WAVELET TRANSFORMS IN
TIME SERIES ANALYSIS

R.C. SINGH*
Abstract

The existing methods based on statistical techniques for long range
forecasts of Indian summer monsoon rainfall have shown reasonably accurate
performance, for past 10 years. Because of the limitation of such statistical
techniques, new techniques may have to be tried to obtain better results. Time
series analysis and forecasting using wavelet transforms has become a powerful
tool to determine, within a time series, both the dominant modes of variability
and how those modes vary in time. A preliminary investigation, using wavelet
analysis, on temperature and rainfall time series is presented.

1. TIME SERIES ANALYSIS

A time-series is a collection of observations made sequentially through
time. Some examples are given as below:

[]Sales of a particular product in successive months,
[JTemperature at particular location at noon on successive days, and
[_]Electricity consumption in a particular area for successive one-hour periods.
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Figure 1 — Graph of a time series (time vs. observations), Some
common examples of time — series

ECONOMIC TIME-SERIES: Time series that occurs in economics
such as
[_IShare prices on successive days
[]Export totals in successive months
[_]Average incomes in successive months
[]JCompany profits in successive years
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Figure 2- Some common examples of time — series

PHYSICAL TIME-SERIES: Time series that occurs in the physical
sciences, particularly in meteorology, marine science, and geophysics;
[]Rainfall on successive days,

[C]Air temperature measured in successive hours, days or months.
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India monsoon — actual vs official forecasts
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Figure 3- Rainfall, percent of normal average.

MARKETING TIME-SERIES:
[]Sales figures in successive weeks or months,
[]Sales of an engineering product by a company in successive months over a
seven year period.
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Figure 4- Annual attrition rates
DEMOGRAPHIC TIME-SERIES:

[]Time series that occurs in the study of population
[]Population of a country measured annually
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Figure 5- Annual variation of global population

PROCESS CONTROL: In process control, the problem is to detect
changes in the performance of a manufacturing process by measuring a variable
which shows the quality of the process.

BINARY PROCESS: A special type of time series arises when
observations can take only two values, usually denoted by 0 and 1. Time series
of this type, called binary processes, occurs particularly in communication
theory.

[ The position of a switch, either ‘on” or ‘off’, could be recorded as 1 or 0,
respectively
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POINT PROCESSES:
[ Time series that occurs when a series of events occurring ‘randomly” in time
is Considered,
[JRecord the dates of major railway disasters.
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Figure 6- Significant UK train accidents per million train km (5 year Rolling
average).

] A series of events of this type is often called a point process. For
observations of this type, the distribution of the number of events occurring in a
given time-period and also in the distribution of time intervals between events is
considered.

TYPES OF TIME - SERIES:
1. Continuous Time - Series
2. Discrete Time — Series

CONTINUOUS TIME SERIES
[] A time series is said to be continuous when observations are made

continuously in time.
[IJMeasurement of brain activity recorded from an EEG machine
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[1The usual method of analyzing such a series is to sample (or digitize) the
series at equal intervals of time to five a discrete time series. Little or no
information is lost by this process provided that the sampling interval is small
enough.

GRAPH OF CONTINUOUS TIME SERIES:
A time series is said to be discrete when observations are taken only at
specific times, usually equally spaced. Discrete Time Series may arise in three
distinct ways:
[ By being sampled from a continuous series (e.g. temperature measured at
hourly intervals.
[ By being aggregated over a period of time (e.g. total sales in successive
months and rainfall measured daily)
[As an inherently discrete series (e.g. the dividend paid by a company in
successive years, Financial Times share index at closing time on successive
days).

DISCRETE TIME SERIES

The special feature of time series analysis is the fact that successive
observations are usually not independent and that the analysis must take into
account the time order of the observations. When successive observations are
dependent, future values may be predicted from past observations. If a time
series can be predicted exactly, it is said to be deterministic. But most time
series are stochastic in that the future is only partly determined by past values.
For stochastic series exact predictions are impossible and must be replaced by
the idea that future values have probability distribution which is conditioned by
knowledge of past values.

