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ABSTRACT 

Curve and surface thinning are widely-used skeletonization techniques 
for modeling objects in 3 dimensions. In the case of disordered porous media 
analysis, however, neither is really efficient since the internal geometry of the 
object is usually composed of both rod and plate shapes. This paper concludes 
an application of discrete wavelet transform (WT) and complex wavelet 
transform (CWT) in image processing problem such as hybrid skeletonization 
of trabecular bone images. Hybrid skeleton combines 2D surfaces and 1D curve 
to represent respectively the plate-shaped and rod-shaped parts of the object. 
For hybrid skeletonization, two cascade structures are proposed. In these 
structures, features of images were extracted with discrete wavelet transform 
and complex wavelet transform. After that, obtained features were used as 
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inputs of complex-valued artificial neural network (CVANN) which is multi-
layered artificial neural networks with two dimensions (real and imaginary 
parts). Effects of the feature extraction methods are compared for ability of the 
hybrid skeletonization on a trabecular bone sample. Results show that the CWT 
succeeded to hybrid skeletonization with lower error rate than WT.  

Key Words: Wavelet transform, complex wavelet transform, complex-valued 
artificial neural network, hybrid skeletonization. 
 
1. Introduction 

 Skeletonizing an object often requires a compromise between minimum 
thinness, homotopic equivalence, geometry preservation and reversibility, 
which are usually incompatible. For example, algorithms based on distance 
transforms [1,2] are usually reversible but lose the connectivity information. 3D 
thinning [3,4] is another method based on iterative erosions of an object until 
only its skeleton is left. The most widely-used thinning variants are curve and 
surface thinning. Curve thinning techniques [5,6] generate skeletons composed 
of 1D curves. On the other hand, surface thinning techniques [7-11] generate 2D 
surfaces which better preserve the plates geometry, but do not thin rod shapes 
enough. Curve thinning and surface thinning are efficient respectively for one or 
the other, but not for both. For example, in the case of trabecular bone, it is 
clearly established that the structure is composed of both rod and plate parts. A 
lot of work has been carried out on the characterization of this porous medium, 
especially using skeletons. 

 In this paper, effects of WT and CWT in the skeletonizing hybrid-
shaped media composed of rods and plates using CVANN were studied. It is 
expected that complex-valued artificial neural networks (CVANN) whose 
parameters (weights, threshold values, inputs and outputs) are all complex 
numbers, will have applications in fields dealing with signal processing [12-14] 
and image processing [15,16]. When using the existing method for real 
numbers, we must apply the method individually to their real and imaginary 
parts. On the other hand, complex-valued neural networks allow us to directly 
process data.  
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2. Curve Thinning Algorithm (CTA) and Surface Thinning Algorithm 

(STA) 

 

The geometrical characterization of a porous medium using a thinning 
technique basically depends on the type of skeleton needed to model the 
material structure. Figure 1 shows the limitations of the curve and surface 
skeletons on a trabecular bone sample. In the curve case (b), plate-shaped zones 
are not efficiently described. In the surface case (c), the object shape is accurate 
but rod zones are not sufficiently thinned. Furthermore, the curve skeleton is 
sensitive to object surface irregularities, and generates many unexpected small 
segments. 

(a) (b) (c) 

Figure 1: A trabecular bone sample (a), its curve skeleton (b) and its surface 
skeleton (c). 

 

 

 

2.1 Curve Thinning Algorithm (CTA) 

  
  The curve thinning algorithm used in this paper is based on the well 
established work of Morgenthaler [17]. This iterative process relies on the 
evaluation of the Betti numbers in each voxel’s neighbourhood. A voxel is said 
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to be removable if its deletion does not change these numbers. Voxels are 
removed sequentially if they match the deletion criterions, which ensures a 
perfect topology preservation. The process is repeated until only the curve 
skeleton remains. Figure 1.b shows the result of the curve thinning algorithm on 
the bone volume of figure 1.a. In this example, plate zones have fully 
disappeared, which confirms that curve thinning is not sufficient to describe the 
entire porous medium. However, it efficiently models the rod-shaped parts of 
the object. 
 

