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Abstract 
 

The existing methods based on statistical techniques for long range 
forecasts of Indian summer monsoon rainfall have shown reasonably accurate 
performance, for past 10 years. Because of the limitation of such statistical 
techniques, new techniques may have to be tried to obtain better results. Time 
series analysis and forecasting using wavelet transforms has become a powerful 
tool to determine, within a time series, both the dominant modes of variability 
and how those modes vary in time. A preliminary investigation, using wavelet 
analysis, on temperature and rainfall time series is presented. 
 
1. TIME SERIES ANALYSIS 

 
A time-series is a collection of observations made sequentially through 

time. Some examples are given as below:  
 
 Sales of a particular product in successive months, 
 Temperature at particular location at noon on successive days, and 
 Electricity consumption in a particular area for successive one-hour periods. 
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Figure 1 – Graph of a time series (time vs. observations), Some 
common examples of time – series 

 
 
ECONOMIC TIME-SERIES: Time series that occurs in economics 

such as 
 Share prices on successive days 
 Export totals in successive months 
 Average incomes in successive months 
 Company profits in successive years 
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Figure 2- Some common examples of time – series 
 
 

PHYSICAL TIME-SERIES: Time series that occurs in the physical 
sciences, particularly in meteorology, marine science, and geophysics;  
 Rainfall on successive days,  
 Air temperature measured in successive hours, days or months. 
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Figure 3- Rainfall, percent of normal average. 
 
 

MARKETING TIME-SERIES:  
 Sales figures in successive weeks or months, 
 Sales of an engineering product by a company in successive months over a 
seven year period. 
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Figure 4- Annual attrition rates 
 

DEMOGRAPHIC TIME-SERIES: 
 Time series that occurs in the study of population 
 Population of a country measured annually 
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Figure 5- Annual variation of global population 
 

PROCESS CONTROL: In process control, the problem is to detect 
changes in the performance of a manufacturing process by measuring a variable 
which shows the quality of the process. 
 

BINARY PROCESS: A special type of time series arises when 
observations can take only two values, usually denoted by 0 and 1. Time series 
of this type, called binary processes, occurs particularly in communication 
theory. 
 The position of a switch, either ‘on’ or ‘off’, could be recorded as 1 or 0, 
respectively 
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POINT PROCESSES: 
 Time series that occurs when a series of events occurring ‘randomly’ in time 
is Considered, 
 Record the dates of major railway disasters. 
 

 
 

Figure 6- Significant UK train accidents per million train km (5 year Rolling 
average). 

 
 A series of events of this type is often called a point process. For 
observations of this type, the distribution of the number of events occurring in a 
given time-period and also in the distribution of time intervals between events is 
considered. 
 

TYPES OF TIME – SERIES: 
1. Continuous Time - Series 
2. Discrete Time – Series 
 

CONTINUOUS TIME SERIES 
 
 A time series is said to be continuous when observations are made 
continuously in time. 
 Measurement of brain activity recorded from an EEG machine 
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 The usual method of analyzing such a series is to sample (or digitize) the 
series at equal intervals of time to five a discrete time series. Little or no 
information is lost by this process provided that the sampling interval is small 
enough. 
 

GRAPH OF CONTINUOUS TIME SERIES: 
A time series is said to be discrete when observations are taken only at 
specific times, usually equally spaced. Discrete Time Series may arise in three 
distinct ways: 
By being sampled from a continuous series (e.g. temperature measured at 
hourly intervals. 
By being aggregated over a period of time (e.g. total sales in successive 
months and rainfall measured daily) 
As an inherently discrete series (e.g. the dividend paid by a company in 
successive years, Financial Times share index at closing time on successive 
days). 
 
DISCRETE TIME SERIES 

The special feature of time series analysis is the fact that successive 
observations are usually not independent and that the analysis must take into 
account the time order of the observations. When successive observations are 
dependent, future values may be predicted from past observations. If a time 
series can be predicted exactly, it is said to be deterministic. But most time 
series are stochastic in that the future is only partly determined by past values. 
For stochastic series exact predictions are impossible and must be replaced by 
the idea that future values have probability distribution which is conditioned by 
knowledge of past values. 
 
