defined in the 
problem interval [𝑎𝑎, 𝑏𝑏] so that any function can be 
arranged as a linear combination of the quartic B-spline 
basis functions: 
 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) ≈ 𝑈𝑈(𝑥𝑥, 𝑡𝑡) = ∑ 𝜓𝜓𝑖𝑖

𝑁𝑁+1
𝑖𝑖=−2 (𝑡𝑡)𝑃𝑃𝑖𝑖4(𝑥𝑥).                      (5)  

 
Where 𝜓𝜓𝑖𝑖(𝑡𝑡) are time dependent parameters determined 
by application of the least squares method to the ADE. 
The B-spline approximation at the mesh points to the 
nodal value 𝑢𝑢(𝑥𝑥, 𝑡𝑡) can be expressed in terms of element 
parameters. 
 

𝑈𝑈(𝑥𝑥𝑖𝑖 , 𝑡𝑡) = 𝑈𝑈𝑖𝑖 = 𝜓𝜓𝑖𝑖−2 + 𝜓𝜓𝑖𝑖−1 + 𝜓𝜓𝑖𝑖 + 𝜓𝜓𝑖𝑖+1 

𝑈𝑈𝑖𝑖′ =
4
ℎ

(−𝜓𝜓𝑖𝑖−2 − 3𝜓𝜓𝑖𝑖−1 + 3𝜓𝜓𝑖𝑖 + 𝜓𝜓𝑖𝑖+1) 

𝑈𝑈𝑖𝑖′′ =
12
ℎ2

(𝜓𝜓𝑖𝑖−2 − 𝜓𝜓𝑖𝑖−1 − 𝜓𝜓𝑖𝑖 + 𝜓𝜓𝑖𝑖+1) 

𝑈𝑈𝑖𝑖′′′ = 24
ℎ3

(−𝜓𝜓𝑖𝑖−2 + 3𝜓𝜓𝑖𝑖−1 − 3𝜓𝜓𝑖𝑖 + 𝜓𝜓𝑖𝑖+1)              (6) 
 
To start the integration of the ADE (1), first, time 
integration is managed via the Crank-Nicolson technique 
to obtain time-integrated ADE 
 
𝑈𝑈𝑛𝑛+1 − 𝑈𝑈𝑛𝑛

𝛥𝛥𝑡𝑡
+ 𝜀𝜀 �

𝑈𝑈𝑥𝑥𝑛𝑛+1 + 𝑈𝑈𝑥𝑥𝑛𝑛

2
� − 𝜆𝜆 �

𝑈𝑈𝑥𝑥𝑥𝑥𝑛𝑛+1 + 𝑈𝑈𝑥𝑥𝑥𝑥𝑛𝑛

2
� = 0 

(7) 
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and organize (7) to have the form: 
 
2𝑈𝑈𝑛𝑛+1 − 2𝑈𝑈𝑛𝑛 + (𝜀𝜀𝛥𝛥𝑡𝑡)(𝑈𝑈𝑥𝑥𝑛𝑛+1 + 𝑈𝑈𝑥𝑥𝑛𝑛) − (𝜆𝜆𝛥𝛥𝑡𝑡)(𝑈𝑈𝑥𝑥𝑥𝑥𝑛𝑛+1 +
𝑈𝑈𝑥𝑥𝑥𝑥𝑛𝑛 ) = 0                                                                             (8) 
 
At the second step, the least squares scheme is going to be 
performed to the Eq. (8) to reach the integral equation: 
 
∫ (2U𝑛𝑛+1 − 2U𝑛𝑛 + (𝜀𝜀𝛥𝛥𝑡𝑡)(𝑈𝑈𝑥𝑥𝑛𝑛+1 + 𝑈𝑈𝑥𝑥𝑛𝑛) −𝑏𝑏
𝑎𝑎

(𝜆𝜆𝛥𝛥𝑡𝑡)(𝑈𝑈𝑥𝑥𝑥𝑥𝑛𝑛+1 + 𝑈𝑈𝑥𝑥𝑥𝑥𝑛𝑛 ))2𝑑𝑑𝑥𝑥 = 0                                  (9) 
 
For the purpose of suitability, the B-splines (4) and 
integral Equations (9) are transformed by using local 
coordinate system 
 