 

2.2 Surface Thinning Algorithm (STA) 

  
  There are different types of surface skeletons, depending on the erosion 
conditions used in the case of thinning algorithms. Several surface thinning 
algorithms have been compared [9,11,18-20]. They all preserve the connectivity 
of the object. The important constraint in this work was to obtain a simple and 
relevant surface geometry in order to use the new skeleton as a basis for 
structural models. The MESPTA (Modified Extended Safe Point Thinning 
Algorithm) algorithm, [8,19,21] appeared to give the simplest surface geometry. 
The MESPTA consists in an iterative parallel topology-preserving process that 
transforms an object into its medial surface. The main advantage of this 
technique is that it generates a simple surface geometry, which is convenient to 
model the plate-shaped parts of an object. In the hybrid thinning technique, all 
plate voxels that match the safe point condition as explained in [19] are deleted 
at the end of an iteration. The process is iterated until no voxel is deleted. Figure 
1.c shows the result of the MESPTA on the bone volume of figure 1.a, which 
has been thinned to simple 2D subsets. 
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2.3 Discrete Wavelet Transform 

Wavelet is a powerful tool for representing nonlinearity [22]. A 

function ( )f x  can be represented by the superposition of daughters , ( )a b xψ  of 

a mother wavelet ( )xψ . Where , ( )a b xψ  can be expressed as  

,

1
( )a b

x b
x

aa
ψ ψ

− =  
 

                                                                  (1)  

                                                                                        

 a R+∈ and  b R∈ are, respectively, called dilation and translation parameters. 

The continuous wavelet transform of  ( )f x  is defined as 

,( , ) ( ) ( )a bw a b f x x dxψ
∞

−∞

= ∫                                                              (2)                                                                                      

and the function ( )f x  can be reconstructed by the inverse wavelet transform 

, 2

.
( ) ( , ) ( )a b

da db
f x w a b x

a
ψ

∞ ∞

−∞ −∞

= ∫ ∫ .                  (3)                                                                     

The continuous wavelet transform and its inverse transform are not 

directly implementable on digital computers. When the inverse wavelet 

transform is discretized, ( )f x  has the following approximate wavelet-based 

representation form: 
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where the kw , kb  and ka  are weight coefficients, translations and dilations for 

each daughter wavelet [22].  

2.4 Complex discrete wavelet transform (CWT) 

 

Wavelet techniques are succesfully applied to various problems in 

signal and image processing. Data compression [23], motion estimation [24], 

segmentation and classification [25, 26] and denoising [27] are only some 

examples. It is perceived that the wavelet transform is an important tool for 

analysis and processing of signals and images. In spite of its efficient 

computational algorithm, the wavelet transform suffers from three main 

disadvantages. 

 

Limitations of wavelet transform 

 

Although the standart DWT is a powerful tool, it has three major 

disadvantages that undermines its application for certain signal and image 

processing tasks [28, 29]. 

a) Shift sensitivity 

A transform is shift sensitive, if the shifting in time, for input-signal 

causes an unpredictable change in transform coefficients. It has been observed 

that the Standard DWT is seriously disadvantaged by the shift sensitivity that 

arises from down samplers in the DWT implementation [28, 30]. Shift 

sensitivity is an undesirable property because it implies that DWT coefficients 

fail to distinguish between input-signal shifts. 

b) Poor directionality 
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An m- Dimensional transform (m>1) suffers poor directionality when 

the transform coefficients reveal only a few feature orientations in the spatial 

domain. Wavelet transform has been poor directional selectivity for diagonal 

fetaures. Because the wavelet filters are separable and real. 

c) Absence of phase information 

For a complex-valued signal or vector, its phase can be computed by its 

real and imaginary projections. Phase information is valuable in many signal 

and image processing applications [31] such as e.g. in image compression and 

power measurument [32, 33].  

Most DWT implementations use separable filtering with real coefficient 

filters associated wih real wavelets resulting in real-valued approximations and 

details. Such DWT implementations cannot provide the local phase information. 

All natural signal are basically real-valued, hence to avoid the local phase 

information, complex-valued filtering is required [34, 35]. 

Recent research in the development of CWTs can be broadly classified in two 

groups; RCWT (Redundant CWTs) and NRCWT (Non-redundant CWTs). 

Standart DWT is critically decimated and gives N samples in transform domain 

for the same N samples of a given signal. While the redundant transform gives 

M samples in transform domain for N samples of given input signal (where 

M>N) and hence it is expensive by the factor M/N. The NRCWT follows the 

design aim to approach towards N samples in transform domain for a given N 

input samples [28, 29]. 

The RCWT include two almost similar CWTs. They are denoted as DT-

DWT (Dual-Tree DWT based CWT, see Figure 2) with two almost similar 

versions namely Kingsbury’s and Selesnick’s [36]. In this paper, we used 

Kingsbury’s CWT [27, 35] for feature extraction of image to be segmented. 
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Figure 2: Complex Wavelet Transform with two level 

2.5 Complex-Valued Artificial Neural Network (CVANN) 

 

Recently, there has been an increased interest in applications of the 

CVANN to process complex signals [37-39]. In this study, a complex back-

propagation (CBP) algorithm has been used for image segmentation. We will 

first give the theory of the CBP algorithm as applied to a multi layer CVANN. 

