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Abstract  
 

In the paper, the traveling wave solutions of the conformable derivative Date–Jimbo–Kashiwara–Miwa 
equation were obtained by the modified exponential function method (MEFM). It has been seen that the wave 
solutions found are functions that have the feature of being periodic functions. The proper values for the 
parameters in the acquired wave solutions are then used to generate two contour and density graphs in three 
dimensions that simulate the solution functions. 
 

Keywords: conformable date–jimbo–kashiwara–miwa equation, modified exponential function method, 
traveling wave solution. 
 
 

Zaman Parametresine Bağlı Uyumlu Kesirli Mertebeden Date-Jimbo 
Kashiwara-Miwa Denkleminin İlerleyen Dalga Çözümleri 

 

Öz 
 

Bu makalede, uyumlu kesirli türevli Date–Jimbo–Kashiwara–Miwa denkleminin ilerleyen dalga çözümleri, 
değiştirilmiş üstel fonksiyon yöntemi (DÜFY) ile elde edilmiştir. Bulunan dalga çözümlerinin periyodik fonksiyon 
özelliği taşıyan fonksiyonlar olduğu görülmüştür. Elde edilen dalga çözümlerindeki parametreler için uygun 
değerler daha sonra, çözüm fonksiyonlarını simüle eden üç boyutlu iki tane kontur ve yoğunluk grafiklerini 
oluşturmak için kullanılmaktadır. 
 

Anahtar Kelimeler: uyumlu date–jimbo–kashiwara–miwa denklemi, değiştirilmiş üstel fonksiyon metodu, 
ilerleyen dalga çözümü 
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Introduction  

In the last 20 years, nonlinear phenomena in applied mathematics and physics have played a crucial 
role in soliton theory, the calculation of analytical, numerical solutions, and especially the traveling 
wave solutions of nonlinear equations in mathematical physics. Nonlinear partial differential 
equations (NPDEs), often known as quasi-linear or nonlinear evolution equations, can be used to 
represent a wide variety of phenomena. This intricate mathematical equation, known as a space and 
time related, nonlinear evolution equation, or NLEE for short, has the potential to replicate almost 
every event that takes place in the natural world, particularly those that pertain to the fields of 
science and engineering. In order to provide an explanation for the natural occurrences that have 
taken place in a variety of scientific areas consisting of engineering, chemistry, biology, dynamics, 
plasma physics, electrodynamics, applied physics, and so on. It is necessary for us to search for 
specific answers to the NLEEs. There are many techniques to solve these kinds of problems that have 
been written about (Abdel-Gawad & Osman, 2013; Akturk et al., 2017; Baskonus & Bulut, 2015; 
Baskonus et al., 2017; Chen & Wang, 2005; Chen & Yan, 2005; Dubrovsky & Lisitsyn, 2002; Duran, 
2020; Duran, 2021a; Duran, 2021b; Hossain & Akbar, 2017; Jafari et al., 2015; Jianming et al., 2011; 
Kubal & Aktürk, 2023Kumar & Pankaj, 2015; Lü, 2005; Malwe et al., 2016; Mohyud-Din & Noor, 2007; 
Salas & Gómez, 2010; Shen et al., 2013).  

In this paper, we obtain the traveling wave solutions of the conformable Date-Jimbo-Kashiwara-
Miwa equation (CDJKME) by the modified exponential function method (MEFM) (Baskonus et al., 
2016; Xu, 2008).  

The CDJKME is defined by (Guo & Lin, 2019; Ismael et al., 2021)  

𝑈𝑥𝑥𝑥𝑥𝑦 + 4𝑈𝑥𝑥𝑦𝑈𝑥 + 2𝑈𝑥𝑥𝑥𝑈𝑦 + 6𝑈𝑥𝑦𝑈𝑥𝑥 − 𝛼𝑈𝑦𝑦𝑦 − 2𝛽 𝜕
𝜕𝑥
� 𝜕
𝜕𝑥
�𝜕

𝜃𝑈
𝜕𝑡𝜃

�� = 0,                                     (1)  

where 𝛼 and 𝛽 are non-zero constants and 0 < 𝜃 ≤ 1, 𝑈 =  𝑈(𝑥,𝑦, 𝑡) is the wave-amplitude 
function, which describes long water waves. In case of 𝜃 = 1, Eq. (1) reduces to Date-Jimbo-
Kashiwara-Miwa equation.  