𝜁𝜁𝛥𝛥𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑖𝑖 , 0 ≤ 𝜁𝜁 ≤ 1                                                (10) 
 
mapping the sample interval [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] to interval [0,1].  
Thus the quartic B-splines within interval [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] have 
expression with respect to 𝜁𝜁 on the interval [0,1] 
 
𝑃𝑃𝑖𝑖−24 = 1 − 4𝜁𝜁 + 6𝜁𝜁2 − 4𝜁𝜁23 + 𝜁𝜁4 
𝑃𝑃𝑖𝑖−14 = 11 − 12𝜁𝜁 − 6𝜁𝜁2 + 12𝜁𝜁23 − 𝜁𝜁4 
𝑃𝑃𝑖𝑖4 = 11 + 12𝜁𝜁 − 6𝜁𝜁2 − 12𝜁𝜁23 + 𝜁𝜁4 
𝑃𝑃𝑖𝑖−24 = 1 + 4𝜁𝜁 + 6𝜁𝜁2 + 4𝜁𝜁23 − 𝜁𝜁4 
𝑃𝑃𝑖𝑖−24 = 𝜁𝜁4                                                                    (11) 
 
and using transformation (10) for derivative in 𝜁𝜁 
coordinates, the first and second derivatives becomes 
 

2

1 ,

1( ) ( )

1 1 ,

x

xx x

UU U
x x

U U U
x x x

U
U

x x x

ζ

ζ

ζ
ζζ

ζ
ζ

ζ
ζ

∂ ∂
= =

∂ ∂ ∆

∂ ∂
= =

∂ ∆ ∂

∂ ∂
= =

∆ ∂ ∂ ∆

 

an approximation 
 
𝑢𝑢𝑒𝑒(𝑥𝑥, 𝑡𝑡) ≈ 𝑈𝑈𝑒𝑒(𝑥𝑥, 𝑡𝑡) = ∑ 𝜓𝜓𝑖𝑖𝑚𝑚+1

𝑖𝑖=𝑚𝑚−2 (𝑡𝑡)𝑃𝑃𝑖𝑖4(𝜁𝜁)              (12) 
 
in the interval [0,1], integral equation (9) yields 
 
∫ (2(𝑈𝑈𝑒𝑒)𝑛𝑛+1 − 2(𝑈𝑈𝑒𝑒)𝑛𝑛 + 𝛽𝛽(𝑈𝑈𝑒𝑒)

𝜁𝜁
𝑛𝑛+1 + 𝛽𝛽(𝑈𝑈𝑒𝑒)

𝜁𝜁
𝑛𝑛 −1

0
𝜃𝜃(𝑈𝑈𝑒𝑒)𝜁𝜁𝜁𝜁𝑛𝑛+1 − 𝜃𝜃(𝑈𝑈𝑒𝑒)𝜁𝜁𝜁𝜁𝑛𝑛 )𝑑𝑑𝜁𝜁 = 0                                      (13) 
 
Taking the derivative of the integral Equation (13) with 
respect to time parameter 𝜓𝜓𝑛𝑛+1 yield 
 

𝑑𝑑
𝑑𝑑𝜓𝜓𝑛𝑛+1 ∫ (10 2𝑈𝑈𝑛𝑛+1 − 2𝑈𝑈𝑛𝑛 + 𝛽𝛽𝑈𝑈𝜁𝜁

𝑛𝑛+1+𝛽𝛽𝑈𝑈𝜁𝜁
𝑛𝑛 − 𝜃𝜃𝑈𝑈𝜁𝜁𝜁𝜁𝑛𝑛+1 −

𝜃𝜃𝑈𝑈𝜁𝜁𝜁𝜁𝑛𝑛 )2𝑑𝑑𝜁𝜁 = 0                                                              (14) 
 
so that the least squares weak formulation is obtained in 
the form of  Galerkin with weight function  
 

𝑑𝑑
𝑑𝑑𝜓𝜓𝑖𝑖

𝑛𝑛+1 �2𝑈𝑈𝑛𝑛+1 − 2𝑈𝑈𝑛𝑛 + 𝛽𝛽𝑈𝑈𝜁𝜁
𝑛𝑛+1 + 𝛽𝛽𝑈𝑈𝜁𝜁

𝑛𝑛 − 𝜃𝜃𝑈𝑈𝜁𝜁𝜁𝜁𝑛𝑛+1 −

𝜃𝜃𝑈𝑈𝜁𝜁𝜁𝜁𝑛𝑛 �.                                                                         (15) 
 
