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Abstract— This study explores the potential for autonomous 

agents to develop environmental awareness through perceptual 

attention. The main objective is to design a perception system 

architecture that mimics human-like perception, enabling smart 

agents to establish effective communication with humans and 

their surroundings. Overcoming the challenges of modeling the 

agent's environment and addressing the coordination issues of 

multi-modal perceptual stimuli is crucial for achieving this goal. 

Existing research falls short in meeting these requirements, 

prompting the introduction of a novel solution: a cognitive multi-

modal integrated perception system. This computational 

framework incorporates fundamental feature extraction, 

recognition tasks, and spatial-temporal inference while 

facilitating the modeling of perceptual attention and awareness. 

To evaluate its performance, experimental tests and verification 

are conducted using a software framework integrated into a 

sandbox game platform. The model's effectiveness is assessed 

through a simple interaction scenario. The study's results 

demonstrate the successful validation of the proposed research 

questions.  

 
 

Index Terms— Autonomous smart agents, Cognitive 

perception, Attention modelling, World model.  

 

I. INTRODUCTION 

HE ABILITY to engage with their environment through 

perception is vital not just for humans but also for 

autonomous systems equipped with intelligent agents. These 

abilities rely on representations of the world model in terms of 

spatial and temporal, as well as perceptual cognition, situation 

awareness and attentional capabilities [1]. In biological 

systems, the cortical and cerebral lobes of the human brain 

play a significant role in providing these functions and 

characteristics. The cerebral cortex's anatomical structure 

consists of two primary cortical structures known as the 

frontal (anterior) and posterior (posterior) lobes [2]. Cognitive 

abilities related to perception functions are primarily located 
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in the posterior section of the cerebral cortex [2, 3]. This 

region is further divided into three subregions, namely the 

occipital, parietal, and temporal lobes [4]. The occipital lobe, 

housing the primary visual cortex regions, performs various 

functions on visual stimuli after extracting their features [5, 6]. 

The temporal lobe is responsible for pattern recognition in 

visual and auditory stimuli [3, 5]. Spatial perception, on the 

other hand, is handled by the parietal lobe, which receives 

visual and somatosensory stimuli [4, 7]. However, 

autonomous systems comprising intelligent agents, digital 

assistants, or social robots have encountered significant 

challenges in implementing these capabilities during human-

machine interaction experiments [8, 9]. Therefore, cognitive 

perception systems are currently critical issues in the fields of 

human-computer interaction (HCI), aiming to enhance 

interaction between autonomous agents and humans [10, 11].  

 

 
Fig.1. Regions of cerebral cortex in the human brain 

 

In our daily lives, autonomous systems that possess cognitive 

perceptual abilities require various forms of interaction with 

their surroundings [12, 13]. Hence, it is necessary for these 

systems to be endowed with a perceptual system resembling 

that of humans, enabling them to interpret and sustain 

representations of the world model. Furthermore, they should 

be able to assess human-machine interaction through shared 

attention within a collaborative workspace [1, 14, 15]. 

Spatial cognition involves being aware of one's 

environment, encompassing the perception of objects in terms 

of their spatial aspects such as positions, orientations, 

distances, and movements [1, 16-18]. On the other hand, 

temporal cognition focuses on the intermediate processes that 

involve encoding non-spatial or temporal characteristics of 

objects, such as color and shape, as well as recognizing 
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patterns like objects, faces, and spoken words. Accomplishing 

higher-level cognitive abilities to effectively respond to 

multimodal perceptual stimuli, engage in pattern recognition, 

model attention, and exhibit environmental awareness presents 

a challenging task [1, 19, 20]. Developing perceptual models 

that represent the environment of an autonomous system, 

including spatial world models and the interaction of physical 

behavior models, is among the significant challenges faced 

[17-20]. Additionally, temporal perception plays a crucial role 

by incorporating event-based or situation-based 

representations of the world [21-23]. Errors in representing the 

world model or coordinating multimodal perceptual stimuli 

can lead to mistakes in interaction. 
 