OBJECTIVES OF TIME SERIES ANALYSIS:  
 
DESCRIPTION 

To describe the data using summary statistics and/or graphical methods. 
A time plot of the data is particularly valuable. 
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EXPLANATION/MODELLING 
When observations are taken on two or more variables, it may be 

possible to use the variation in one time series to explain the variation in 
another series. This may lead to a deeper understanding of the mechanism 
which generated a give time series. 
PREDICTION/FORECASTING  

Given an observed time series, one may want to predict the future 
values of the series. 

This is an important task in sales forecasting, and in the analysis of 
economic and industrial time series. 
 
CONTROL 

When a time series is generated this measures the ‘quality’ of a 
manufacturing 
 
2. WAVELET TRANSFORMS 
 
WAVE AND WAVELET:  
WAVE 
 An oscillating function of time or space 

 
 

Figure 7-  Sine Wave 
 

The sine and cosine wave themselves extend periodically in the time 
domain from.  
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WAVELET 
 Small wave which oscillates and decays in the time domain, 
 Small wave which has its energy concentrated in time, 
 Waveform of effectively limited duration that has an average value of zero. 
 

 
 

Figure 8- Wavelet 
 
Properties of Wavelets:  A function  to be a wavelet must satisfy: 
 
  The wavelet must be centered at zero amplitude 

 
(1) 

 
 
  The wavelet must have a finite energy. Therefore it is localized in time 

(or space) 
 

(2) 
 

 
  Sufficient condition for inverse wavelet transforms 

 
(3) 
 

Popular wavelets which satisfy the previous conditions:  
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HAAR WAVELET:  
 
  The first wavelet introduced in 1909                                                          

 
 

 
                                                                                      (4) 

                                  
 
   
   
 

 
 
 
 
 
Figure 9- Haar Wavelet 

 
MORLET WAVELET: 
 

 (5) 
 
 
     
 

 
 
 
 
 
 
 

Figure  10-Morlet wavelet 
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Morlet wavelet can be considered as a modulated Gaussian waveform 
DAUBECHIES WAVELET:  
 

 
Figure  11- Daubechies wavelet 

 
MEYER WAVELET:  

 
Figure  12- Meyer  wavelet 
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MEXICAN HAT WAVELET:  
 

     
  

 
Figure  13-Mexican  wavelet 

 
 
  Useful for detection in computer vision.  
  It is the second derivative of a Gaussian function.           .  
  The Mexican hat wavelet is defined:  

 
(6) 

 
Fourier Analysis:  
 
 Excellent tool for analyzing periodic signals (sine and cosine signals) 

 
  The Fourier transform of a function   f(t) is given by 

 
(7) 

 
  The original function can be recovered from the transform using 

 
(8) 
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  Transforms a function from time domain to frequency domain. 
 
 
 Inefficient for representing transient signals.  

 

 
 
 

Figure 14- Fourier Transform 
 
 
 Examples: (Music, image, speech, acoustic noise, seismic signals, thunder, and 
lightning, etc.)  
  
Drawbacks: 
  The Fourier Transform can be computed for only one frequency at a 

time. 
  Exact representations cannot be computed in real time. 
  The Fourier transform provides information only in the frequency 

domain, but not in the time domain. 
 
Short-time Fourier Transform (STFT) / Windowed Fourier Transform:  
 Introduced by Gabor in 1946 
  Used to gain information from both time and frequency domains 

simultaneously 
  The STFT is formally defined by the integral transform 

 
(9) 
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Figure 15- Short Time Fourier Transform 
 
 
Disadvantages of STFT:  
 The size of the time window once chosen can not be changed during the 

analysis i.e. the window is same for all frequencies 
 
  If   the  window  could  be varied  during  the  process,  it  would give a  

more flexible approach 
 
  For this need is the WAVELETS good answer. 