Figure 3 shows a CVANN model used in the study.  
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Figure 3: A model neuron used in the complex-BP algorithm. 

 

The input signals, weights, thresholds, and output signals are all 

complex numbers. The activity Yn of neuron n is defined as: 

nm

m

nmn VXWY += ∑                            (5) 

where Wnm is the complex-valued (CV) weight connecting neuron n and m, 

Xm is the CV input signal from neuron m, and Vn is the CV threshold value of 
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neuron n. To obtain the CV output signal, the activity value Yn is converted into 

its real and imaginary parts as follows: 

ziyxYn =+=          (6) 

where i denotes 1− . Although various output functions of each neuron can be 

considered, the output function used in this study is defined by the following 

equation: 

)(.)()( yfixfzf RRC +=             (7) 

where fR(u) is called the activation function of neural network. One of the 

difficulties encountered in applying the CBP algorithm to the complex domain 

involves the appropriate choice of activation function. For a practical 

implementation of the complex multilayer perceptron, it is necessary that the 

activation function be bounded. Several researchers developed a set of 

properties that a complex activation function must satisfy in order to be useful 

in a multilayer perceptron trained with the back-propagation algorithm [40]. 

Complex activation function that used in this study is a superposition of real and 

imaginary logarithmic sigmoids, as shown by 

1 1
( )

1 exp( ) 1 exp( )R I

fR u j
u u

= +
+ − + −

                   (8)      

   

Summary of CBP algorithm: 

1. Initialization 

 Set all the weights and thresholds to small complex random values. 
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2. Presentation of input and desired (target) outputs 

Present the input vector X(1), X(2),….,X(N) and corresponding desired 

(target) response  T(1), T(2),….T(N), one pair at a time, where N is the 

total number of training patterns. 

       3. Calculation of actual outputs 

To obtain the complex-valued output signal, the activity value Yn is 

converted into its real and imaginary parts as follows: 

ziyxYn =+=                (9) 

where i denotes 1− . 

       4. Calculation of the stopping criteria with respect to Eq(10) [38].  

If this condition is satisfied, algorithm is stopped and weights and 

biases are frozen. 

1

2

1

)()( 10−

=

=−∑∑
N

n

p

n

p

n

p

OT     (10) 

where Tn
(p)

 and On
(p)

 are complex numbers and denote the desired and 

output value, respectively. The actual output value of the neuron n for 

the pattern p, i.e the left side of    (Eq 10) denotes the error between the 

desired output pattern and the actual output pattern. N denotes the 

number of neurons in the output layer. 

 

5. Adaptation of weights and thresholds 
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We will use Wml for the weight between the input neuron l and the 

hidden neuron m, Vnm for the weight between the hidden neuron m and the 

output neuron n, θm for the threshold of the hidden neuron m, and γn for the 

threshold of the output neuron n. Let Il, Hm, On denote the output values of the 

input neuron l, the hidden neuron m, and the output neuron n, respectively. Let 

also Um and Sn denote the internal potentials of the hidden neuron m and the 

output neuron n, respectively. Um, Sn, Hm, and On can be defined respectively as 

∑ +=
l

mlmlm IWU θ , ∑ +=
m

nmnmn HVS γ , Hm=fc(Um), and On= fc(Sn). Let 

δ
n=Tn-On denote the error between the actual pattern On and the target pattern Tn 

of output neuron n. We will define the square error for the pattern p as 

( )∑
=

−=
N

n

nnp OTE
1

2

2
1 , where N is the number of output neurons. 

We can show that the weights and the thresholds should be modified 

according to the following equations [38].  

[ ] [ ]nm

p
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p

nm
V

E
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V

E
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Im
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Re
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∂

∂
−
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Equations (11)-(14) can be expressed as:  

     nmnm HV γ∆=∆                                                            (15) 
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where z  denotes the complex conjugate of a complex number z. 

Calculation of Training and Test Errors: 

The training and test errors given in tables were found according to Eq. 

(19).  