Fig.2. Sand-box game platform 

 

The objective of this research is to design a comprehensive 

multimodal perception system for an intelligent agent that can 

effectively navigate and explore its surroundings within a 

virtual gaming platform. By leveraging the computational 

principles of the posterior neocortex, a software framework 

can be developed to guide the construction of this cognitive 

perception system. The proposed solution aims to demonstrate 

its efficacy in representing dynamic environments with 

uncertainties. This approach offers several notable 

contributions. For instance, it incorporates cognitive 

perceptual functions capable of processing various multimodal 

stimuli such as visual, auditory, and somatosensory inputs, 

enabling tasks such as feature extraction, pattern recognition, 

and spatial perception. Moreover, the system incorporates the 

ability to coordinate perceptual information, including 

perceptual association (or sensory fusion) and the management 

of competition between stimuli, which are vital for modeling 

perceptual attention. Achieving these objectives involves 

implementing supervised and unsupervised learning 

techniques across different modules within the cognitive 

perception system. 

The subsequent section of the paper delves into the second 

part, where it provides an overview of the relevant research 

conducted in the field. Section 3 focuses on outlining the 

design principles governing the computational framework of 

the comprehensive multimodal perception system, which aims 

to achieve world model representation and spatial-temporal 

situational awareness within dynamic and uncertain 

environments. The article concludes with section 4, which 

encompasses a discussion of the findings, conclusions drawn 

from the study, and potential avenues for future research. 

II. RELATED WORKS 

Computational cognitive architectures have emerged as 

solutions for addressing perceptual and environmental 

modeling challenges in the context of autonomous aget 

systems. The number of projects in this domain has been 

rapidly increasing and is projected to continue growing in the 

future, signifying its significance. Notably, several 

commendable examples of computational architectures 

incorporating cognitive perception principles and facilitating 

world model representation and attention modeling have been 

introduced. 

In one study, Inceoglu et al. [24] proposed a visual scene 

representation framework specifically designed for service 

robots. Their objective was to generate and maintain 

comprehensive workplace models to facilitate object 

manipulation. The framework employed various algorithms 

and vision data flow sources to cater to both humanoid and 

manipulator systems. It incorporated different detection 

algorithms that processed visual data, continually improving 

and updating the world model representation. 

Another notable work by Kim et al. [25] explored a 

curiosity-driven framework called Dynamic World Model 

Learning (AWML). The study involved the development of a 

curious agent that constructed models of the world through 

visual exploration of a rich 3D physical environment [26]. The 

researchers focused on refining representative real-world 

agents to drive the AWML framework. They specifically 

emphasized efficient and adaptive learning progress-based 

curiosity indicators to guide the exploration process. The study 

demonstrated that the AWML framework, propelled by such 

progress-driven controllers, outperformed alternative 

approaches, including random network distillation and model 

mismatch, in terms of achieving higher AWML performance. 

These examples highlight the advancements made in 

computational architectures for cognitive perception, 

particularly in relation to world model representation and 

adaptive learning mechanisms. 

Riedelbauch and Henrich proposed an adaptable method 

tailored for human-robot collaboration, where a robot 

dynamically selects actions that contribute to a shared 

objective based on a given behavioral pattern [27]. To gather 

information about task progress, they constructed a world 

model using camera images captured from an eye-to-eye 

perspective. Recognizing that data generated by fractional 

workspace perceptions can become obsolete over time due to 

human interaction with resources, they introduced a human-

aware world model. This model maintains observations of 

ongoing human presence and stored item confidence in 

relation to past assignment progress. Their notable 

contribution was an action selection mechanism that utilized 

this confidence measure, combining mission operations with 

active vision to update the world model. The extensive testing 

of their system involved simulating various human interests by 

recreating modernized human models and evaluating the 

system's performance across different benchmark assignments, 

resulting in scores associated with various functions. 
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In a separate study, Rosinol et al. introduced an integrated 

model termed 3D Dynamic Environmental Networks for 

dynamic spatial perception [28]. This model represented the 

scene using environmental networks composed of nodes 

representing entities such as objects, walls, and rooms, along 

with the relationships between these nodes. To accommodate 

moving agents and incorporate dynamic data aiding planning 

and decision making, they extended this concept with 

Dynamic Scene Graphs (DSGs). Additionally, they developed 

an automated Spatial Perception Engine (SPIN) that leveraged 

visual inertial data to construct a DSG. The researchers 

focused on state-of-the-art strategies for human and object 

recognition, posture computation, and perception of objects, 

robot nodes, and human nodes in crowded environments. 

