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Abstract: Ensuring security in speaker recognition systems is crucial. In the past years, it has been 
demonstrated that spoofing attacks can fool these systems. In order to deal with this issue, spoof speech 
detection systems have been developed. While these systems have served with a good performance, their 
effectiveness tends to degrade under noise. Traditional speech enhancement methods are not efficient for 
improving performance, they even make it worse. In this research paper, performance of the noise mask 
obtained via a convolutional neural network structure for reducing the noise effects was investigated. The 
mask is used to suppress noisy regions of spectrograms in order to extract robust i-vectors. The proposed 
system is tested on the ASVspoof 2015 database with three different noise types and accomplished superior 
performance compared to the traditional systems. However, there is a loss of performance in noise types 
that are not encountered during training phase. 

Keywords: deep learning, convolutional neural network, spoof detection, speaker recognition, robust 
features 
 

I-vectorlerin Maskeleme Yoluyla Dayanıklılığının Arttırılması: Sentetik Konuşma Tespitinde Bir 

Vaka Çalışması 
 
Öz: Konuşmacı tanıma sistemleri için güvenlik hayati önem taşımaktadır. Geçtiğimiz yıllarda, sahte 

konuşma saldırılarının bu sistemleri kandırabildiği ortaya konmuştur. Bu durumu önlemek amacı ile sahte 

konuşma tespit sistemleri geliştirilmiştir. Bu tür sistemler bazı durumlarda oldukça yüksek performans 

sergilese de, gürültü altında performansları kötüleşmektedir. Geleneksel konuşma iyileştirme yöntemleri 

performansı artırmak bir yana, daha da kötüleştirmektedir. Bu çalışmada, konvolüsyonel sinir ağı yapısı 

kullanılarak elde edilen maskenin gürültü etkisini azaltmaktaki performansı incelenmiştir. Maske, 

spektrogramın gürültülü bölgelerini bastırmakta ve bu spektrogramdan elde edilen i-vectorleri gürbüz hale 

getirmekte kullanılmıştır. ASVspoof 2015 veri tabanı ve üç farklı gürültü tipi ile gerçekleştirilen testlerde 

önerilen sistemin geleneksel sistemlerden daha üstün olduğu gösterilmiştir. Ancak eğitim aşamasında 

karşılaşılmayan gürültü tiplerinde performans kaybı olmaktadır. 
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1. INTRODUCTION 
 
Speaker recognition refers to identifying individuals based on their voices by utilizing the physical 
differences in vocal production organs. In addition to these physical differences, each speaker has 
a unique speaking style, including a certain accent, rhythm, intonation style, pronunciation 
pattern, word choice, etc. (Kinnunen et al., 2010) Because of the uniqueness of the voice to the 
individual, speaker recognition systems are used in various fields, including telephone banking 
(HSBC, 2017), e-commerce (Find Biometrics, 2018), and forensic science (Find Biometrics, 
2018). With increasing usage areas, it is crucial to prevent potential attacks that could be carried 
out by malicious people on these systems.  

Possible attack types on a speaker recognition system include synthesizing the speaker's voice, 
using various software to transform the attacker's voice into the target person's voice, imitating 
the target speaker's voice, and using a pre-recorded voice of the target speaker (Find Biometrics, 
2018), (Find Biometrics, 2018), (Hanilçi et al., 2016), (Gomez-Alanis et al., 2019)). 

In recent years, various organizations such as ASVspoof have increased awareness and research 
in the field of spoofed speech detection ((Evans et al., 2013), (Alegre et al., 2013), (Sizov et al., 
2015), (Evans et al., 2013), (Wu et al., 2014), (Wu et al., 2015), (Dutoit et al., 2007)). In 
particular, systems that utilize deep learning algorithms can achieve highly successful results 
(Wang et al., 2021), (Jung et al., 2022). On the other hand, additive noise, which is one of the 
biggest problems in speech-related systems, reduces the success rate in spoofed speech detection 
(Hanilçi et al., 2016). There are limited studies on robust fake speech detection ((Hanilçi et al., 

2016), (Gomez-Alanis et al., 2019), (Gomez-Alanis et al., 2018)). Specifically, low performance 
of traditional speech enhancement methods (Wiener filter, spectral subtraction, etc.) makes the 
problem even more challenging (Hanilçi et al., 2016). However, much more successful results 
can be achieved with complex deep learning systems (Gomez-Alanis et al., 2019). These types of 
systems use different methods for feature extraction and classification than those used in 
traditional speaker recognition systems. Therefore, these systems are focused solely on the 
problem of noise and spoofed speech detection.  