OBJECTIVES OF TIME SERIES ANALYSIS:
DESCRIPTION

To describe the data using summary statistics and/or graphical methods.
A time plot of the data is particularly valuable.
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EXPLANATION/MODELLING

When observations are taken on two or more variables, it may be
possible to use the variation in one time series to explain the variation in
another series. This may lead to a deeper understanding of the mechanism
which generated a give time series.
PREDICTION/FORECASTING

Given an observed time series, one may want to predict the future
values of the series.

This is an important task in sales forecasting, and in the analysis of
economic and industrial time series.

CONTROL
When a time series is generated this measures the ‘quality’ of a
manufacturing

2. WAVELET TRANSFORMS
WAVE AND WAVELET:

WAVE
[JAn oscillating function of time or space

Ty

Figure 7- Sine Wave

The sine and cosine wave themselves extend periodically in the time
domain from.
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WAVELET

[1Small wave which oscillates and decays in the time domain,
[1Small wave which has its energy concentrated in time,

[JWaveform of effectively limited duration that has an average value of zero.

Figure 8- Wavelet
Properties of Wavelets: A function to be a wavelet must satisfy:

= The wavelet must be centered at zero amplitude

Twaynzo 1)

The wavelet must have a finite energy. Therefore it is localized in time
(or space)

Jlv@rdt<s @

Sufficient condition for inverse wavelet transforms
© 2
C:IMiﬂde<w 3)

RN )

Popular wavelets which satisfy the previous conditions:
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HAAR WAVELET:

= The first wavelet introduced in 1909
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Figure 9- Haar Wavelet
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Figure 10-Morlet wavelet
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Morlet wavelet can be considered as a modulated Gaussian waveform
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Figure 11- Daubechies wavelet
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Figure 12- Meyer wavelet

72



R.C. SINGH

MEXICAN HAT WAVELET:
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Figure 13-Mexican wavelet

= Useful for detection in computer vision.
= |tis the second derivative of a Gaussian function.
=  The Mexican hat wavelet is defined:

y(0)=-te ©
Fourier Analysis:
= Excellent tool for analyzing periodic signals (sine and cosine signals)
= The Fourier transform of a function f(t) is given by
f(0) = j_“; f(t)e " dt )
=  The original function can be recovered from the transform using

f(t)= r‘; f(0)e“dw ®)
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Transforms a function from time domain to frequency domain.

Inefficient for representing transient signals.
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Time Transform Frequency
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Figure 14- Fourier Transform

Examples: (Music, image, speech, acoustic noise, seismic signals, thunder, and
lightning, etc.)

Drawbacks:
= The Fourier Transform can be computed for only one frequency at a
time.

= Exact representations cannot be computed in real time.
=  The Fourier transform provides information only in the frequency

domain, but not in the time domain.

Short-time Fourier Transform (STFT) / Windowed Fourier Transform:

= Introduced by Gabor in 1946
= Used to gain information from both time and frequency domains

simultaneously
=  The STFT is formally defined by the integral transform

Fu(r. )= W (t-r)e™dt ©)
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Figure 15- Short Time Fourier Transform

Disadvantages of STFT:
The size of the time window once chosen can not be changed during the

analysis i.e. the window is same for all frequencies

If the window could be varied during the process, it would give a
more flexible approach

= For this need is the WAVELETS good answer.