Their work incorporated visual-inertial SLAM and dense 

human network tracking. They also devised algorithms for 

generating hierarchical models of indoor environments, 

including places, structures, and rooms, along with their 

interrelationships. A noteworthy achievement was the 

demonstration of the spatial perception engine within a photo-

realistic Unity-based simulator. The application of the 3D 

Dynamic Scene Graphics technique had significant 

implications for planning and decision making, human-robot 

interaction, long-term autonomy, and scene prediction. 

Venkataraman et al. tackled the challenge of generating 

generic 3D models for original items using a robot capable of 

decluttering items to enhance organization [29]. Their 

approach involved creating models of grasped objects through 

simultaneous manipulation and tracking. These models were 

processed using a kinematic representation of the robot, which 

allowed for combining observations from multiple scenes and 

eliminating background noise. To evaluate their model, they 

employed a robot equipped with a mobile platform, a 

manipulator, and an RGBD camera. This setup facilitated the 

assembly of voxelized representations of unidentified items, 

which were then classified into new categories. 

Persson et al. focused on semantic world representation by 

combining probabilistic thinking and item binding [30]. Their 

paradigm adopted a top-down item binding approach based on 

continuous attribute values obtained from perceptual sensor 

data. They trained a binding matching model to maintain item 

entities and validated its performance using a large ground 

truth dataset of manually labeled real-world items. To handle 

more complex scenarios, they integrated a high-probability 

item tracker into the binding architecture, enabling reasoning 

about the state of unobserved items. The effectiveness of their 

system was demonstrated through various scenarios, including 

a shell game scenario that showcased how binding items were 

preserved through probabilistic reasoning. 

Martires et al. aimed to establish a semantic scene 

representation paradigm based on top-down item connectivity, 

utilizing an item-induced model of the world [31]. Their 

approach involved processing continuous perceptual sensor 

data to maintain perceptual connectivity, which correlated 

with a symbolic model. They extended the symbol binding 

model to incorporate binding annotations, enabling the 

execution of multimodal probability distributions and 

probabilistic logic reasoning for making inferences. 

Additionally, they employed statistical associative learning to 

enable the binding system to acquire symbolic knowledge in 

the form of probabilistic logic rules from noisy and sub-

symbolic sensor input. By leveraging logical rules to reason 

about the state of indirectly detected items, their system, 

incorporating perceptual connectivity and statistical 

associative learning, could maintain a semantic world model 

of all perceived items over time. They validated the 

performance of their system by evaluating the framework's 

probabilistic reasoning on multimodal likelihood and learning 

probabilistic logical rules from connected items obtained 

through perceptual observations. 

III. BACKGROUND AND PRELIMINARY MATERIALS 

Currently, in conventional deep learning techniques, 

training data comprising input data and corresponding target 

(class) information can be effectively trained and subsequently 

evaluated with new data inputs. These deep learning 

algorithms demonstrate remarkable efficiency in terms of data 

set size, data set quality, feature extraction methods, 

hyperparameter selection for deep learning models, activation 

functions, and optimization algorithms. 

 
Fig.3. Convolutional neural network 

 

A deep neural network comprising multiple layers enables 

the system to recognize objects at various levels of 

abstraction. Given the significant information processing 

demands associated with performing artificial cognitive 

functions and executing cognitive tasks, diverse deep neural 

network architectures such as multilayer perceptron, auto-

encoder, convolutional neural network (CNN), and long-short-

term memory (LSTM) recurrent neural networks are essential 

for learning models. These models can be further integrated 

within a hybrid AI framework, depending on the specific 

circumstances. 

Regarding the traditional convolutional neural network 

model, which exhibits robust feature learning capabilities 

similar to high-level abstraction processes in the cortical 

regions of the human brain, the layer arrangement typically 

follows the sequence of [input (x) – convolution layer - ReLU 
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– max pool layer] illustrated in figure 3. The convolution 

process involves applying convolution filters (weights) 

arranged as a cubic tensor. The rectified linear unit (ReLU) 

serves as the activation function. Typically, the neural network 

is trained using momentum stochastic gradient descent (SGD), 

facilitating the hierarchical extraction of features to be 

encoded by the large-scale neural activations within the model 

[32-34]. 