EER (Equal Error Rate) is a typical statistic for measuring the performance of spoof speech 
detection systems. It is defined as the point at which the false acceptance rate (FAR) equals the 
false rejection rate (FRR). This criterion shows the degree to which systems are able to 
discriminate between synthetic and real speech.  
 
Studies have indicated that the emergence of diverse speech synthesis (SS) and voice conversion 
(VC) methodologies has rendered speech-based biometric systems exceedingly susceptible to 
spoofing assaults. According to (Diyopsi et al., 2017), this circumstance may result in a rise in 
false acceptance rates, making countermeasures against spoofing attacks necessary. EER is 
important in assessing the effectiveness of these measures since a low EER value shows that the 
systems can successfully distinguish between spoof and genuine speech. 
 
(Hassan et al., 2021) suggests combining spectral features like MFCC, GTCC, Spectral Flux, and 
Spectral Centroid to create a synthetic speech detector. In order to train a biLSTM to categorise 
the speech, the fused feature set attempts to capture differences between real and synthetic signals. 
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Using the ASVspoof 2019 LA dataset, the system demonstrated efficacy in identifying voice 
conversion and synthetic speech attacks. 
Novel speech features for improved detection of spoofing attacks (Dipjyoti et al., 2015) presents 
new speech features for spoofing attack detection that are based on alternate frequency-warping 
methods. When tested against the ASVspoof 2015 corpora, the features—which were computed 
using formant-specific block transformation—perform better than previous methods in 
differentiating between natural and synthetic speech, achieving 0% equal error rates on a variety 
of spoofing attack tasks. 

(Nugroho et al., 2022) applies a Deep Neural Network (DNN) approach, achieving significant 
performance with a model accuracy rate of 96.5%, precision of 97.3%, recall of 96.5%, and an 
F1 Measure of 96.7%. The study underscores DNN's robustness in fake speech detection, 
processing extensive data. 

A one-class learning anti-spoofing system is introduced by (Zhang et al., 2020) to identify 
unknown synthetic voice spoofing assaults. Using an angular margin to distinguish spoofing 
assaults in the embedding space and compacting bona fide speech representation, the system 
achieves an EER of 2.19% on the ASVspoof 2019 Challenge, outperforming previous 
approaches. 

The effectiveness of high dimensional magnitude and phase-based features for detecting spoofed 
speech is examined in (Xiao et al.,2015)'s study. Advances in text-to-speech (TTS) and voice 
conversion (VC) technologies pose a serious threat to automatic speaker verification (ASV) 
systems. Through the use of two magnitude-based and five phase-based characteristics in 
combination with multilayer perceptron analysis, the research was able to detect known spoofing 
assaults in the ASVspoof 2015 challenge with a low equal error rate (EER) of 0.29%. With an 
EER of 5.23%, the detection performance for unknown spoofing kinds was less successful, 
underscoring the need for additional study to increase the method's generalizability to novel and 
undiscovered spoofing approaches. 
 
The ASSERT system is reviewed in the publication "LARIHS ASSERT Reassessment for Logical 
Access ASVspoof 2021 Challenge" by (Benhafid et al. 2021), with an emphasis on improving the 
detection of logical access spoofing attacks. Thinner SENet backbones with new activation 
functions and the use of advanced features and loss algorithms are among the improvements. The 
success of these changes in spoofing detection was demonstrated by the reevaluated system's 60% 
improvement in min-tDCF for the ASVspoof 2019 evaluation, which marked a considerable 
improvement over the original. 
 