This article is organized as follows: Basic definitions, theorems and the modified exponential function 
method are presented in material and method. In Section of results and discussion, we present the 
proposed method's application of the CDJKM equation.  Finally, we present the section of conclusion. 

Method  

Basic definitions and theorems about fractional calculus in conformable sense are given. 

Definition 1. Let a function 𝒇: [𝟎,∞) → ℝ. The conformable fractional derivative (CFD) of 𝒇 order 𝜽 is 
given by (Abdeljawad, 2015; Gözütok & Gözütok, 2018; Khalil et al., 2014). 

𝑇𝜃[𝑓(𝑡)] = lim
𝜀→0

𝑓�𝑡 + 𝜀𝑡1−𝜃� − 𝑓(𝑡)
𝜀

,                                                                                                               (2) 

for all 𝑡 > 0,𝜃 ∈ (0, 1]. 

Theorem 1. Let 𝜽 ∈ (𝟎,𝟏] and 𝒇,𝒈 be 𝜽 −differentiable at a point 𝒙 > 𝟎. Thus, it is obtained as 
(Abdeljawad, 2015; Gözütok & Gözütok, 2018; Khalil et al., 2014). 

𝑖.𝑇𝜃(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝜃(𝑓) + 𝑏𝑇𝜃(𝑔), for all 𝑎, 𝑏 ∈ ℝ.                                                                                    (3) 

𝑖𝑖.𝑇𝜃(𝑡𝑝) = 𝑝𝑡𝑝−1, for all 𝑝 ∈ ℝ.                                                                                                                        (4) 

𝑖𝑖𝑖.𝑇𝜃(𝜆) = 0, for all constant functions 
𝑓(𝑡) = 𝜆.                                                                                          (5) 

𝑖𝑣.𝑇𝜃(𝑓𝑔) = 𝑓𝑇𝜃(𝑔) + 𝑔𝑇𝜃(𝑓).                                                                                                                         (6) 
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𝑣.𝑇𝜃 �
𝑓
𝑔
� =

𝑔𝑇𝜃(𝑓)− 𝑓𝑇𝜃(𝑔)
𝑔2

.                                                                                                                           (7) 

If 𝑓 is differentiable, then the derivative of the polynomial 𝑡 is obtained as  

𝑇𝜃[𝑓(𝑡)] = 𝑡1−𝜃
𝑑
𝑑𝑡
𝑓(𝑡).                                                                                                                                       (8) 

Definition 2. Let 𝒇 be an 𝒏 −times differentiable at 𝒕. Then, the CFD of 𝒇 order 𝜽 is defined by (Khalil 
et al., 2014). 

𝑇𝜃[𝑓(𝑡)] = lim
𝜀→0

𝑓([𝜃]−1)�𝑡 + 𝜀𝑡([𝜃]−𝜃)� − 𝑓([𝜃]−1)(𝑡)
𝜀

,                                                                                  (9) 

for all 𝑡 > 0,𝜃 ∈ (𝑛,𝑛 + 1], [𝜃] is the smallest integer greater than or equal to 𝜃. 

Theorem 2. Let 𝒇 be an 𝒏 −times differentiable at 𝒕. So, there is the following equality (Khalil et al., 
2014). 

𝑇𝜃[𝑓(𝑡)] = 𝑡[𝜃]−𝜃𝑓[𝜃](𝑡),                                                                                                                                   (10) 

for all 𝑡 > 0,𝜃 ∈ (𝑛,𝑛 + 1]. 

The Modified Exponential Function Method  

In the part, we are going to learn about MEFM. First, it will be helpful to go over some things that are 
already known about the MEFM.  

To employ this method, understand about the NPDEs 

𝑃�𝑈,𝑇𝜃𝑈,𝑈𝑥 ,𝑈𝑦 ,𝑈𝑥𝑥 ,𝑈𝑦𝑦 ,𝑈𝑡𝑥 , … � = 0,                                                                                                      (11) 

where 𝑈 = 𝑈(𝑥, 𝑦, 𝑡) is required function, 𝑃 is a polynomial which has function of 𝑢(𝑥,𝑦, 𝑡) and its 
partial derivatives according to 𝑥,𝑦, 𝑡. 

