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Abstract 

Nowadays, current medical imaging techniques provide means of diagnosing 

disorders like the recent COVID-19 and pneumonia due to technological 

advancements in medicine. However, the lack of sufficient medical experts, 

particularly amidst the breakout of the epidemic, poses severe challenges in early 

diagnoses and treatments, resulting in complications and unexpected fatalities. In this 

study, a CNN (Convolutional Neural Network) model, VGG16 + XGBoost and 

VGG16 + SVM hybrid models, were used for three-class image classification on a 

generated dataset named Dataset-A with 6,432 chest CXR (Computed X-Ray) 

images (containing Normal, Covid-19, and Pneumonia classes). Then, pre-trained 

ResNet50, Xception, and DenseNet201 models were employed for binary 

classification on Dataset-B with 7,000 images (consisting of Normal and Covid-19). 

The suggested CNN model achieved a test accuracy of 98.91%. Then the hybrid 

models (VGG16 + XGBoost and VGG16 + SVM) gained accuracies of 98.44% and 

95.60%, respectively. In our experiments, accuracy rates of 98.90%, 99.14%, and 

99.00% were achieved for the fine-tuned ResNet50, Xception, and DenseNet201 

models, respectively. Finally, the models were further evaluated and tested, yielding 

impressive results. These outcomes demonstrate that the models can aid radiologists 

with robust tools for early lungs related disease diagnoses and treatment. 
 

 
1. Introduction 

 

Just recently, the entire world was in a state of 

extreme fear and trepidation due to the outburst of the 

novel COVID-19 (Corona Virus Disease 2019) 

epidemic that started in Wuhan, Hubei province of 

China, in December 2019 [1], [2]. This virus, also 

known as SARS-CoV-2 or the severe acute 

respiratory syndrome coronavirus 2, holds an 

unknown etiology and is zoonotic, meaning it can 

propagate from animals to human beings [3]. Because 

of the novel virus's airborne nature, any infected 

person can spread it to people around them by merely 

breathing, speaking, sneezing, or coughing [4]. The 

above-mentioned nature of the virus made it easy to 

circulate rapidly. Seeing the rate at which the virus 

spread, the WHO (World Health Organization) 
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assessed and characterized it all together as a global 

epidemic on March 11, 2020 [5]. The virus poses 

serious illness, particularly to the elderly, children, 

and persons with underlying medical conditions [6–

8]. According to WHO, Worldometer, and Statista 

websites, there have been over 6.5 million reported 

deaths and over 635 million documented cases of 

SARS-CoV-2 infections worldwide [9]–[11]. 

The most effective means of combating such 

diseases being early testing and diagnosis are 

challenging, especially in the event of a worldwide 

epidemic, when the number of infected people 

exceeds the capacity of hospitals and healthcare 

professionals. Moreover, most of the widely accepted 

methods of testing the COVID-19 virus are not 

without caveats, making them unsuited for 

application in early testing and diagnosis. Even the 
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widely used and validated method, RT-PCR (Reverse 

Transcription - Polymerase Chain Reaction), is not 

entirely effective, especially in patients with low viral 

loads. Also, the cost of running laboratories that 

require expensive instruments, affirmative 

examinations, and trained personnel remains a 

significant drawback [12]. Due to the advancement 

and diversity of various medical imaging and CAD 

(Computer Aided Diagnoses) techniques, mainly in 

the field of radiology and oncology, AI-based models 

provide a quick and inexpensive means of diagnosing 

COVID-19 and other related diseases [13]. The 

primary cause of this significant milestone is the 

remarkable breakthrough these models have 

accomplished, particularly in image classification and 

segmentation tasks for both binary and multi-class 

with high accuracy [14]. It is now simpler to employ 

the power of these models to support radiologists with 

early diagnostic techniques even amid a global 

pandemic, because of the abundance of medical 

images from technologies like MRI (Magnetic 

Resonance Imaging), CT (Computed Tomography) 

scans, and X-ray [15]. Because of their improved 

classification performance, robustness, and enormous 

data processing power, various artificial intelligence 

algorithms significantly reduce the limitations of 

human medical experts, thereby mitigating the 

occurrence of severe illnesses and deaths [16]. 