 
Fig.4. Long-Short Term Memory (LSTM) type neural network [35] 

 

The LSTM (Long Short-Term Memory), a recurrent neural 

network (RNN) structure depicted in fig. 4, can be engineered 

using convolutional layers to mimic the memory mechanisms 

observed in the human brain. This architecture enables the 

LSTM to maintain short-term memory states over an extended 

duration, resembling episodic memory formations [32, 33, 35]. 

The LSTM comprises a fundamental component called the 

memory cell, which incorporates input, output, and forget 

gates. Training the neural model may involve employing 

backpropagation through time calculations [35, 36]. 

IV. COMPUTATIONAL MODEL OF PERCEPTUAL COGNITION 

In this section, we provide an explanation of the cognitive 

architecture employed in an open-world game/simulation 

environment, which encompasses the perceptual mechanism 

of an autonomous intelligent agent engaging with various 

elements in its surroundings. The key aspect of the developed 

cognitive integrated perception system is its ability to 

construct a world model representation for dynamic and 

uncertain environments, while also supporting the agent's 

attention model. Throughout this study, the cognitive 

integrated perception system refers to three core components: 

the proposed framework, the environmental elements (objects, 

non-player characters, etc.), and the agent's internal states. The 

newly proposed structure aims to capture the spatio-temporal 

relationships and features arising from the dynamic interaction 

between the autonomous intelligent agent and the world 

model. To achieve a comprehensive model of the world for the 

autonomous agent, the attention model is integrated into 

higher-level perceptual processing, serving as a crucial 

element for assessing and detecting the level of spatio-

temporal state awareness during the agent's interaction with its 

environment. 

 
Fig.5. Spatial perception 

 

In order to develop a comprehensive understanding of the 

environment and navigate through it, the cognitive 

architecture must create a world model that encompasses all 

perceptual relationships and incorporates semantic concepts 

[37-39]. The integration of perceptual data into this model 

requires the cognitive system to perform complex fusion tasks. 

Additionally, the attention model, which is an integral part of 

the cognitive process, enhances the agent's interaction with the 

environment by promoting situational awareness. However, 

the presence of non-structural dynamic uncertainties during 

the creation of the world model can introduce perceptual 

distortions, leading to limitations in the agent's ability to 

recognize and attend to different elements in its surroundings. 

 

 
Fig.6. Temporal or non-spatial cognition 

 

The cognitive model presented utilizes real-time image flow 

to enable visual perception during the autonomous agent's 

interaction with the environment. The general algorithm 

follows a sequential data flow, consisting of preprocessing, 

feature extraction, and basic perceptual operations such as 

spatial-temporal pattern recognition. The final stage of the 

perceptual cognition mechanism focuses on achieving 

situational awareness for the autonomous agent, which 

involves constructing the world model and implementing the 

attention model. 
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Our proposed cognitive perception system offers a 

comprehensive framework for achieving situational awareness 

in autonomous robots and intelligent agents. It encompasses 

various components such as spatio-temporal pattern 

recognition, world model, and attention model, with a strong 

emphasis on the relationship between semantic concepts and 

perceptual connections. The diagram of the cognitive 

architecture can be seen in Figure 7.  

 
Fig.7. Cognitive architecture of the autonomous agent 

 

Before engaging in cognitive perception processes 

involving the world model representation and attention model, 

it is necessary to establish the system parameters for the 

learning models of the cognitive architecture. This includes 

performing data attribute processing activities such as 

segmentation, edge/corner detection, and filtering for feature 

extraction. The generalization and clustering tasks in this 

context are guided by unsupervised learning techniques. As a 

result, two distinct attribute data streams, namely spatial 

attribute information and temporal attribute information, are 

obtained for utilization in the spatio-temporal pattern 

recognition model in figure 8.  

 

 
Fig.8. Feature extraction and spatial-temporal perception model 

To facilitate the pattern identification process, a convolution 

filter (weight tensor) size is selected, consisting of a stack of 

four-time frames with dimensions of 83x158x3, representing 

the height, width, and depth of the image pattern, respectively. 

The initial alpha coefficient, which serves as a learning rate 

parameter, is set to 0.00025. The pattern recognition tasks 

incorporated in this model primarily employ supervised 

learning methodologies. 