In (Dişken, 2023), a novel differential convolutional neural network generates finer noise masks 
based on directional changes of activations. These masks, combined with linear filterbank 
magnitudes, are inputted into various spoof detection systems, including PLDA with x-vectors, 
Emphasized Channel Attention, ECAPA-TDNN, and LCNN with LSTM layers. Experiments on 
the ASVspoof 2015 dataset show that the LCNN-LSTM network with noise masks achieves 
superior performance, with an average Equal Error Rate (EER) of 2.67% for known noise types 
and 3.10% for unknown noise types. Clean ASVspoof 2015 data has an EER of 0.83%, while 
ASVspoof 2019 data under logical access conditions has a 2.6% EER. 
 
The main purpose of the study is that while traditional methods use two separate systems with 
different features for spoof detection and speaker verification, the study can perform both tasks 
with a single system via i-vector. (Dehak et al., 2011). Thus, both speaker recognition and spoofed 
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speech detection using the same i-vectors can be possible. The mask obtained using a 
convolutional neural network (CNN) is utilized to reduce the effect of noise. This mask is applied 
on the noisy spectrogram, then, conventional i-vector extraction steps are followed. To test the 
proposed system, ASVspoof 2015 database and three different noise types (babble, white, car) 
are used based on previous studies in the literature((Hanilçi et al., 2016), (Gomez-Alanis et 
al.,2018), (Gomez-Alanis et al., 2019)). The results showed that the masking process increased 
the robustness of i-vector features and, unlike traditional methods, an improvement in 
performance is observed. There are few studies on this subject in the literature. Successful results 
can be obtained with deep learning models, by using more than one system. The goal of the study 
is to ensure the use of a single system instead of two different systems.                                       
 
2. ROBUSTNESS VIA MASKING 
 
The goal of masking is to improve the robustness against noise by distinguishing less reliable 
regions of the speech spectrum (more corrupted by noise) and more reliable regions (less affected 
by noise). Previous studies have shown that applying classic SNR-based masks for spoofed 
speech detection yields the best results in noisy scenarios (Gomez-Alanis et al., 2019). In the 
proposed system, the CNN structure used in (Gomez-Alanis et al., 2019) is preferred due to its 
high performance. The mask creation network is shown in Figure 1. Noisy spectrograms of 31 
frames in length, consisting of 15 frames to the right and 15 frames to the left of the central frame 
are used as inputs to the CNN structure. Therefore, the output of the system (the last linear layer) 
indicates the signal-to-noise ratio (SNR) for the relevant frame. The sigmoid function is applied 
to these values to obtain mask values in the range of 0-1. Here, 0 represents completely noise, and 
1 represents completely speech information.    

The average noise shown in Figure 1 is calculated by averaging the first 10 frames of the 
corresponding noisy speech data. Typically, it is assumed that the first and last few frames of the 
speech signal contain only noise information. Therefore, the trained CNN structure has an explicit 
noise reference, instead of relying only on the spectrogram. During the training phase, the 
instantaneous SNR target presented to the CNN for each frame is calculated as follows: 

10
(t, f)(t, f) 20.log
(t, f)

XSNR
N


                                                         (1) 

The notation (t, f) represents time-frequency partitions. X and N are the spectrograms of the clean 
speech and noise, respectively (generated using short-time Fourier transform (STFT)). The values 
of the target masks to be used in the training phase are obtained using an adjustable sigmoid 
function given in Equation 2. 

 
 

( ( , ) )
1

1 kk SNR t fm
e   




                                                       (2) 

Here, α controls the slope of the sigmoid, and β corresponds to the threshold commonly used to 

define Ideal Binary Masks (IBMs) (Wang et al., 2009). Combining these two equations, the 
Equation 3 is obtained, which calculates the target mask values as ℽ= 20. α/ log(10)). 
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Figure 1, an example spectrogram at the input of the network and the corresponding mask at the 
output can be seen. The generated mask is multiplied with the noisy spectrogram to obtain a 
spectrogram with reduced noise. After this stage, a simple speech activity detection system 
(Kinnunen et al., 2010) was used to discard frames containing silence or noise. 