Several recent studies employed deep 

learning models based on conventional CNN to class 

medical chest images into various classes. In study 

[17], researchers proposed a CNN model that 

classified CXR images as either COVID-19 cases or 

normal, achieving 96.71% accuracy. In another study 

researchers proposed other sets of CNN models for 

image segmentation and classification, reaching the 

highest accuracy of 93.2% [18]. Also, fine-tuning pre-

trained models for detecting COVID-19 from several 

medical images is another widely deployed method 

by many researchers. In study [19] researchers 

utilized the ResNet18 model on CXR to identify 

COVID-19 with 93% accuracy. In study [20] 

ResNet50V2, DenseNet201, and InceptionV3 models 

were employed on CXR images attaining an accuracy 

of 91.62%. The hybridization of deep learning models 

with machine learning classifiers provides a fast and 

efficient means of classifying medical images, 

particularly in the presence of limited training data. In 

another study authors combined DenseNet201 with a 

Random Forest (RF) classifier to detect COVID-19 

on CXR images with an accuracy of 94.55% [21]. 

Lastly, in study [22] researchers applied a hybrid of 

several pre-trained models with the SVM (Support 

Vector Machine) classifier to detect COVID-19 with 

94.7% accuracy. 

This study aims to demonstrate the 

performance of three categories of AI-based models 

on CXR images for binary and three-class image 

classification tasks utilizing two openly accessible 

datasets from Kaggle [23]-[24]. After applying 

random oversampling to address class-imbalance, a 

CNN and two hybrid models (using VGG16 to extract 

deep-level features followed by XGBoost and SVM 

classifiers to categorize the obtained features) were 

employed for three-class image classification on our 

generated Dataset-A. There are 6,342 images in total 

in Dataset-A, and there are three classes in this 

dataset: normal, pneumonia and COVID-19. Then, 

Dataset-B was used for binary image classification 

using three pre-trained models: Xception, ResNet50, 

and DenseNet201, using transfer learning and fine-

tuning techniques. There are 7,000 images in total in 

the Dataset-B, of which 3,500 are normal and 3,500 

are COVID-19. In this data set, there are two class 

labels. Finally, the study's outcome was analyzed and 

compared with recent works on this area. To fully 

appreciate the relevance of this study, we precisely 

summarized its contributions as follows: 

 Employing the random oversampling 

technique to handle the issue of class 

imbalance and limited input data significantly 

improves the performance of the models. 

High test accuracies on unseen images, 

indicating less overfitting and more 

generalizable models, are evidence of these 

improvements. 

 Utilizing proper image pre-processing 

techniques, like resizing and cropping the 

images to remove unnecessary features and 

enable the models to learn the appropriate 

ones, has significantly improved their 

performance and conserved memory and 

resources during training. 

 Training different models, including standard 

convolutional neural networks, hybrid 

models, and pre-trained models that achieve 

high test accuracies, demonstrates that this 

research can undoubtedly aid radiologists in 

making accurate early diagnoses, even during 

pandemics. In turn, this could reduce severe 

illness and save lives. 

The remainder of the article is organized as 

follows. In the second section, information about the 

data sets and methods used in the study were given. 

Moreover, the study encompassed an examination of 

the deep learning models that were considered for 

evaluation. In the third section, the results of the 

classifiers were given, and the evaluations of the 

classifiers were made. This section also involved the 

examination and comparison of studies from existing 
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literature with the findings obtained in this current 

study. In the fourth section, the advantages and 

disadvantages of this study were mentioned by 

discussion. In the last section, the study was 

summarized and its contributions to the literature 

were mentioned. 