The neural network's weights are continuously updated 

using the backpropagation algorithm and the stochastic 

gradient descent optimization method. To extract features 

from the images and reduce their dimensionality, a VGG-type 

mesh is employed as the encoder. The encoder comprises 

convolutional layers, spatial subsampling achieved through 

maximum pooling, and nonlinear activation functions. The 

spatial and temporal features obtained from encoding are then 

separately forwarded to decoders that consist of convolutional 

layers. In the spatial decoder module, the information from the 

convolutional layer undergoes the softmax function and 

subsequently a resize operation. On the other hand, the 

descriptive decoder module applies bidirectional cubic 

interpolation, contrasting the spatial decoder, and concludes 

with the L2 norm on the output information of the 

convolutional layer. The outputs from the spatial and 

descriptive decoders are combined with the state information 

(observation) from the world model and transmitted to the 

long-short-term memory (LSTM) network. Finally, by adding 

a classifier layer to the output of this model, the spatio-

temporal pattern recognition mechanism produces object 

recognition results. 

 

 
Fig.9. Attention model of the cognitive architecture 

 

The attention model and the world model, crucial 

components of the situation awareness mechanism, engage in 

reciprocal interaction. The world model utilizes the attention 

value computed by the attention model and generates 

observation information to be relayed back to the attention 

model. The classification information obtained from the 

spatio-temporal pattern recognition module serves as a 

fundamental input for the attention model. Additionally, the 

captured RGB image stream acts as another input, which 

undergoes processing through convolutional neural networks, 

including convolutional, relu activation, and max pooling 
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layers. Subsequently, in conjunction with the spatio-temporal 

pattern output, the observation response from the world model 

is conveyed to the long-short-phase memory (LSTM) network. 

The outputs from this network and the convolutional neural 

network are merged and transmitted to an auto-encoder 

network structure. The output of the convolutional layer in this 

auto-encoder structure is transferred to a hidden layer, also 

known as the bottleneck, whose output is utilized as attention 

points in other modules. Furthermore, the output information 

of the said layer is linked back to the convolutional layer input 

of the auto-encoder network through internal feedback. In the 

final stage of the autoencoder within the attention model, the 

output of the hidden layer is directed to a deconvolutional 

layer, resulting in the generation of a heat map, denoting focus 

information to be shared with other modules. The calculation 

of attention values, crucial for providing situational awareness 

to the autonomous agent, employs supervised learning 

methodologies, akin to the spatio-temporal pattern 

identification model within the attention model. Unsupervised 

learning methods are employed to obtain the heat map (focus 

information) as feedback data for feature extraction. 

 
Fig.10. World model of the smart agent 

 

The world model of the autonomous agent, which assumes 

the role of action planning, relies on both the action 

information provided by the policy module and the attention 

score generated by the attention module. Furthermore, the 

classification information derived from the spatio-temporal 

pattern recognition module serves as an additional input for 

the world model. The formation of the world model involves a 

convolutional layer that combines the attention score and the 

output of the spatio-temporal pattern recognition module. 

Subsequently, it undergoes softmax and size reduction 

operations. The disparity between the resulting output and the 

action information produced by the policy module is fed into 

an LSTM-based artificial neural network as input, which 

includes the attention score. The output of this neural network 

is utilized as observation information in the policy module, 

responsible for action planning. Another input to the policy 

module is the attention score itself. Reinforcement learning 

methodologies are employed in the policy module to facilitate 

action planning. As for the learning algorithm of the model in 

question, the initial discovery probability is set at 1.0, with a 

decay rate of 0.00001 and a minimum threshold of 0.01. The 

reward reduction ratio (gamma) is determined as 0.9. Through 

the fusion of perceptual data using hybrid machine learning 

tools, this architecture creates a network of semantic 

relationships, granting it sensing capabilities similar to the 

human perception system. This enables intelligent agents 

designed for autonomous systems to engage in continuous 

learning by establishing a world model and achieving 

situational awareness. 

V. IMPLEMENTATION AND RESULTS 

This research explores various experimental and simulation 

environments to enable autonomous navigation for virtual 

characters. While conducting experiments with physical robots 

in real-world settings offers realistic evaluation benefits, it 

also presents challenges in terms of practical implementation. 

Conversely, utilizing simulators provides significant 

advantages, including customizable degrees of freedom, noise-

free environments, lower costs, and reduced risk compared to 

deploying mobile robots.  