Replacing approximation (12) in Eq. (14) leads to a 
system of equations: 
 

∫

(4𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝜓𝜓𝑖𝑖𝑛𝑛+1 − 4𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝜓𝜓𝑖𝑖𝑛𝑛 + 2𝛽𝛽𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖
′𝜓𝜓𝑖𝑖𝑛𝑛+1

+2𝛽𝛽𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖
′𝜓𝜓𝑖𝑖𝑛𝑛 − 2𝜃𝜃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖

′′𝜓𝜓𝑖𝑖𝑛𝑛+1 − 2𝜃𝜃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖
′′𝜓𝜓𝑖𝑖𝑛𝑛

+2𝛽𝛽𝑃𝑃𝑖𝑖
′𝑃𝑃𝑖𝑖𝜓𝜓𝑖𝑖𝑛𝑛+1 − 2𝛽𝛽𝑃𝑃𝑖𝑖

′𝑃𝑃𝑖𝑖𝜓𝜓𝑖𝑖𝑛𝑛 + 𝛽𝛽2𝑃𝑃𝑖𝑖
′𝑃𝑃𝑖𝑖

′𝜓𝜓𝑖𝑖𝑛𝑛+1

+𝛽𝛽2𝑃𝑃𝑖𝑖
′𝑃𝑃𝑖𝑖

′𝜓𝜓𝑖𝑖𝑛𝑛 − 𝛽𝛽𝜃𝜃𝑃𝑃𝑖𝑖
′𝑃𝑃𝑖𝑖

′′𝜓𝜓𝑖𝑖𝑛𝑛+1

−𝛽𝛽𝜃𝜃𝑃𝑃𝑖𝑖
′𝑃𝑃𝑖𝑖

′′𝜓𝜓𝑖𝑖𝑛𝑛 − 2𝜃𝜃𝑃𝑃𝑖𝑖
′′𝑃𝑃𝑖𝑖𝜓𝜓𝑖𝑖𝑛𝑛+1

+2𝜃𝜃𝑃𝑃𝑖𝑖
′′𝑃𝑃𝑖𝑖𝜓𝜓𝑖𝑖𝑛𝑛 − 𝜃𝜃𝛽𝛽𝑃𝑃𝑖𝑖

′′𝑃𝑃𝑖𝑖
′𝜓𝜓𝑖𝑖𝑛𝑛+1

−𝜃𝜃𝛽𝛽𝑃𝑃𝑖𝑖
′′𝑃𝑃𝑖𝑖

′𝜓𝜓𝑖𝑖𝑛𝑛 + 𝜃𝜃2𝑃𝑃𝑖𝑖
′′𝑃𝑃𝑖𝑖

′′𝜓𝜓𝑖𝑖𝑛𝑛+1

+𝜃𝜃2𝑃𝑃𝑖𝑖
′′𝑃𝑃𝑖𝑖

′′𝜓𝜓𝑖𝑖𝑛𝑛)𝑑𝑑𝜁𝜁 = 0

1
0        (16) 