 

Figure 1: 
CNN architecture  

3. I-VECTORS 
 

I-vectors are low and fixed dimensional representations of variable length audio data. This feature 
allows applications of various normalization techniques in a low-dimensional space (Varga et al., 
1993). Following the traditional i-vector extraction steps given in (Sizov et al., 2015), the training 
of the universal background model (UBM) and the total variability matrix T is performed. A 
speaker and channel-independent Gaussian mixture model (GMM) supervector can be defined as 
follows: 

M=m+Tω                                                                       (4) 

Here, m is the mean supervector taken from the UBM and ω is a randomly generated vector with 
a normal distribution. The i-vector is obtained by maximizing the posterior of ω for each audio 

file.  Once the i-vector is extracted, various compensation and dimensionality reduction 
techniques such as within-class covariance normalization (WCCN), linear discriminant analysis 
(LDA), and length normalization can be applied ((Dehak et al., 2011), (Delgado et al. 2018)). The 
features obtained from audio data are used for GMM and UBM training via applying Mel-
frequency cepstral coefficients (MFCC) or CQCC. MFCC extraction steps typically involve 
filtering the magnitude spectrogram obtained with STFT with triangular filters placed linearly on 
the Mel scale, taking the logarithm, and applying discrete cosine transform. 

CQCC is based on constant-q transform which gives a variable resolution, providing greater 
frequency resolution for lower frequencies and enhanced temporal resolution for higher 
frequencies. CQCC usually performs better than MFCC for spoofed speech detection. 

In the proposed study, robust i-vectors are created by using vector extraction of masked 
spectrograms with reduced noise effect. Apart from the masking process, all steps (MFCC 
extraction, UBM and T training) follow traditional methods. The obtained vectors are scored 
using classifiers such as cosine distance and probabilistic LDA (PLDA) to calculate performance. 
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4.  EXPERIMENTAL SETUP 
 
4.1 ASVSPOOF 2015 
 

The proposed system was tested using the ASVspoof 2015 dataset (Wu et al., 2015). This dataset 
consists of non-overlapping training, development, and test subsets. The spoof speech attacks are 
included in this dataset. While there are 10 different attack algorithms, only five of them (S1-S5) 
are available in the training set. The remaining five (S6-S10) are only available in the test set.  

Table 1: ASVSPOOF 2015 data distribution 
ASVSPOOF 

2015 
Training Data Test Data 

Real Speech 3750 9404 
Spoofed Speech 12625 184000 

 

The attacks are listed as (Wu et al., 2015); 

S1: A simplified voice conversion algorithm where the converted speech is generated by selecting 
frames from the target speech. 

S2: A basic voice conversion method that adjusts only the first mel-cepstral coefficient to align 
the source spectrum slope with the target. 

S3: A speech synthesis algorithm using a hidden Markov model-based system (HTS) with speaker 
adaptation techniques, requiring only 20 adaptation utterances. 

S4: Similar to S3, but utilizing 40 adaptation utterances for potentially improved performance or 
adaptation quality. 

S5: A voice conversion technique implemented using both the voice conversion toolkit and the 
Festvox system for transforming speech. 

S6: A voice conversion approach based on joint density Gaussian mixture models and maximum 
likelihood parameter generation, focusing on maintaining global variance for naturalness. 

S7: Similar to S6 but uses line spectrum pairs (LSP) instead of mel-cepstral coefficients for 
representing the spectrum, offering a different approach to spectrum conversion. 

S8: A tensor-based voice conversion method that constructs a speaker space using a Japanese 
dataset, offering a novel approach to handling speaker characteristics. 

S9: A voice conversion algorithm that employs kernel-based partial least squares (KPLS) for 
implementing a non-linear transformation function, simplifying the process by excluding 
dynamic information. 

S10: A speech synthesis algorithm executed with the MARY Text-To-Speech system (MaryTTS), 
an open-source platform for generating speech. 
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For noise, 'car', 'white', and 'babble' noises from the Noisex-92 database (Varga et al., 1993) and 
'cafe' noise from the QUT-Noise database (Dean et al., 2015) were used, based on similar studies 
in the literature ((Hanilçi et al., 2016), (Gomez-Alanis et al., 2019)). White, babble, and cafe 
noises were used for mask training. Car noise was only used in the tests to analyze the system's 
performance under noise types that it had not previously encountered. 