A. Experimental Setup and Application Scenario 

In order to implement the application, it is essential to 

establish the experimental setup and define the initial 

conditions. The application area serves as the setting for the 

game installation, where the fundamental mechanics of the 

game are introduced. Prior to proceeding with the installation, 

it is necessary to provide an overview of the general setup. 

 

1) General Settings 

The computational workload of the system architecture was 

supported by a workstation PC. The PC specifications include 

a quad-core Intel i7 CPU running at 3.9 GHz with 8MB cache, 

32GB DDR4 RAM operating at 1600MHz, an NVIDIA 

GeForce GTX1080Ti graphics card with 11GB video 

memory, and 1TB SSD and 1TB 7200rpm HDD storage. The 

main framework processes were executed on the Ubuntu 18.04 

LTS operating system. TensorFlow, a machine learning 

framework, was utilized for neural network processing and 

deep learning applications. OpenCV libraries were chosen for 

image processing and computer vision tasks. 

 

2) Sand-box game platform 

For this research, Minecraft was selected as the simulation 

environment. It is an open-world, first-person game that 

revolves around resource collection (such as wood from trees 

or stone walls) and the construction of structures and items. 

Players can engage in various actions, including movement, 

exploration, and building within the three-dimensional voxel 

space of the Minecraft map [40]. This game offers an 

infinitely dynamic environment that can be easily modified 

using a simplified physics engine. It can be played as a single-

player or multiplayer open-world game, without any specific 

objectives. Instead, each player can create their own narrative 

with diverse sub-objectives, resulting in complex hierarchical 

structures. 
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Fig.11. Tool crafting hierarchy of Minecraft game. 

 

The virtual character model of the agent possesses extensive 

degrees of freedom, granting it a wide range of capabilities. 

Within the Minecraft environment, the agent can engage in 

various actions, including movement in any direction, turning, 

item manipulation (picking up/dropping), chopping, tool 

selection, and utilization. These actions, arranged in different 

sequences, form behaviors that represent complex tasks 

organized hierarchically [41]. Each behavior consists of a 

combination of interdependent actions that fulfill different 

needs and prioritize multiple objectives within the Minecraft 

map or world. Consequently, the difficulty level in Minecraft 

is influenced by the size and complexity of these hierarchical 

structures [42]. For instance, a navigation task involves 

actions such as moving forward/backward, turning right/left, 

which enable the virtual character model to reach specific 

locations or avoid obstacles and threats. Another example 

task, building a structure like a shelter, necessitates several 

actions such as item manipulation, chopping/destroying, and 

other equipment-related tasks involving item selection, 

modification, and usage [41, 42]. 

 

 

 

 

 

 

 
 

Fig.12. Inventory of the smart agent 

 

In addition to engaging in missions that involve item 

collection and tool crafting, the experimental scenario presents 

more intricate and abstract hierarchies through various game 

features, which shape the agent's trajectory. For instance, 

interactive scenarios like combatting enemies, constructing 

shelters, and crafting tools from diverse resources for survival 

require extended durations or open-ended lifetimes to exhibit 

flexible hierarchies that allow for resource exploration. This 

facilitates the assembly of numerous resources and situational 

experiences [43, 44]. 

Data collection and feature extraction are crucial tasks in 

this context, necessitating extensive gameplay sessions with a 

large number of agents/humans [45, 46]. The dataset content 

encompasses substantial repetitions of memory utilizing 

observations, rewards, and actions. However, in nature, 

reward information is implicit and cannot be directly 

observed. This research paper utilizes the MineRL dataset, 

which stands as an extensive collection of imitation learning 

data, containing a staggering number of 60 million frames of 

human player recordings. This dataset consists of several sub-

datasets and is employed to conduct experiments aimed at 

achieving a model that can adapt to diverse environments. 

Serving as a meta-dataset, it encompasses a wide range of 

tasks that showcase challenging problems, including 

exploration (such as navigation and item collection) and 

survival (such as tool crafting and combat). 

The experimental setting involves creating a 600x600 

Minecraft map that incorporates both high and low perceptual 

overlap. A typical naturalistic Minecraft map comprises 

elements such as mountains/hills, trenches, caves, valleys, 

rivers, lakes, trees, vegetation, rocks, and soil. Additionally, 

buildings like houses, shelters, and warehouses with walls, 

windows, doors, and furniture can be constructed using 

materials collected from the generated environment. 