 

2. Material and Method 

 

In this section, the data set, the image processing 

steps, and the deep learning models were mentioned. 

 

2.1. Dataset A 

 

Dataset-A consists of 6,432 CXR images from the 

following categories: Normal, pneumonia, and 

COVID-19 [23]. Table 1 illustrates the image 

allocation in the train and test folders. As shown in 

Table 1, the dataset comprises 1,266 and 317 normal 

images, 3,418 and 855 pneumonia-infected images, 

and 460 and 116 COVID-19 positive images in the 

train and test folders, respectively. 

 
Table 1. Distribution of the unprocessed and unbalanced 

CXR images in Dataset A 

Data Normal Pneumonia COVID-19 Total 

Train 1,266 3,418 460 5,144 

Test 317 855 116 1,288 

Total 1,583 4,273 576 6,432 

 

2.2. Dataset B 

 

The initial dataset is created in partnerships between 

medical professionals and researchers from various 

universities from Qatar, Bangladesh, Malaysia, and 

Pakistan [24]. Dataset-B, our created dataset in this 

study, is composed by randomly selecting 3,500 CXR 

images from the COVID-19 positive and the normal 

CXR image folders. A total of 7,000 images were 

formed and used for training and validation after 

applying several data augmentation techniques like 

rescaling, zooming, rotation, etc. Table 2 and Table 3 

show the breakdown of the fully pre-processed and 

balanced data distributed among the classes for the 

binary and three-class image classifications for 

Dataset-A and Dataset-B in train, test, and validation 

categories. 

 

 

 

 

 

 

Table 2. Distribution of the preprocessed and balanced 

CXR images in Dataset-A 

Data Normal Pneumonia COVID-19 Total 

Train 3,418 3,418 3,418 10,254 

Test 428 428 428 1,284 

Val. 427 427 427 1,281 

Total 4,273 4,273 4,273 12,819 

 

Table 3. Distribution of the preprocessed and balanced 

CXR images in Dataset-B 

Data Normal COVID-19 Total 

Train 2,800 2,800 5,600 

Test 350 350 700 

Val. 350 350 700 

Total 3,500 3,500 7,000 

 

2.3. Random Oversampling 

 

The random oversampling technique offers a naive 

and straightforward approach to harmonizing the 

class allocations of the imbalanced dataset. The 

Random Over Sampler [25] is employed in this study 

to generate new samples of the under-represented 

classes by arbitrarily sampling and replacing the 

existing images. The issue of overfitting is 

appropriately addressed by using data augmentation, 

dropout, batch normalization, and callbacks. Also, the 

data were adequately distributed into training, 

validation, and testing, with the testing data being 

withheld and then utilized to evaluate the 

performance of the models on the never-before-seen 

data. 

 

2.4. Data Augmentation 

 

Data augmentation involves creating additional data 

samples from existing data to boost the extent and 

diversity of the training data. Augmentation may 

include making minimal modifications to data or 

utilizing machine learning models to create extra data 

samples in the underlying space of the initial data to 

augment the dataset and reduce overfitting. Several 

geometric transformations, like translation, flipping, 

rescaling, rotation, and so on, are used on the original 

images to generate numerous variations of each 

image. These rendered images will appear different to 

the classifying algorithms, thereby increasing the 

volume of data and curtailing the over-memorization 

issue that learning algorithms fall short of due to 

imbalance or limited available data. It differs from 

synthetic data generation, in which data is created 

artificially. Several geometric transformations were 

made to these images. These transformations consist 
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of a horizontal flip, the nearest fill mode, a channel 

shift range of 10, a rotation range of 40 degrees, and 

a width shift, height shift, shear, and zoom range 

values of 0.2. Data augmentation was carried out by 

considering geometric transformations. These 

formations cover the meta learning. Meta learning is 

also an effective approach in convolution based 

neural networks [26]. For this reason, geometric 

transformations were employed in this study. Figure 

1 provides random samples of images that were 

created because of using numerous data augmentation 

approaches in the study. 