 
 4.2 CNN PARAMETERS 
 

The CNN structure used to obtain the mask was trained with a learning rate of 3e-4 and binary 
cross entropy was chosen as the learning criterion. Only the noisy versions of real speech audios 
(3750 speech samples) were used as the training data. Each data was corrupted with random noise 
type selected from white, babble, and cafe noises at a random SNR values between 0 dB and 20 
dB. Thus, multi-condition training was performed to prevent the system from focusing on a single 
noise type and level. 

 The CNN architecture depicted processes a noisy spectrogram through multiple layers to enhance 
speech. Initially, the input spectrogram—encapsulating a series of frames—is fed into the first 
convolutional layer, which extracts basic features like edges and patterns indicative of noise or 
speech characteristics. Subsequently, a pooling layer reduces the feature map's dimensionality, 
emphasizing the most salient features and making the network less sensitive to the exact 
positioning of features within the frames. A second convolutional layer then detects more 
complex features, combining the simpler patterns identified earlier. This is again followed by a 
pooling layer, which further condenses the data, preparing it for the final classification steps. 
 
The last part of the network consists of fully connected layers culminating in a linear layer that 
computes the SNR values for the central frame. These SNR values undergo normalization through 
a sigmoid function, resulting in a binary mask that distinguishes between noise (0) and speech 
(1). An average noise reference, derived from the first noise-dominated frames, informs the 
network what noise looks like. This reference improves the network's ability to differentiate 
between noise and speech. The output mask from the CNN is then used to clean up the noisy 
input, and a speech activity detection system removes any remaining silent or noise-heavy frames, 
ensuring a clear speech output. Overall structure is shown in Figure 3. 
   

4.3 I-VECTOR PARAMETERS 
 

The first step in i-vector extraction is obtaining MFCC features. For this, the audio signal is 
divided into frames of 25 ms length with a frame step of 10 ms. The windowed frames are 
transformed with a 512-point FFT. The filter bank consists of 32 triangular filters. After discrete 
cosine transformation, 32 coefficients are used. In addition, delta and delta-delta features are 
added to obtain 96-dimensional features per frame.  

The CQT is applied with a maximum frequency of Fmax = 8kHz. The number of octaves is 9. 
The number of bins per octave B is set to 96. Re-sampling is applied with a sampling period of 
16 bins in the first octave. Resulting feature vectors are of dimension 19, excluding the 𝐶0 
coefficient (𝐶𝑓 29 coefficients + 𝐶0 for the original system).  

The UBM consists of 512 Gaussian components and is trained only on real speakers in the training 
data. The 600-dimensional T matrix is trained using the entire training data (Hanilçi, 2018). After 
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obtaining i-vectors, whitening, WCCN, and length normalization are applied.The process is 
shown in Figure 2. 

 

Figure 2: 
Process after feature (MFCC/CQCC) extraction 

 
 
 

 

Figure 3: 
Proposed System 

 
5. RESULTS 

 
Table 2 shows the performance of the proposed methods on the development data. The EER value 
represents the average EER values for five different attacks in the development set. For 
comparison, the results of MFCC-based i-vector without mask (Hanilçi et al., 2016) are also 
included in the table. As can be seen, i-vectors enhanced with masks provide significantly better 
performance than classical i-vectors. 

As seen in the Table 2, the highest relative improvement in MFCC based  
i-vector system, with a rate of over 50%, was achieved with the cosine distance classifier at 20 
dB level for the babble noise type for encountered noise type. The lowest improvement in MFCC 
based i-vector system was observed with the PLDA classifier at 20 dB level for car noise type 
with a 22% improvement rate. The results indicate that masking contributes to robustness 
compared to the same system without mask. Similar observations can be made for CQCC based 
system. 
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Table 2: EERs (%) for the development data 

 

Table 3 and Table 4 show the results for the test data by using MFCC based  
i-vector system. The noticeable issue here is the low performance for the car noise type. 
Generally, this type of noise is considered to be the least disruptive ((Hanilçi et al., 2016), 
(Gomez-Alanis et al., 2019)). However, the masking performance is affected by this noise type 
because it was not used in the training stage of the mask. As evidence, the examples given on the 
logarithmic scale in Figure 4. The noisy spectrograms on the top belong to signals corrupted with 
babble 0 dB and car 20 dB. 