Step 1: Assume that the traveling wave transformation is as follows: 

𝑈(𝑥,𝑦, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐
𝑡𝜃

𝜃
,                                                                                                        (12) 

where 𝑘 and 𝑐 are nonzero constants that is determined in the future. By substituting partial 
derivatives of equation (12) into equation (11), equation (11) is changed into a nonlinear ordinary 
differential equation (NODE) described by, 

𝑁(𝑈,𝑈′,𝑈′′,𝑈′′′, … . ) = 0,                                                                                                                                (13)    

where 𝑁 is a polynomial depend on 𝑈. 

Step 2: Assume that the traveling wave solution to equation (13) is written in below: 

𝑈(𝜉) =
∑ 𝐴𝑖[𝑒𝑥𝑝(−𝛹(𝜉))]𝑖𝑁
𝑖=0

∑ 𝐵𝑗[𝑒𝑥𝑝(−𝛹(𝜉))]𝑗𝑀
𝑗=0

=
𝐴0 + 𝐴1𝑒𝑥𝑝(−𝛹) + ⋯+ 𝐴𝑁𝑒𝑥𝑝(𝑁(−𝛹))
𝐵0 + 𝐵1𝑒𝑥𝑝(−𝛹) + ⋯+ 𝐵𝑀𝑒𝑥𝑝(𝑀(−𝛹)),                                (14) 

where 𝐴𝑖  and 𝐵𝑗, (0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀) are constants which is specified in future, 𝐴𝑁 ≠ 0,  
𝐵𝑀 ≠ 0 and 𝛹 = 𝛹(𝜉) provides the ODE: 

𝛹′(𝜉) = 𝑒𝑥𝑝(−𝛹(𝜉)) + 𝜇𝑒𝑥𝑝(𝛹(𝜉)) + 𝜆.                                                                                                   (15) 

Solving equation (15), then the five solution families are obtained (Naher & Abdullah, 2013). 
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Family 1: Let 𝝁 ≠ 𝟎, 𝝀𝟐 − 𝟒𝝁 > 𝟎,   

𝛹(𝜉) = ln�
−�𝜆2 − 4𝜇

2𝜇
tanh�

�𝜆2 − 4𝜇
2

(𝜉 + 𝐸)�−
𝜆

2𝜇
� .                                                                    (16) 

Family 2: Let 𝝁 ≠ 𝟎, 𝝀𝟐 − 𝟒𝝁 < 𝟎, 

𝛹(𝜉) = ln�
�−𝜆2 + 4𝜇

2𝜇
tan�

�−𝜆2 + 4𝜇
2

(𝜉 + 𝐸)�−
𝜆

2𝜇
� .                                                                   (17) 

Family 3: Let 𝝁 = 𝟎, 𝝀 ≠ 𝟎 and 𝝀𝟐 − 𝟒𝝁 > 𝟎, 

𝛹(𝜉) = −ln�
𝜆

exp�𝜆(𝜉 + 𝐸)� − 1
� .                                                                                                                (18) 

Family 4: Let 𝝁 ≠ 𝟎, 𝝀 ≠ 𝟎 and 𝝀𝟐 − 𝟒𝝁 = 𝟎, 

𝛹(𝜉) = ln�−
2𝜆(𝜉 + 𝐸) + 4
𝜆2(𝜉 + 𝐸) � .                                                                                                                        (19) 

Family 5: Let 𝝁 = 𝟎, 𝝀 = 𝟎 and 𝝀𝟐 − 𝟒𝝁 = 𝟎, 

𝛹(𝜉) = ln(𝜉 + 𝐸).                                                                                                                                              (20) 

where 𝐴0,𝐴1, … ,𝐴𝑁 ,𝐵0,𝐵1, … ,𝐵𝑀 ,𝐸, 𝜆, 𝜇 are constants and is determined in the future. Utilizing 
homogeneous balance principle between the highest nonlinear terms with the highest order 
derivatives of 𝑈 in equation (14). It will be found a relationship between 𝑁 and 𝑀.    