 

 

Figure 1. A random sample of the augmented images. 

 

In the study, the original data was first augmented and 

then separated as training, validation, and test data. To 

construct effective deep learning models, it is vital 

that the validation error consistently diminishes along 

with the training error. Data augmentation stands as a 

potent technique for accomplishing this objective. By 

generating augmented data, a broader array of 

potential data instances is captured, thereby reducing 

the gap between the training and validation sets, as 

well as any subsequent test sets. In this way, the 

problem of overfitting can be avoided [26]. 

 

2.5. The Proposed CNN Model 

 

After applying the random oversampling and 

necessary data pre-processing to Dataset A, the data 

types were converted from 8 bits unsigned integers to 

32 bits floating point numbers using the assign-type 

python command. This step is crucial because all the 

mathematical operations in the deep learning process 

involve continuous rather than discrete values. Then 

these values were further normalized to the range [0, 

1] by dividing by the highest image pixel value of 255 

to aid with faster computations and reduce exhausting 

unnecessary computer resources. The final step 

before building the proposed model involved splitting 

the pre-processed and normalized images into 

80:10:10 ratios for training, validation, and testing. 

These ratios signify that the model will use 80 % of 

the input images during the training phase, 10 % for 

the validation phase, and the remaining 10 % for the 

testing phase. Figure 2 shows a visualized depiction 

of the proposed architect to aid with the quick 

assimilation. 

 

 

Figure 2. The proposed CNN architecture.  

 

The model was later compiled by an 

RMSprop optimizer with a 0.001 learning rate, sparse 

categorical cross-entropy loss function since the input 

data were not hot encoded, and an accuracy metric. 

The compiled model generated 6,571.651 parameters 

due to the weights and biases, of which only 3,840 are 

not trainable. Furthermore, two callback functions, 

namely early stopping and reduced learning rate, were 

used during the training process to aid with quick 

convergence and mitigate the overfitting of the 

suggested model. In Table 4, the tune parameters of 

the CNN model proposed in the study are given. 
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Table 4. Hyperparameters of the proposed CNN model 

Hyperparameters Value 

Number of 

epoch 

60 

Learning rate 0.001 

Batch size 32 

Loss function 

Sparse categorical cross entropy 

(multi-class), binary cross entropy 

(binary class) 

Optimizer RMSProp 

 

2.6. Hybrid Models 

 

The second sets of architecture proposed in the paper 

is the hybrid model. These hybrid models are an 

example of the late fusion method of deep hybrid 

learning techniques. Late fusion because only at the 

last part of the process a particular classifier is used to 

make predictions. Deep learning methods, like the 

pre-trained models have remarkable feature-

extracting power (VGG16 in this case), which are 

leveraged to perform automatic feature extraction, 

where classical machine learning classifiers are 

employed to make predictions from the generated 

features of Dataset A. Initially, the VGG16 pre-

trained model was loaded without the top fully 

connected layers with an input shape of 150 × 150 × 

3 using the ImageNet weights and making the loaded 

layers non-trainable to allow exclusively feature 

extraction and avoid retraining the model from 

scratch. Then the same images from Dataset A in the 

earlier CNN model were passed through the VGG16 

feature extractor. Two classifiers, XGBoost and 

SVM, were utilized to provide predictions for three-

class image categorization based on the derived 

features from the training and validation sets of data. 

Figure 3 reveals a graphical illustration of the 

proposed model architecture for more comprehension 

of the whole process. Later, the test set of images was 

utilized to evaluate the implementation of the 

classifiers, resulting in more accurate classifications. 

Other performance indicators were applied for further 

analysis, including the confusion matrix, F1-score, 

precision, and recall. 