 
The Wavelet Transform: 
 Method  of  converting  a  function (or signal)  into  another form which 

either makes  certain features of the original signal more amenable to 
study or enables the original data set to be described more succinctly  

 
  Provides time frequency representation 

 
  Wavelet transform decomposes a signal into a set of basis functions 

(wavelets) 
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Figure 16. Wavelet Transform 

 
 
 
 
A family of wavelets is defined as: 
 
      (10) 
 
where, 
 
     = mother wavelet 
a   = dilation parameter or scale 
b   = translation parameter or localization 
 
If;  
a >1 ; stretch 
a <1 ; squeeze 
 
Scaling 
Scaling a wavelet simply means stretching (or compressing) it 
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Figure 17-  Scaling a wavelet 
 
 
The scale factor works exactly the same with wavelets. The smaller the scale 
factor, the more “compressed” the wavelet 
 

 
 Figure 18- Scale factor 

 
Shifting 
   Shifting a wavelet simply means delaying (or hastening) its onset. 
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   Mathematically, delaying a function  by k is represented by.   
 
            

 

 
Figure 19- Wavelet function 

 
Scale and Frequency: The more stretched the wavelet, the longer the portion of 
the signal with which it is being compared, and thus the coarser the signal 
features being measured by the wavelet coefficients. 
 
 

 
 

Figure 20- Signal and wavelet in low and high scales 
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There is a correspondence between wavelet scales and frequency as revealed by 
wavelet analysis: 
  
Low scale a → Compressed wavelet → Rapidly changing details → High 
frequency ω 
High scale a → Stretched wavelet → Slowing changing, coarse features → Low 
frequency ω 
 
Types of Wavelet Transform: 
  
  Continuous Wavelet Transform (CWT) 
  Discrete Wavelet Transform (DWT) 

 
Continuous Wavelet Transform: The continuous wavelet transform of a 
function is defined as; 
 
          (11) 
   
  
where a is a scale parameter, b is translational parameter and ψ is wavelet 
function. 
 
Continuous Wavelet Transform: Similarly, the continuous wavelet transform is 
defined as the sum over all time of the signal multiplied by scaled, shifted 
versions of the wavelet function ψ: 
 
         (12) 
 
 
The results of the continuous wavelet transform are many wavelet coefficients 
C, which are a function of scale and position. 
  
Multiplying each coefficient by the appropriately scaled and shifted wavelet 
yields the constituent wavelets of the original signal. 
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Figure 21- Wavelet transform 
 

Discrete Wavelet Transform: In continuous wavelet transform the 
dilation and translation parameters a and b vary continuously. Restricting a and 
b to only discrete values of;  
 
  
       (13) 
 
 
where the integers m and n control the wavelet dilation and translation 
respectively. 
 
    is a specified fixed dilation step parameter set at a value greater than 1. 
 
    is the location parameter which must be greater than zero. 
  
The control parameters m and n are contained in the set of all integers, both 
positive and negative. 
 
Discrete Wavelet Transform: The wavelet transform of a continuous function 
(signal), using discrete wavelets can be written as; 
 
    
        (14) 
 

maa 0=
manbb 00=

0a

0b

dtnbta
a

tfT m

mnm )(2)( 00
0

1
, −= −∞

∞−∫ ψ



R.C. SINGH 

81 
 

where 
  
        (15) 
  
  
         
            are known as wavelet coefficients or detailed coefficients 
  
Discrete Wavelet Transform;  
 
 Separates the high and low-frequency portions of a signal through the 

use of filters 
 
  One-Stage Filtering: Approximations and Details 

 
  The approximations are the high-scale, low-frequency components of 

the signal 
 
  The details are the low-scale, high-frequency components 

 

 
 

Figure 22- Discrete wavelet transform; frequency portions of signal. 
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MULTIPLE-LEVEL DECOMPOSITION: One signal is broken down into 
many lower resolution components – wavelet decomposition tree 

 
 

Figure 23- Multiple level decomposition.  
Wavelet Applications: 
 Signal Processing 
  Data Compression 
  Smooth and Image Denoising 
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  Fingerprint Verification 
  Biology for cell membrane recognition, to distinguish the normal from 

the  pathological membranes 
  DNA analysis, Protein analysis 
  Blood-Pressure, Heart Rate and ECG analysis 
  Finance for detecting the properties of quick variation of values 
  In Internet traffic description, for designing the services size 
  Industrial supervision of gear-wheel 
  Speech Recognition 
  Computer Graphics and Multifractal analysis 
  Many areas of Physics- including molecular dynamics, astrophysics, 

optics,  turbulence and quantum mechanics. 
  Geophysical Study  

 
3. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) 
ANFIS Structure is given in the figure 20.  
 