( ) 100*
*

)()(

%Error 1


















−

=
∑
=

nm

iait
k

i                        (19)  

                                  

where t(i) is desired outputs, a(i) is outputs of neural network, k is  the 

number of samples in training or test data, m  is the number of segments 

in training or test data and n is the number of outputs of neural network 

for training and test procedures [12].  
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3. Results 

In this paper, 3D thinning of hybrid shaped porous media is realized 

using CWT-CVANN. Firstly, 2D slices were extracted from the 3D objects 

using curve thinning (CTA) and surface thinning (STA). Then, CTA and STA 

parts of image are determined as real and imaginary parts of input image, 

respectively. Features of the obtained complex-valued images (CTA + i.STA) 

are extracted using CWT with two levels. For the second level of CWT, input 

matrix size of images was reduced to 32x32 from 128x128 (original image 

size). These new feature vectors are used to CVANN as inputs.  The outputs of 

CVANN are separated to real (CTA) and imaginary (STA) components as 

illustrated in Figure 4. 

For comparison, WT was used for feature extraction of CTA and STA, 

separately. Daubechies 2 function is selected as wavelet function and applied 

with two levels. Thus, size of CTA and STA was reduced to 32x32.  Obtained 

new images of CTA and STA were coded as complex-valued (CTA + i.STA). 

Figure 5 shows the hybrid skeleton process using WT-CVANN.   

 
Figure 4. Hybrid skeletonization process using CWT-CVANN (ICWT: Inverse 

CWT ) 
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Figure 5. Hybrid skeletonization process using WT-CVANN (IWT: Inverse 

WT) 

 The complex-valued backpropagation algorithm is used for training of 

the proposed networks. In training phase, the weights and biases of CVANNs 

are initialized with small random complex numbers. An error goal (stopping 

criteria of training of 10-1) is specified as in equation (10). The training of WT-

CVANN and CWT-CVANN is stopped when the error goal is achieved. Then, 

performance of networks is tested by presenting test images. The optimum 

learning rate and numbers of hidden nodes are determined as 0.7 and 60, 

respectively, via experimentation. Number of iterations is determined as 1000 

for all structures.  

Test results are presented in Table-1. As seen in Table-1, the second 

level CWT –CVANN structure achieves good results than WT-CVANN. Error 

rate is 0.1317 % for CWT-CVANN. For the same images, higher error than 

CWT-CVANN is obtained using WT-CVANN. Error of WT-CVANN is 

calculated as 0.7225 %. The resulting output images using two structures for 

random selected input images are given in Figure 6, Figure 7 and Figure 8. 

These images show that, using WT as feature extractor for hybrid 
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skeletonization task generates artifacts in the images, especially imaginary part 

of image (STA).  These artifacts are occurred high error in the image analysis.              
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Table 1. CWT-CVANN and WT-CVANN results for 10 different images 

 

WT-CVANN CWT-CVANN 

Patient File 

Error  (%) Error (%) 

1 0.5053 0.0873 

2 0.6667 0.1272 

3 0.6892 0.0480 

4 0.7527 0.1896 

5 0.6991 0.1056 

6 0.6982 0.1181 

7 0.6307 0.1474 

8 1.0897 0.2808 

9 0.7798 0.1421 

10 0.7140 0.0710 

AVERAGED 0.7225 0.1317 
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Figure 6. Results of hybrid skeletonization for random selected image (file no. 
1) 

(a) Target for CTA  (b) Outputs of CWT-CVANN for CTA (c) Outputs of 
WT-CVANN for CTA  (d) Target for STA  (e) Outputs of CWT-

CVANN for STA                                          (f) Outputs of WT-CVANN 
for STA 
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Figure 7. Results of hybrid skeletonization for random selected image (file no. 

4) 
(a) Target for CTA  (b) Outputs of CWT-CVANN for CTA (c) Outputs of 

WT-CVANN for CTA  (d) Target for STA  (e) Outputs of CWT-
CVANN for STA                                          (f) Outputs of WT-CVANN 

for STA 
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Figure 8. Results of hybrid skeletonization for random selected image (file no. 
7) 

(a) Target for CTA  (b) Outputs of CWT-CVANN for CTA (c) Outputs of 
WT-CVANN for CTA  (d) Target for STA  (e) Outputs of CWT-
CVANN for STA    (f) Outputs of WT-CVANN for STA 

 
 

 

4. Conclusions 

 
This paper compares two feature extraction methods for CVANN based 

hybrid skeletonization. A two complex-valued neural network model for 
segmentation is studied: WT-CVANN and CWT-CVANN. The following 
conclusions may be drawn based on the results presented:  
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1- Feature extraction with CWT is found to be more satisfactory (error 
with 0.1317%) for skeletonizing hybrid shaped porous media. 

2- Using WT for feature extraction generates artifacts in the images 
because of poor directionality of WT. 
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