 

2.6.1. VGG16 

 

This architecture is a prominent CNN model 

presented by [27], which enhances its predecessor, the 

AlexNet model, by substituting the 11 × 11 and 5 × 5 

kernels in the first two convolution layers with several 

3 × 3 ones in succession.  The model is about 528 MB 

in size with a recorded 90.1% top-5 accuracy on 

ImageNet data and about 138.4 million parameters. 

The ImageNet dataset possesses around 14 million 

images from 1,000 categories. VGG16 was trained on 

powerful GPUs over a period of several weeks. 

 

 

Figure 3. The architecture of the hybrid model.  
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2.6.2. XGBoost 

 

Coined after extreme gradient boosting, it is a 

collection of scalable and distributed gradient 

boosting that are prominent for their high efficiency, 

flexibility, and portability, which executes machine 

learning algorithms under the gradient-boosted 

frameworks. XGBoost presents a similar tree-

boosting approach known as GBDT (Gradient-

Boosted Decision Tree) or GBM (Gradient Boosting 

Machine) that efficiently and precisely solves 

classification and regression problems involving 

billions of cases or more [28]. 

 

2.6.3. SVM 

 

SVM is among the most prominent algorithms for 

classification and regression issues along with outlier 

detection in supervised learning circumstances. SVM 

is a machine learning technique that strives to classify 

data points operating a hyperplane in the space of N-

dimensions with N as the number of features. It is a 

memory-efficient method of applying varying kernel 

operations for the decision function to solve issues 

where the number of dimensions surpasses the 

number of samples [29]. 

 

2.7. The Pre-Trained Models 

 

Like the pre-processing steps conducted in the first 

dataset, the images in Dataset B were also reshaped, 

normalized, augmented, and split into an 80:10:10 

ratio for training, validation, and testing. Then 

ResNet50, Xception, and DenseNet201 models were 

loaded with the ImageNet pre-trained weights without 

their respective top layers. The same layers 

comprising global average pooling, dropout with the 

probabilities of 0.2, batch normalization, and dense 

layers with two units using the Softmax activation 

functions were later added to the models to aid with 

the classification. Then we compiled them using the 

Adam optimizer, each with a learning rate of 0.00001 

and a decay of 0.00001/60. Other hyperparameters 

used in the compilation process include categorical 

cross-entropy loss function and accuracy metrics. The 

model's training process involves using epochs of 60, 

a batch size of 128, along with early stopping and 

reduced learning rate callbacks. The models were 

evaluated individually using accuracy, F1-score, 

precision, recall, and confusion matrix. 

 

 

 

 

2.7.1. ResNet50 

 

It is a kind of ANN (Artificial Neural Network) that 

produces networks by piling blocks of residual 

connections, as demonstrated by the 50-layer 

ConvNet featuring 48 convolution layers, a 

maximum, and an average pooling layer [30]. Trained 

on ImageNet data, the 224 × 224 input-sized networks 

can categorize images into a thousand object groups. 

 

2.7.2. Xception 

 

This architecture was created to improve the 

fundamentals of the Inception model, where 1 × 1 

convolution operations were used to compress input 

data and further utilize varying filters on each data's 

depth space. Extreme Inception, short for Xception, 

essentially reverses this mentioned process. 

Conversely, it applies the filters to each depth map 

before performing the exact convolution processes 

across the depth to shrink the input space. This 

technique is known as the depth-wise separable 

convolution operation [31]. 

 

2.7.3. DenseNet201 

 

This network has a 201-layer design in which directly 

linked channels form dense connections. Each layer 

obtains extra inputs from previous ones and sends its 

feature maps to succeeding layers utilizing a 

concatenated strategy. Splitting the 3 × 3 convolution 

operation into a 1 × 1 and a 3 × 3 minimizes the 

quantity of the model parameters since each layer gets 

feature maps from subsequent ones. The growth rate 

denoted by k signifies that the amount of feature maps 

rises by k each moment the dense block is traversed, 

which helps to lower the parameters. The dense 

blocks are joined by a transitional layer that 

significantly minimizes the number of features and 

nets out the most effective ones in each layer [32]. 