Table 3. EERs (%) for known attacks of evaluation data (Proposed System/MFCC based i-
vector with mask) 

 
Table 5 shows the performance of the proposed systems and the GMM method for the test data 
from (Hanilçi et al., 2016) for comparison. (Hanilçi et al., 2016) did not analyze the performance 

of i-vectors since GMM outperformed it. The average EER values are calculated for known 
attacks (S1-S5), and unknown attacks (S6-S9). Attack type S10 is difficult to detect and has 
reduced the system performance; therefore, it is not included in the average calculation as in 
(Hanilçi et al., 2016) 

 
 

Noise 
Type 

 
 
 

dB 

Proposed System with mask  
MFCC 

without mask 
(Hanilçi et 

al., 2016) 

 
MFCC 

without mask 
(Hanilçi et 

al., 2016) 
 

MFCC 
based  

i-vector 

MFCC 
based  

i-vector 

CQCC 
based  

i-vector 

CQCC 
based  

i-vector 

COS PLDA COS PLDA COS PLDA 
 

White 
0 dB 31.05 32.17 40.27 41.56 43.47 43.67 
10dB 25.32 26.60 32.49 33.47 36.35 37.87 
20dB 16.44 18.06 23.57 23.12 26.48 25.32 

 
Babble 

0 dB 30.80 31.09 39.67 37.76 45.71 45.82 
10dB 19.44 20.25 28.62 29.66 33.59 33.13 
20dB 10.34 11.49 18.78 19.62 20.94 20.65 

 
Car 

0dB 27.54 29.42 32.45 33.82 39.62 38.01 
10dB 24.16 25.38 23.72 24.66 33.67 32.50 
20dB 17.08 18.64 15.54 16.47 24 24.35 

Noise 

Type 

dB S1 S2 S3 S4 S5 

COS PLDA COS PLDA COS PLDA COS PLDA COS PLDA 

 

White 

0 25.85 26.07 36,68 36.72 20.46 20.76 20.15 20.50 28.46 28.21 

10 16.96 18.46 25,96 27.13 6.80 7.38 6.88 7.48 18.05 18.72 

20 5.84 7.14 11.04 12.34 1.48 1.76 1.50 1.83 9.35 10.00 

 

Babble 

0 28.97 29.57 38.38 38.51 31.32 31.52 31.47 31.76 31.12 31.55 

10 18.54 20.63 29.96 31.26 16.05 16.97 16.49 17.53 19.59 20.99 

20 10.83 13.55 18.18 20.59 3.55 4.34 3.88 4.71 10.87 12.73 

 

Car 

0 28.97 35,95 38.94 42.54 18.48 22.26 19.35 23.24 22.59 26.04 

10 27.58 34.11 39.61 43.87 18.34 21.72 19.30 22.90 19.44 23.58 

20 21.85 26.33 35.40 38.92 9.54 11.48 9.85 11.84 17.44 21.05 
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Table 4. EERs (%) for unknown attacks of evaluation data (Proposed System/MFCC based 
i-vector with mask) 

 
The results indicate that the proposed approach is more effective for lower dBs. Also, the 
proposed system delivered the worst results for the unseen noise type (car). This result emphasizes 
the importance of creating balanced training data. More noise types are necessary to increase the 
generalization capacity of the network, as noise type may not be known a priori for a practical 
spoof detection system. 