B. Implementation Scenario and Simulation Outputs 

Moving on to the implementation scenario and simulation 

outputs, the proposed scenarios are realized using application 

platforms to assess the system's performance and validate its 

effectiveness in addressing the research questions at hand. To 

evaluate the system's results, it is necessary to capture a data 

stream comprising stacked image frames during the 

application scenarios in the experiments. In the initial stage, a 

snapshot is taken from the game's video stream, followed by 

preprocessing operations such as size reduction, grayscale 

image conversion, and optimization of the sampling rate. Once 

the system receives sensor data streams containing visual and 

auditory information, feature extraction tasks are performed to 

enhance cognitive perception skills. Subsequently, operations 

related to perceptual cognition, including spatial perceptions 

and object/event recognition, are conducted on the extracted 

feature data pertaining to salient attributes like color, texture, 

size, shape, 3D position, and audio features. 

 

 
Fig.13. Snapshots from experiments using the Minecraft game platform. 

Entities and threat levels encountered by the autonomous agent in the 

experiment. 

 
Fig.14. Focus (heat map matrix) information generated in the attention 

model of the cognitive perception architecture 
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Screenshots from the experiments implementing the 

interaction scenarios are presented in Figure 13. Two 

interaction scenarios such as "exploration" and "survival" 

were considered for the experiments. The "exploration" 

scenario involves spatio-temporal detection of hidden objects 

placed at various points on the map with the help of an 

attention model that takes into account different environmental 

stimuli. In doing so, it makes diagnoses based on feature 

information such as distance, direction, color, shape, size, and 

current state. The information produced by this process and 

attention score information contributes to the formation of the 

autonomous agent's world model. In performance evaluation, 

the number of objects discovered by the agent in the map is 

used as the main performance parameter. The "survival" 

scenario involves spatio-temporal risk detection tasks that 

evaluate the dangers (enemies, etc.) that the autonomous agent 

may encounter at various points of the island. Meanwhile, the 

autonomous agent builds a threat analysis-based world model 

in its memory using the risk detection data and feedback data 

from the attention model. The number of enemies defeated 

and the number of dangerous situations avoided by the agent 

in the map is used as the main performance criterion for 

efficiency measurement. During the experiments, the entities 

(non-player characters) that the autonomous agent encounters 

while navigating the map and their threat states are shown in 

Figure-13. Accordingly, the attention levels of the autonomous 

agent when it encounters zombie, wolf, killer and octopus 

characters are higher than the other entities and are 0.817, 

0.683, 0.726 and 0.613, respectively. The threat levels of other 

entities were lower and defined as "harmless" for the 

autonomous agent. The attention levels of the autonomous 

agent when faced with chicken, cow, horse, sheep, pig, sheep, 

pig, and llama entities are 0.289, 0.352, 0.324, 0.331, 0.316, 

and 0.367, respectively. Figure-14 presents the focus (heat 

map matrix) information produced in the attention model of 

the cognitive perception architecture. Accordingly, when the 

autonomous agent encounters species with high threat level 

and species that can be considered as "harmful", more 

concentration (brightness in the heat map) is observed in the 

focus information compared to other species. 

 

 
Fig.15. Minecraft in-game environmental terrain scene 

 

Depending on the scenarios, at the end of these 

experiments, interaction data such as various experimental 

statistics (number of objects discovered on the map, scores 

and times for how many enemies defeated and how many 

dangerous situations escaped) as well as information about 

learning performances (accuracies, costs, scores, etc.) are 

obtained and presented in tables to illustrate the performance 

of the autonomous agent's cognitive perception system, which 

includes spatio-temporal pattern recognition, attention model 

and situational awareness models. 

 
TABLE I 

SPATIAL-TEMPORAL PATTERN RECOGNITION MODEL  

Model Accuracy Precision Recall F score 

Proposed model 0,73 0,69 0,71 0,72 

Regional Convolutional 
Neural Network (RCNN) 

0,67 0,64 0,63 0,66 

VGG16 0,58 0,65 0,63 0,61 

AlexNet 0,62 0,66 0,62 0,64 

 

Table-1 shows the performance values for spatio-temporal 

image recognition. In addition to the model proposed in this 

study, the performance values of the regional convolutional 

neural network (RCNN), VGG16, and AlexNet structures 

were also used for comparison. Accordingly, the model 

proposed in the paper was found to be advantageous with an 

accuracy of 73%. In terms of the performance evaluation, the 

runner-up model was observed to be the RCNN model. 