The Wavelet Transform:
= Method of converting a function (or signal) into another form which

either makes certain features of the original signal more amenable to
study or enables the original data set to be described more succinctly

=  Provides time frequency representation

= Wavelet transform decomposes a signal into a set of basis functions
(wavelets)
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Figure 16. Wavelet Transform

A family of wavelets is defined as:
1 (t-Db
Y= —"—w| —— (10)
Wa,b( ) 3 W( a j

w = mother wavelet
a = dilation parameter or scale
b = translation parameter or localization

where,

If;
a>1; stretch
a<1;squeeze

Scaling
Scaling a wavelet simply means stretching (or compressing) it
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The scale factor works exactly the same with wavelets. The smaller the scale

Figure 17- Scaling a wavelet

factor, the more “compressed” the wavelet
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Figure 18- Scale factor

Shifting a wavelet simply means delaying (or hastening) its onset.
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=  Mathematically, delaying a function by k is represented by.

| |
|'| ‘
{' £ ._l-.'lﬁll | | !". = . ™ {I . £ .Ullﬁll |II i"' .
|| l.' || l.l
) |
Wavelst function Shifted wavelet function
it} wit-k)

Figure 19- Wavelet function

Scale and Frequency: The more stretched the wavelet, the longer the portion of
the signal with which it is being compared, and thus the coarser the signal
features being measured by the wavelet coefficients.
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Figure 20- Signal and wavelet in low and high scales
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There is a correspondence between wavelet scales and frequency as revealed by
wavelet analysis:

Low scale a — Compressed wavelet — Rapidly changing details — High
frequency ®
High scale a — Stretched wavelet — Slowing changing, coarse features — Low
frequency ®

Types of Wavelet Transform:

= Continuous Wavelet Transform (CWT)
= Discrete Wavelet Transform (DWT)

Continuous Wavelet Transform: The continuous wavelet transform of a
function is defined as;

1 t—b
T(ab)=—=] f(t)y/(—) dt (12)
Ja a
where a is a scale parameter, b is translational parameter and v is wavelet
function.
Continuous Wavelet Transform: Similarly, the continuous wavelet transform is
defined as the sum over all time of the signal multiplied by scaled, shifted

versions of the wavelet function y:

C (scale, position) = J. f (t) w(scale, position,t) dt (12)

The results of the continuous wavelet transform are many wavelet coefficients
C, which are a function of scale and position.

Multiplying each coefficient by the appropriately scaled and shifted wavelet
yields the constituent wavelets of the original signal.
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Figure 21- Wavelet transform
Discrete Wavelet Transform: In continuous wavelet transform the

dilation and translation parameters a and b vary continuously. Restricting a and
b to only discrete values of;

. am
a=a,

oo (139

m
nboao

where the integers m and n control the wavelet dilation and translation
respectively.

a, is a specified fixed dilation step parameter set at a value greater than 1.
bo is the location parameter which must be greater than zero.

The control parameters m and n are contained in the set of all integers, both
positive and negative.

Discrete Wavelet Transform: The wavelet transform of a continuous function
(signal), using discrete wavelets can be written as;

Ton=] ) 12 w(ag"t —nby) dt (14)

80



R.C. SINGH

where

m

8

Vo= t//(t - nboagJ (15)
’ a

T.,, areknown as wavelet coefficients or detailed coefficients

Discrete Wavelet Transform;

= Separates the high and low-frequency portions of a signal through the
use of filters

= One-Stage Filtering: Approximations and Details

=  The approximations are the high-scale, low-frequency components of
the signal

=  The details are the low-scale, high-frequency components

L) . |
I:\._ Filters i

low-pass high-pass

Figure 22- Discrete wavelet transform; frequency portions of signal.
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MULTIPLE-LEVEL DECOMPOSITION: One signal is broken down into
many lower resolution components — wavelet decomposition tree
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Figure 23- Multiple level decomposition.
Wavelet Applications:
= Signal Processing
=  Data Compression
= Smooth and Image Denoising
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Fingerprint Verification

Biology for cell membrane recognition, to distinguish the normal from
the pathological membranes

DNA analysis, Protein analysis

Blood-Pressure, Heart Rate and ECG analysis

Finance for detecting the properties of quick variation of values

In Internet traffic description, for designing the services size

Industrial supervision of gear-wheel

Speech Recognition

Computer Graphics and Multifractal analysis

Many areas of Physics- including molecular dynamics, astrophysics,
optics, turbulence and quantum mechanics.
= Geophysical Study

3. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
ANFIS Structure is given in the figure 20.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

W, W, Wlfl
/ \
T~

/ N

X

Y W, W w,f,
™~ B2 Figure 24- ANFIS Structure
A Two Rule Sugeno ANFIS has rules of the form:
. . _ (]_6)
If xisA and yis Bj THEN f, =pXx+qy+r
If xisA, and yis B, THEN f, =p,x+q,y+r (17)
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LAYER 1

Oy = 1, (X) for 1=12
Oy, = Hg,, (x) for =34

01- (X) is essentially the membership grade for x and y.

= 18)
X—C
1+ '
q
a,b,,c, areparameters to be learnt. These are the premise parameters
LAYER 2
i 1
02,i =W, = iy (X)ﬂsi (y), 1=12 (19)
LAYER 3
W 20
Oy =W = ' (20)
LAYER 4

Oy =W fi =W (pXx+0;y+r,) (21)

(p;,q;,r) are to be determined and are referred to as the consequent
parameters.

LAYER5

_ Z W fi
Og, =D W f ==L (22)
i i zi W.
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4. APPLICATIONS

PREDICTION OF ALL INDIA SUMMER MONSOON RAINFALL (ISMR):

Study of All India Summer Monsoon Rainfall (ISMR);

MONSOON MONTHS - JUNE, JULY, AUGUST & SEPTEMBER
YEARS CONSIDERED - 1813 TO 2006 (194 YEARS)
DISCRETE WAVELET TRANSFORM (DWT)

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
MATLAB 2008

www.tropmet.res.in

. !
Data Wavelet Wavelet Predict
[ Input Decompositi - [ Reconstructio ed ]

N\,

Figure 25- Adaptive Neuro Fuzzy Inference System (ANFIS)
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Figure 26- Comparison of Actual and Predicted Data Using ANFIS
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Figure 27- Comparison of Actual A3 and Predicted A3 Parameters
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Figure 29- Comparison of Actual D2 and Predicted D2 Parameters
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Figure 30- Comparison of Actual D3 and Predicted D3 Parameters

—©— Actual
—+— Predicted

w

Rainfall in mm

650 -
Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200
Years

Figure 31- Comparison of Actual and Predicted Data Using ANFIS & DWT
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Figure 32 -Comparison between Actual and Predicted Rainfall
PREDICTION OF ALL INDIA MINIMUM TEMPERATURE FOR
JANUARY (AIMT):

Study of All India Minimum Temperature for January (AIMT)

= MINIMUM TEMPERATURE MONTH - JANUARY
= YEARS CONSIDERED - 1901 TO 2003 (103YEARS)

= DISCRETE WAVELET TRANSFORM (DWT)

= ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
=  MATLAB 2008

= www.tropmet.res.in
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Figure 33- Comparison of Actual and Predicted Data Using ANFIS
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Figure 34- Comparison of Actual A3 and Predicted A3 Parameters
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Figure 36- Comparison of Actual D2 and Predicted D2 Parameters
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Temperature (F)
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Figure 38- Comparison of Actual and Predicted Data Using ANFIS With DWT
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Figure 39- Comparison between Actual and Predicted Temperature
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5. CONCLUSION

Wavelets offer a simultaneous localization in time and frequency
domain.

Using fast wavelet transform, it is computationally very fast.

Able to separate the fine details in a signal. Very small wavelets can be
used to isolate very fine details in a signal, while very large wavelets
can identify coarse details.

Wavelet transforms can be used to decompose a signal into component
wavelets.

In wavelet theory, it is often possible to obtain good approximation of
the given function f by using only a few coefficients which is the great
achievement in compare to Fourier transform
Wavelet theory is capable of revealing aspects of data that other signal
analysis technigques miss the aspects like trends, breakdown points, and
discontinuities in  higher derivatives and self-similarity.

It can often compress or de-noise a signal without appreciable
degradation.
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