Step 3: When Eq. (15) and the  families solutions are put into Equation (14), we get a polynomial with 
𝒆𝒙𝒑�𝜳( 𝝃)� terms. The algebraic equation system in terms of 𝑨𝟎,𝑨𝟏, … ,𝑨𝑵,𝑩𝟎,𝑩𝟏, … ,𝑩𝑴,𝑬,𝝀,𝝁 is 
found by putting the coefficients of the same power of exp (𝜳 (𝝃)) to zero. Lastly, by plugging the 
values of the coefficients into equation (14), it provides the traveling wave solutions of equation (11). 

Results and Discussion  

In this part, solutions to the CDJKME will be found by using the MEFM.  Handle the traveling wave 
transformation: 

                                               𝑈(𝑥,𝑦, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐
𝑡𝜃

𝜃
.                                                           (21) 

Using the traveling wave transformation for Eq. (1), the following NODE is obtained: 

                            𝑘 4𝑟𝑈′′′ + 3𝑘 3𝑟(𝑈′ )2 − (𝛼𝑟3 − 2𝑘 2𝑐𝛽)𝑈′  = 0.                                                         (22) 

When 𝑈′ = 𝑉 is applied to Eq. (22), we obtain the NODE 

                            𝑘 4𝑟𝑉′′ + 3𝑘 3𝑟𝑉2 − (𝛼𝑟3 − 2𝑘 2𝑐𝛽)𝑉 = 0,                                                                    (23) 

where V = 𝑈′ and also both integral constants are zero. When we apply the balancing procedure to 
Eq. (23), it is obtained the relationship 

𝑛 = 𝑚 + 2. 

Choosing 𝑚 = 1,  then we find 𝑛 = 3. For 𝑚 and 𝑛 values, we obtain  

                                𝑈(𝜉) =
𝐴0 + 𝐴1𝑒−𝛹 + 𝐴2𝑒−2𝛹 + 𝐴3𝑒−3𝛹

𝐵0 + 𝐵1𝑒−𝛹
.                                                                  (24) 



Ordu Üniversitesi Bilim ve Teknoloji Dergisi | Ordu University Journal of Science and Technology                2024, 14(1), 38-51 

42 
 

The system of algebraic equations with 𝑒−𝛹(𝜉) coefficients is generated by rearranging Eq. (24) 
according to the necessary term in Eq. (23). 

Utilizing Mathematica, some appropriate coefficients acquired are as follows: 

Case 1: 

𝐴0 = −2𝑘𝜇𝐵0,                                               

𝐴1 = −2𝑘(𝜆𝐵0 + 𝜇𝐵1), 

𝐴2 = −2𝑘(𝐵0 + 𝜆𝐵1), 

𝐴3 = −2𝑘𝐵1,  

𝑐 =
𝑟3𝛼 − 𝑘4𝑟(𝜆2 − 4𝜇)

2𝑘2𝛽
. 

Using these coefficients in Equation (13), the solutions are obtained as: 

Family 1: Let 𝝁 ≠ 𝟎,𝝀𝟐 − 𝟒𝝁 >  𝟎, we obtain solution of Eq. (1) 

𝑈1,1(𝑥, 𝑡) = �
𝑘. (𝜆3 − 4𝜆𝜇 + 2Г𝜇𝑠𝑖𝑛ℎ[𝜗Г])

𝜆2 − 2𝜇 + 2𝜇𝑐𝑜𝑠ℎ[𝜗Г] � ,                                                                                             (25) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
, 𝜗 = 𝐸𝐸 + 𝜉 , Г = �𝜆2 − 4𝜇. 

 
Figure 1. 2D, 3D, Density, Contour Graphs of Equation (24) at 𝛌 = 𝟑,𝛍 = 𝟏,𝜭 = 𝟎.𝟓, 𝐲 = 𝟎.𝟏,𝜷 =
𝟏.𝟑,𝜶 = 𝟎.𝟓𝟒𝟑𝟎𝟓𝟔,𝐤 = 𝟎.𝟐𝟓, 𝐫 = 𝟎.𝟕𝟓, 𝐭 = 𝟎.𝟏, 𝐜 = 𝟑.𝟒𝟏𝟒𝟔𝟔,𝑨𝟏 = −𝟐.𝟏𝟑,𝑨𝟐 = −𝟏.𝟓𝟗,𝑩𝟏 =
𝟎.𝟔𝟔,𝑬𝑬 = 𝟎.𝟖𝟐,𝑨𝟑 = −𝟎.𝟑𝟑,𝑩𝟎 = 𝟏.𝟐,𝑨𝟎 = −𝟎.𝟔. 