 
 
 
 
 
 
 
 
 
 

Figure 24- ANFIS Structure 
 

A Two Rule Sugeno ANFIS has rules of the form: 
 
        (16) 
 
        (17) 
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LAYER 1    
 
 
 
 
 
                is essentially the membership grade for x and y. 
                   
        (18) 
 
 
 
                  are parameters to be learnt. These are the premise parameters. 
 
LAYER 2 
        (19) 
 
LAYER 3 
        (20) 
 
 
LAYER 4 
        (21) 
 
              
                 are to be determined and are referred to as the consequent 
parameters. 
            
LAYER 5 
 
        (22) 
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4. APPLICATIONS 
 
PREDICTION OF ALL INDIA SUMMER MONSOON RAINFALL (ISMR): 
 
Study of All India Summer Monsoon Rainfall (ISMR);  
 
 MONSOON MONTHS – JUNE, JULY, AUGUST & SEPTEMBER 
  YEARS CONSIDERED – 1813 TO 2006 (194 YEARS) 
  DISCRETE WAVELET TRANSFORM (DWT) 
  ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) 
  MATLAB 2008 
  www.tropmet.res.in 

 
 

Figure 25- Adaptive Neuro Fuzzy Inference System (ANFIS) 
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Figure 26-  Comparison of Actual and Predicted Data Using ANFIS 
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Figure 27- Comparison of Actual A3 and Predicted A3 Parameters 
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Figure 28- Comparison of Actual D1 and Predicted D1 

Parameters 
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Figure 29- Comparison of Actual D2 and Predicted D2 Parameters 
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Figure 30- Comparison of Actual D3 and Predicted D3 Parameters 
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Figure 31- Comparison of Actual and Predicted Data Using ANFIS & DWT 
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Figure 32 -Comparison between Actual and Predicted Rainfall 
PREDICTION OF ALL INDIA  MINIMUM TEMPERATURE FOR 
JANUARY  (AIMT): 
 
Study of All India  Minimum Temperature for January (AIMT) 
 
 MINIMUM TEMPERATURE MONTH – JANUARY 
  YEARS CONSIDERED – 1901 TO 2003 (103YEARS) 
  DISCRETE WAVELET TRANSFORM (DWT) 
  ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) 
  MATLAB 2008 
  www.tropmet.res.in 

 

http://www.tropmet.res.in/
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Figure 33- Comparison of Actual and Predicted Data Using ANFIS 
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Figure 34- Comparison of Actual A3 and Predicted A3 Parameters 
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Figure 35- Comparison of Actual D1  and Predicted D1 Parameters 
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Figure 36- Comparison of Actual D2 and Predicted D2 Parameters 
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Figure 37-Comparison of Actual D3 and Predicted D3 Parameters 
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Figure 38- Comparison of Actual and Predicted Data Using ANFIS With DWT 
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Figure 39- Comparison between Actual and Predicted Temperature 
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5. CONCLUSION 
 
 Wavelets offer a simultaneous localization in time and frequency 

domain. 
  Using fast wavelet transform, it is computationally very fast. 
  Able to separate the fine details in a signal. Very small wavelets can be 

used to  isolate very fine details in a signal, while very large wavelets 
can identify coarse   details. 

  Wavelet transforms can be used to decompose a signal into component 
wavelets. 

  In wavelet theory, it is often possible to obtain good approximation of 
the given function f  by using only a few coefficients which is the great 
achievement in compare to Fourier transform 

  Wavelet theory is capable of revealing aspects of data that other signal 
analysis  techniques miss the aspects like trends, breakdown points, and 
discontinuities in    higher derivatives and self-similarity. 

  It can often compress or de-noise a signal without appreciable 
degradation. 
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