 
In this system, we use the integral for brevity 

𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒 = �𝑃𝑃𝑖𝑖

1

0

𝑃𝑃𝑖𝑖𝑑𝑑𝜁𝜁, 𝐵𝐵𝑖𝑖𝑖𝑖𝑒𝑒 = �𝑃𝑃𝑖𝑖

1

0

𝑃𝑃𝑖𝑖
′𝑑𝑑𝜁𝜁, 

�𝐵𝐵𝑖𝑖𝑖𝑖𝑒𝑒 �
𝑇𝑇 = �𝑃𝑃𝑖𝑖

′
1

0

𝑃𝑃𝑖𝑖𝑑𝑑𝜁𝜁 𝐶𝐶𝑖𝑖𝑖𝑖𝑒𝑒 = �𝑃𝑃𝑖𝑖

1

0

𝑃𝑃𝑖𝑖
′′
𝑑𝑑𝜁𝜁, 

�𝐶𝐶𝑖𝑖𝑖𝑖𝑒𝑒 �
𝑇𝑇 = �𝑃𝑃𝑖𝑖

′′
1

0

𝑃𝑃𝑖𝑖𝑑𝑑𝜁𝜁, 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 = �𝑃𝑃𝑖𝑖
′

1

0

𝑃𝑃𝑖𝑖
′𝑑𝑑𝜁𝜁, 

𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒 = �𝑃𝑃𝑖𝑖
′

1

0

𝑃𝑃𝑖𝑖
′′
𝑑𝑑𝜁𝜁 �𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒 �

𝑇𝑇 = �𝑃𝑃𝑖𝑖
′′

1

0

𝑃𝑃𝑖𝑖
′
𝑑𝑑𝜁𝜁 

𝐹𝐹𝑖𝑖𝑖𝑖 = �𝑃𝑃𝑖𝑖
′′

1

0

𝑃𝑃𝑖𝑖
′′𝑑𝑑𝜁𝜁 

 

(17) 
 
to have the iterative matrix equation having the unknown 
𝜓𝜓𝑖𝑖𝑛𝑛+1 on each sample intervals [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] 
[4𝐴𝐴𝑒𝑒 + 2𝛽𝛽((𝐵𝐵𝑒𝑒)𝑇𝑇 + 𝐵𝐵𝑒𝑒) − 2𝜃𝜃((𝐶𝐶𝑒𝑒)𝑇𝑇 + 𝐶𝐶𝑒𝑒) + 𝛽𝛽2𝐷𝐷𝑒𝑒 −
𝛽𝛽𝜃𝜃((𝐸𝐸𝑒𝑒)𝑇𝑇 + 𝐸𝐸𝑒𝑒) + 𝜃𝜃2𝐹𝐹𝑒𝑒](𝜓𝜓𝑒𝑒)𝑛𝑛+1 = [4𝐴𝐴𝑒𝑒 +
2𝛽𝛽((𝐵𝐵𝑒𝑒)𝑇𝑇 + 𝐵𝐵𝑒𝑒) − 2𝜃𝜃((𝐶𝐶𝑒𝑒)𝑇𝑇 + 𝐶𝐶𝑒𝑒) + 𝛽𝛽2𝐷𝐷𝑒𝑒 −
𝛽𝛽𝜃𝜃((𝐸𝐸𝑒𝑒)𝑇𝑇 + 𝐸𝐸𝑒𝑒) − 𝜃𝜃2𝐹𝐹𝑒𝑒](𝜓𝜓𝑒𝑒)𝑛𝑛 .                             (18) 
 
Putting together all the system of equations (18) to have 
the global matrix equation: 
[4𝐴𝐴 + 2𝛽𝛽(𝐵𝐵𝑇𝑇 + 𝐵𝐵) − 2𝜃𝜃(𝐶𝐶𝑇𝑇 + 𝐶𝐶) + 𝛽𝛽2 𝐷𝐷 − 𝛽𝛽𝜃𝜃(𝐸𝐸𝑇𝑇 +
𝐸𝐸) + 𝜃𝜃2𝐹𝐹](𝜓𝜓)𝑛𝑛+1] = [4𝐴𝐴 + 2𝛽𝛽(𝐵𝐵𝑇𝑇 + 𝐵𝐵) − 2𝜃𝜃(𝐶𝐶𝑇𝑇 +
𝐶𝐶) + 𝛽𝛽2 𝐷𝐷 − 𝛽𝛽𝜃𝜃(𝐸𝐸𝑇𝑇 + 𝐸𝐸) − 𝜃𝜃2𝐹𝐹](𝜓𝜓)𝑛𝑛.                  (19) 
 
𝐴𝐴,𝐵𝐵,𝐵𝐵𝑇𝑇 ,𝐶𝐶,𝐶𝐶𝑇𝑇𝐷𝐷,𝐸𝐸,𝐸𝐸𝑇𝑇 ,𝐹𝐹 are obtained by combining the 
element matrices 𝐴𝐴𝑒𝑒 ,𝐵𝐵𝑒𝑒 , (𝐵𝐵𝑒𝑒)𝑇𝑇 ,𝐶𝐶𝑒𝑒 , (𝐶𝐶𝑒𝑒)𝑇𝑇 ,𝐷𝐷𝑒𝑒 ,𝐸𝐸𝑒𝑒 , (𝐸𝐸𝑒𝑒)𝑇𝑇 . 
The time-space discrete solutions can be found by 
implementing the system of equations(19) once the initial 
solution parameters are determined by way of the 
following equations 
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𝑈𝑈(𝑥𝑥𝑚𝑚, 0) = 𝜓𝜓𝑚𝑚−2
0 + 11𝜓𝜓𝑚𝑚−1