 
TABLE II 

THE ATTENTION MODEL’S EFFICIENCY   

Model Accuracy Precision Recall F score 

Proposed model 0,79 0,73 0,67 0,74 

Regional Convolutional 

Neural Network (RCNN) 

0,66 0,71 0,64 0,69 

LSTM 0,75 0,71 0,62 0,72 

ResNet 0,70 0,69 0,63 0,67 

 

Table-2 shows the performance of the attention model, which 

is a part of the state awareness function. In addition to the 

model proposed in this study, the performance values of 

regional convolutional neural network (RCNN), LSTM, and 

ResNet structures were also used for comparison. 

Accordingly, the model proposed in the paper was found to be 

advantageous with an accuracy of 79%. The second-best 

model was found to be the LSTM model. 

 
TABLE III 

PERFORMANCE SCORES OF THE WORLD MODEL 

Model Accuracy Precision Recall F 
score  

Proposed model 0,71 0,66 0,63 0,67 

Regional 
Convolutional Neural 
Network (RCNN) 

0,68 0,65 0,62 0,66 

LSTM 0,72 0,61 0,62 0,68 

Resnet 0,69 0,57 0,59 0,62 

 

Similarly, as in the evaluation and analysis for the attention 

model, convolutional neural network (RCNN), LSTM, and 

ResNet structures were used in addition to the proposed model 

in order to compare the performance values of the world 

model, which is another part of the situation awareness 

function. Although LSTM is slightly ahead of the proposed 

model in terms of accuracy in the world model, it is worse 

than the proposed model in terms of sharpness. Apart from 

these, the sharpness and sensitivity results of ResNet lagged 
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behind the results of the other models. 

 
Fig.16. Normalized task performances 

 

The normalized action performances for the scenarios in the 

experiments are presented in figure-16. One of the parameters 

related to these actions is the number of hidden objects found 

in the map for the "exploration" scenario. Another parameter 

is the number of times the autonomous agent survives the 

threats encountered in the map for the "survival" scenario. For 

the convenience of the evaluations, the total number of hidden 

objects and the number of threatening characters were limited 

to 50. On the horizontal axis of the figure, the attention score 

is expressed in percentages between 0-1. The scaled values 

expressed on the vertical axis are the rate of change over time 

of the normalized values found by dividing the parameters 

(actions) in both scenarios by the total number of those 

parameters. Considering this figure, it is observed that at low 

attention levels, the parameters in both scenarios are close to 

each other and as the attention level increases, the number of 

object discoveries, i.e., the "exploration" task performance, 

dominates over the "survival" task performance. However, 

when the attention level reaches the highest levels, it is 

observed that the "survival" task performance catches up with 

the "exploration" task performance. 

VI. CONCLUSION 

In this study, we investigate the design principles of a novel 

cognitive perception system for autonomous agents. A 

cognitive perception system is a framework that includes 

spatio-temporal pattern recognition, an attention model and a 

world model. 

The spatio-temporal pattern recognition model, which 

evaluates the 3D spatial environment representation and the 

dynamics based on the actual event, effectively served as one 

of the main components of the cognitive perception 

architecture. The information produced by this architecture 

was used in the attention model and the world model. The 

attention model successfully calculated both the attention 

score and the focus information (heat map matrix) using the 

information from the world model. The world model, which 

has a feedback data exchange structure with the attention 

model, produced both the observation information required for 

the action planning model. 

The experiments focused on two different scenarios such as 

"survival" and "exploration", and the main performance 

parameters were the number of dangers avoided in the 

"survival" task and the number of hidden objects found in the 

"exploration" task. In addition to the models in the proposed 

architecture, VGG16, AlexNet, ResNet, LSTM and RCNN 

models were also used for performance comparison. As a 

result of the experiments, the superiority and efficiency of the 

model proposed in the paper compared to other models are 

presented with the results obtained. 

The designed framework represents the perceptual 

cognition system of autonomous agents in a sand-box game 

environment. Therefore, it can be used in other 

intelligent/autonomous systems or by social robots. The 

presented framework can be further improved in the future by 

integrating approximate models of other cortical regions of the 

human brain related to cognitive perception. 
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