 

 
Figure 4: 

Spectrogram of speech data corrupted with babble 0 dB (upper-left) and car 20 dB (upper-
right), and their masks below 

 

 

 

Noise Type dB S6 S7 S8 S9 S10 

 

White 

 

0 33.57 33.70 32.71 33.03 16.76 16.68 29.90 30.10 41.12 41.35 

10 22.55 23.29 23.91 25.28 6.60 6.91 21.92 22.98 35.16 35.40 

20 13.28 14.21 10.05 11.56 2.95 3.39 10.27 12.22 34.29 34.29 

 

Babble 

0 32.96 33.08 33.58 34.30 25.86 26 33.33 33.67 40,54 40.45 

10 21.69 22.90 23.24 25.39 16.65 17.53 24.44 26.35 39.84 40.06 

20 14.08 15.79 12.54 15.32 7.61 8.38 14.15 17.14 40.45 40.87 

 

Car 

0 26.63 29.95 29.84 34.95 29.42 33.28 40.82 43.21 45.21 47.91 

10 24.73 29.14 28.59 33.58 28.72 32 38.97 42.01 49.82 49.96 

20 22.83 26.83 23.67 27.63 17.53 19.01 29.05 33.33 50 50 
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Table 5. Comparison of average EERs (%) for evaluation (K: Known attacks (S1-S5), U: 
Unknown attacks (S6-S9) 

 
Noise 
Type 

 
 

dB 

MFCC based i-
vector 

CQCC based i-
vector 

MFCC 
(Hanilçi et al., 

2016) 

RPS (Hanilçi 
et al., 2016) 

SCMC 
(Hanilçi et al., 

2016) 

MGD (Hanilçi 
et al., 2016) 

 
K 

 
U 

 
K 

 
U 

 
K 

 
U 

 
K 

 
U 

 
K 

 
U 

 
K 

 
U 

Cos PLDA Cos PLDA 
 

White 
0 26.32 26.45 28.23 28.37 35.07 39.66 44.56 46.64 43.73 42.27 44.42 45.88 

10 14.93 15.83 18.74 19.61 25.45 29.78 42.16 44.98 33.36 32.14 37.42 38.66 
20 5.84 6.61 9.13 10.34 16.43 17.94 38.53 40.62 19.92 15.40 27.25 36.24 

 
Babble 

0 32.25 32.58 31.43 31.76 33.54 28.40 40.81 40.66 29.74 25.13 37.59 40.77 
10 20.12 21.47 21.50 23.04 15.59 12.76 21.17 23.71 8.32 5.30 26.30 35.65 
20 9.46 11.18 12.09 14.15 7.48 6.49 6.09 10.62 2.15 1.39 14.20 23.55 

 
Car 

0 25.66 30.00 31.67 35.34 17.33 14.69 24.66 25.67 8.59 7.36 30.32 36.63 
10 24.85 29.23 30.25 34.18 7.31 6.03 5.28 9.93 2.16 1.67 15.99 24.44 
20 18.81 21.92 23.27 26.70 3.57 2.83 0.74 3.67 0.79 0.52 9.39 16.12 

 

6. CONCLUSION 
 

This study proposed noise mask based robust i-vector extraction and examined its performance 
for noisy spoofed speech detection tasks. The results showed that the mask structure is successful 
in reducing noise effects. This situation reveals that mask structures can be useful in an area where 
traditional speech enhancement methods have performance-decreasing effects (Hanilçi et al., 

2016). The CNN-based mask, on the other hand, failed against a noise type that was not 
encountered in the training phase. This situation provides a clue about the necessity of increasing 
the diversity of noise in the database to prevent memorization. 

The i-vector method was chosen due to its high performance for speaker verification. With the 
proposed method, the same i-vectors can be used for both speaker verification and spoof 
detection, in a robust manner. However, compared to the state-of-the-art systems in detecting 
synthetic speech under noise ((Gomez-Alanis et al., 2019), (Wang et al., 2021)), the proposed 
system was found to be far behind. A reason for this is the low performance of i-vectors in short 
audio recordings (Hanilçi, 2018), where the average data length in ASVspoof 2015 dataset is 3.5 
seconds. Another reason is the other systems’ complexities. For example, the study in (Gomez-
Alanis et al., 2019) designed a system which consists of two different feature types, deep learning 
models for each feature, and an external classifier in addition to the CNN-based noise mask. 
Therefore, even though the masking approach performs better than the traditional methods, 
advanced architectures are necessary for achieving impressive results. 
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