Family 2: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 <  0, the solution of Eq. (1) is found by 

𝑈1,2(𝑥, 𝑡) =
�(𝑘(𝜆2 − 4𝜇 − 2𝜇𝜓)𝑠𝑖𝑛[𝜗]𝜓)�

(𝜆2 − 2𝜇 + 2𝜇𝑐𝑜𝑠[𝜗]𝜓) .                                                                                               (26) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
, 𝜗 = 𝐸𝐸 + 𝜉 ,𝜓 = �−𝜆2 + 4𝜇.  
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Figure 2. 2D, 3D, Density, Contour Graphs of Equation (25) at λ = 1,μ = 3,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, 𝑡 = 1, k = 0.25, r = 0.75, c = 3.70313,𝐴1 = −1.59,𝐴2 = −0.93,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = −0.33,𝐵0 = 1.2,𝐴0 = −1.8. 

Family 3: Let 𝜇 = 0, λ ≠ 0, 𝜆2 − 4𝜇 <  0, the solution of Eq. (1) is obtained by 

𝑈1,3(𝑥, 𝑡) = �𝑘λcoth �
1
2
𝜗� λ� ,                                                                                                                          (27) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉. 

 
Figure 3. 2D, 3D, Density, Contour Graphs of Equation (26) at λ = 1,μ = 0,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.48678, t = 1,𝐴1 = −0.6,𝐴2 = −0.93,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = −0.33,𝐵0 = 1.2,𝐴0 = 0. 
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Family 4: Let 𝜇 ≠ 0, λ ≠ 0, 𝜆2 − 4𝜇 = 0, the solution of Eq. (1) is acquired by  

𝑈1,4(𝑥, 𝑡) = �
1
2
𝑘 �

4λ
2 + 𝜗λ

+ +λ(2 + 𝜗λ) − 4 𝜉𝜇�� ,                                                                                  (28) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉. 

 
Figure 4. 2D, 3D, Density, Contour Graphs of Equation (27) at  λ = 2, μ = 1,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.50481,𝐴1 = −1.53,𝐴2 = −1.26,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = −0.33,𝐵0 = 1.2,𝐴0 = −0.60. 

Family 5: Let 𝜇 = 0, λ = 0, 𝜆2 − 4𝜇 =  0, the solution of Eq. (1) is found by 

                                        𝑈1,5(𝑥, 𝑡) =
2𝑘
𝜗

,                                                                                                            (29) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉. 
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Figure 5. 2D, 3D, Density, Contour Graphs of Equation (28) at  λ = 0, μ = 0,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.50481,𝐴1 = 0,𝐴2 = −0.6,𝐵1 = −1.1,𝐸𝐸 = 0.82,𝐴3 =
−0.33,𝐵0 = 1.2,𝐴0 = 0. 

Case-2: 

𝐴0 = −
1
3
𝑘(𝜆2 + 2𝜇)𝐵0,                                                                                                                               

𝐴1 = −
1
3
𝑘(6𝜆𝐵0 + (𝜆2 + 2𝜇)𝐵1),                                                                                                            

𝐴2 = −2𝑘(𝐵0 + 𝜆𝐵1),                                                                                                                                   

𝐴3 = −2𝑘𝐵1,                                                                                                                                                   

𝑐 =
𝑟3𝛼 + 𝑘4𝑟(𝜆2 − 4𝜇)

2𝑘2𝛽
                                                                                                                              

When these coefficients are put into Equation (23), the following solutions are found: 

Family 1: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 >  0, the solution of Eq. (1) is found by  

𝑈2,1(𝑥, 𝑡) = �
1
3
𝑘(𝜆2 − 4𝜇) �−𝜗 +

3𝜆
𝜆2 − 2𝜇 + 2𝜇𝑐𝑜𝑠ℎ[ 𝜗Ф]� +

2𝑘Ф𝜇𝑠𝑖𝑛ℎ[ 𝜗Ф]
𝜆2 − 2𝜇 + 2𝜇𝑐𝑜𝑠ℎ[ 𝜗Ф]� ,           (30) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉,Ф = �𝜆2 − 4𝜇. 
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Figure 6. 2D, 3D, Density, Contour Graphs of Equation (29) at  λ = 3, μ = 1,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.59495,𝐴1 = −2.405,𝐴2 = −1.59,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = 1.6,𝐵0 = 1.2,𝐴0 = −1.1. 