0 + 11𝜓𝜓𝑚𝑚0 + 𝜓𝜓𝑚𝑚+1
0

𝑈𝑈′(𝑥𝑥0, 0) = 4/ℎ(−𝜓𝜓−20 − 3𝜓𝜓−1
0 + 3𝜓𝜓00 + 𝜓𝜓10)

𝑈𝑈′′(𝑥𝑥0, 0) = 12/ℎ2(𝜓𝜓−20 − 𝜓𝜓−1
0 − 𝜓𝜓00 + 𝜓𝜓10)

𝑈𝑈′(𝑥𝑥𝑁𝑁 , 0) = 4/ℎ(−𝜓𝜓𝑁𝑁−20 − 3𝜓𝜓𝑁𝑁−10 + 3𝜓𝜓𝑁𝑁0 + 𝜓𝜓𝑁𝑁+10 )

 

 
3. NUMERICAL RESULTS 
 
3.1. Pure advection in long channel 
 
The effect of pure advection is going to be studied in an 
infinitely long channel of long constant cross-section 
when 𝛾𝛾 = 0.  Peak of the initial wave is going to be 
positioned at 𝑥𝑥 = 𝑥𝑥0 in the channel whose length is taken 
𝐿𝐿 and then movement of the initial wave to the right side 
of the channel is going to be observed.  Analytical solution 
of the ADE is 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 10𝑒𝑒𝑥𝑥𝑒𝑒 �−
1

2𝜌𝜌
(𝑥𝑥 − 𝑥𝑥0 − 𝜀𝜀𝑡𝑡)2�, 

0 < 𝑥𝑥 < 𝐿𝐿                                                          (20) 
 
from which the initial condition is taken with  𝑡𝑡 = 0: 
 

𝑢𝑢(𝑥𝑥, 0) = 10𝑒𝑒𝑥𝑥𝑒𝑒(−
1

2𝜌𝜌
(𝑥𝑥 − 𝑥𝑥0))2.                  (21) 

 
Boundary condition 
 

𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(𝐿𝐿, 𝑡𝑡) = 𝛼𝛼, 𝑡𝑡 > 0 
are chosen. 
 
The velocity of 𝜀𝜀 = 0.5𝑚𝑚/𝑠𝑠, position of peak wave of 
𝑥𝑥0 = 2000𝑚𝑚 and standard deviation 𝜌𝜌 = 264 are used 
for purpose of comparison with earlier results. The 
program is run over the problem domain [0,9000] until 
time 𝑡𝑡 = 9600𝑠𝑠 at which time error norms are given at 
time 𝑡𝑡 = 9600 in Table 1 for equal time/space 
increments. 
 
When ℎ = 𝛥𝛥𝑡𝑡 = 50 are used, wave behavior is given at 
times 𝑡𝑡 = 1000,2000, . . . ,9000 in Fig. 1a and absolute 
difference between exact and numerical solutions is 
displayed at time 𝑡𝑡 = 9600 in Fig. 1b from which errors 
happen at most near peak position of wave. From Fig. 1a, 
wave magnitude remain almost same and move 4800𝑚𝑚 
during the running of the algorithm as expected. 
 
 
Table 1. Error norms at t=9600 
ℎ = 𝛥𝛥𝑡𝑡 𝐿𝐿2(𝑡𝑡 = 9600) 𝐿𝐿∞(𝑡𝑡 = 9600) 
200 54.39436 2.305734 
100 15.65584 0.733745 
50 4.00316 0.189633 
25 1.00492 0.047043 
10     0.16095      0.007502 

 
 

3.2. Combined effect of advection-diffusion 
 
Disappearance of the initial bell-shaped Gauss 
concentration can be illustrated by way of the analytical 
solution of ADE: 
 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 1

√4𝑡𝑡+1
𝑒𝑒𝑥𝑥𝑒𝑒 �− (𝑥𝑥−𝑥𝑥0−𝜀𝜀𝑡𝑡)2

𝜆𝜆√4𝑡𝑡+1
�                           (22) 

 
Initial concentration is derived from the analytical 
solution (22) for 𝑡𝑡 = 0: 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−
(𝑥𝑥 − 𝑥𝑥0)2

𝜆𝜆
�                                     (23) 

 

 
Figure 1.a. Solutions at some times. 

 

 
𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅.𝐛𝐛. |Exact − numerical| solution at t=9600. 

 
The velocity 𝜀𝜀 = 0.8𝑚𝑚/𝑠𝑠, diffusion coefficient 𝜆𝜆 =
0.005 𝑚𝑚2/𝑠𝑠 and peak position of initial 
concentration  𝑥𝑥0 = 1𝑚𝑚 and time-space increments ℎ =
𝛥𝛥𝑡𝑡 combinations are selected to run the algorithm over the 
integral [0,9] with boundary conditions 𝑢𝑢(0, 𝑡𝑡) =
𝑢𝑢(9000, 𝑡𝑡) = 0. Results of 𝐿𝐿2 and 𝐿𝐿∞ norms are 
documented at time 𝑡𝑡 = 5 in Table 2.  
 

Table 2. Error norms at t=5 
ℎ = 𝛥𝛥𝑡𝑡 𝐿𝐿2(𝑡𝑡 = 5) 𝐿𝐿∞(𝑡𝑡 = 5) 
0.1 0.033049 0.053645 
0.05 0.008523 0.014100 
0.02 0.001359 0.002173 
0.01 0.000340 0.000538 
0.005 0.000085 0.000134 

 
 

Smaller increments cause smaller errors seen in Table 2. 
Initial concentration can be observed to vanish drawn in 
Fig. 2a as time increase and error distribution at time 𝑡𝑡 =
5 is depicted in Fig. 2b. 
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Figure 2.a. Solution behavior 

 

 
𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝟐𝟐.𝐛𝐛. |Exact − numerical| solution 

 
 
3.3. Convection-diffusion of continuous flow of 
pollutants 
 
This test problem examines the effect of both advection 
and diffusion while flowing. During the simulation 
process, the velocity 𝜀𝜀 = 0.01, the diffusion constant 𝜆𝜆 =
0.002, the length of the channel 𝐿𝐿 = 200𝑚𝑚, boundary 
conditions 𝑢𝑢(0, 𝑡𝑡) = 1 and 𝑢𝑢(200, 𝑡𝑡) = 0, initial 
condition 𝑢𝑢(𝑥𝑥, 0) = 0, 𝑥𝑥 ≥ 0 are chosen. Analytical 
solution is 

 
1 1 1( , ) ( ) exp( ) ( )
2 2 24 4

x t x x tu x t erfc erfc
t t
ε ε ε

λλ λ
− +

= +    (24) 

 
The program is run and error norm 𝐿𝐿∞ at times 3000 and 
6000 is documented for time/space combinations in Table 
3. 
 
Numerical solutions at times 𝑡𝑡 = 3000 and 𝑡𝑡 = 6000 and 
their absolute errors are given in Figs. 3a-b-c, from which 
the maximum errors at times 𝑡𝑡 = 3000 and 6000 happens 
at about positions 30𝑚𝑚 and 60𝑚𝑚 respectively. 
 
 

Table 3. Error norms 𝐿𝐿∞ at various time 
𝛥𝛥𝑡𝑡 h 𝐿𝐿∞(= 3000) 𝐿𝐿∞(= 6000) 

60 1 0.035207 0.024590 
30  0.010528 0.00718 
10  0.005212 0.003489 
5  0.008159 0.00568 
60 0.5 0.0336759 0.023552 
30  0.0094947 0.006512 
10  0.005397 0.003696 
5  0.008398 0.005906 

 

 

Figure 3.a. Solutions 
 

 
𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝟑𝟑.𝐛𝐛. errors at time t = 3000 

 

 
𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝟑𝟑. 𝐜𝐜. errors at time6000 

 
An effective algorithm has been suggested for getting 
numerical solution of the ADE. Error for the diffusion 
dominant form of the ADE is obtained to be smaller than 
the pure advection form of it numerically as expected, 
seen the results of the example test problems 2 and 3. The 
quartic B-spline based least square method can be used as 
alternative numerical method for solving advection-
diffusion systems fairly. 
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