Family 2: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 <  0, the solution of Eq. (1) is obtained by 

𝑈2,2(𝑥, 𝑡) = �
1
3
𝑘(𝜆2 − 4𝜇) �−𝜗 +

3𝜆
𝜆2 − 2𝜇 + 2𝜇𝑐𝑜𝑠ℎ[ 𝜗𝜍]� +

2𝑘𝜍𝜇𝑠𝑖𝑛ℎ[ 𝜗𝜍]
𝜆2 − 2𝜇 + 2𝜇𝑐𝑜𝑠ℎ[ 𝜗𝜍]� .              (31) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉, 𝜍 = �−𝜆2 + 4𝜇. 

 
Figure 7. 2D, 3D, Density, Contour Graphs of Equation (30) at λ = 1,μ = 3,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.30649,𝐴1 = −0.985,𝐴2 = −0.93,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = −0.33,𝐵0 = 1.2,𝐴0 = −0.7. 
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Family 3: Let 𝜇 = 0, λ ≠ 0, 𝜆2 − 4𝜇 <  0, the solution of Eq. (1) is found by  

𝑈2,3(𝑥, 𝑡) = −
1
3
𝑘𝜗𝜆2 + 𝑘λcoth �

1
2
𝜗λ� .                                                                                                         (32) 

where,  𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉. 

 
Figure 8. 2D, 3D, Density, Contour Graphs of Equation (31) at λ = 1,μ = 0,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.52284,𝐴1 = −0.655,𝐴2 = −0.93,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = −0.33,𝐵0 = 1.2,𝐴0 = −0.1. 

Family 4: Let 𝜇 ≠ 0, λ ≠ 0, 𝜆2 − 4𝜇 = 0, the solution of Eq. (1) is acquired by  

𝑈2,4(𝑥, 𝑡) = �
1
6
𝑘 �

12λ
2 + 𝜗λ

+ λ(2 + 𝜗λ) − 4𝜉𝜇�� .                                                                                      (33) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉. 
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Figure 9. 2D, 3D, Density, Contour Graphs of Equation (32) at  λ = 2, μ = 1,𝛳 = 0.5, y = 0.1,𝛽 =
1.3,𝛼 = 1.35, k = 0.25, r = 0.75, c = 3.50481,𝐴1 = −1.53,𝐴2 = −1.26,𝐵1 = 0.66,𝐸𝐸 =
0.82,𝐴3 = −0.33,𝐵0 = 1.2,𝐴0 = −0.60. 

Family 5: Let 𝜇 = 0, λ = 0, 𝜆2 − 4𝜇 =  0, the solution of Eq. (1) is found by 

𝑈2,5(𝑥, 𝑡) =
2𝑘
 𝜗

.                                                                                                                                                    (34) 

where, 𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐 𝑡
𝜃

𝜃
,𝜗 = 𝐸𝐸 + 𝜉. 

 
Figure 10: 2D, 3D, Density, Contour Graphs of Equation (33) at λ = 0, μ = 0, ϴ = 0.5, k = 0.25,  

 𝐴3 = −o. 33,α = 1.35,β = 1.3,𝐵0 = 1.2,𝐴0 = 0, c = 3.50481,𝐴1 = 0,𝐴2 = −0.6,   

𝐵1 = 0.66,𝐸𝐸 = 0.82,𝑦 = 0.1, r = 0.75. 
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Conclusion  

Lastly, we demonstrated how to acqiure the traveling wave solutions of the CDJKME via the MEFM. 
In the paper, we acquired traveling wave solutions of the CDJKME by utilizing MEFM. In Mathematica 
software, we obtain the traveling wave solutions of the CDJKME. The 2D,3D plots, density and 
contour surface graphs of the traveling wave solutions by choosing the proper parameters have been 
plotted in program. Based on our accomplishments, we can assert that our findings have made a 
substantial contribution to this field. The proposed method is highly efficient in obtaining the 
analytical solutions of such NPDEs. It is observed that the method is applicable to a wide range of 
difficult nonlinear models in applied mathematics, engineering, and physics, such as the Landau-
Ginzburg-Higgs equation, Klein-Gordon equation and Duffing equation. 
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