With the mentioned models and designed 

models, chest x-ray images were used in the study and 

the classification process was carried out. The flow 

chart of the study is given in Figure 4.  
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Figure 4. Flow chart of the study.  

 

As can be seen in Figure 4, the study consists 

of four stages. In the first stage (Data Collection), 

two different data sets containing CXR images were 

obtained, and the data sets were named as Data Set A 

and Data Set B. In the second stage (Data 

Preprocessing), data augmentation was performed 

on the images in the data sets and the size of the data 

sets was increased. Afterwards, the normalization 

process was performed, and the pixels of the images 

were reduced to the range of [0, 1]. In the third stage 

(Classification), classification was carried out 

according to the data sets. For Data Set A CNN, 

VGG16+XGBoost and VGG16+SVM classifiers 

were employed. On the Data Set B, deep learning 

models ResNet50, Xception and DenseNet201 were 

considered, and the images were classified. In the last 

stage (Model Evaluation), the performances of the 

classifiers were evaluated and for this, accuracy (acc), 

precision (pre), recall (rec) and F1-score (f1s) values 

were calculated. 

 

3. Results and Discussion 

 

3.1. Experimental Results 

 

After training the models in this study with the two 

distinct datasets, we evaluated them using test 

portions of the preserved data to measure their test 

loss and accuracy. The plots of these losses and 

accuracies against the number of training epochs are 

known as learning curves. Figure 5 (a) and (b), and 

Figure 6 (a) and (b) depict the learning curves for our 

suggested ConvNets model, ResNet50, Xception, and 

DenseNet201 deep learning models, respectively. 

Moreover, Table 5 and Table 6 contain the summary 

of overall results of the experimental analysis. 

 

 

Figure 5. Learning curves of losses and accuracies of (a) 

CNN model, (b) ResNet50 model. 

 

 

Figure 6. Learning curves of losses and accuracies of (a) 

Xception model, (b) DenseNet201 model. 

 

Table 5. Results of the models on Dataset A 

Models Pre Rec F1s Acc 

CNN 98.92% 98.90% 98.90% 98.91% 

VGG16 + 

XGBoost 
96.00% 96.00% 96.00% 98.44% 

VGG16 + 

SVM 
96.00% 96.00% 96.00% 95.60% 
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Table 6. Results of the models on Dataset B 

Models Pre Rec F1s Acc 

ResNet50 98.86% 98.86% 98.86% 98.90% 

Xception 99.14% 99.14% 99.14% 99.14% 

DenseNet201 99.00% 99.00% 99.00% 99.00% 

 

3.2. Evaluation Metrics 

 

The metrics employed for evaluating the obtained 

results include accuracy, precision, recall, and F1-

score. The accuracy of an artificial intelligence model 

is represented as the proportion of accurate 

predictions to all other classifications generated by 

the model using the input data. Precision is the ratio 

of the correct predictions to all the positive 

predictions in its dataset. The recall is expressed as 

the ratio of the correct predictions to the complete 

number of accurate entities in the given dataset. 

Finally, F1-score is the weighted harmonic mean of 

the recall and precision, ranging between zero (0) and 

one (1). When the value of the f-measure is increased, 

the model’s classification performance also increases 

[33]. The formulas of the evaluation metrics used in 

the study are given between Equation 1 and Equation 

4. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) (4) 

 

The equations portrayal of TP expression 

signifies True Positive values, whereas the TN 

expression represents True Negative values. FN 

corresponds to False Negative values, while FP 

corresponds to False Positive values. 

 

3.3. Confusion Matrix 

 

A confusion matrix is a table-like plot that is widely 

employed to describe the performance of 

classification models on a collection of known-true 

test data. It offers far more information than a 

straightforward accuracy score. For the multi-class 

case, it illustrates how inaccurate a prediction maybe 

when the output classes are ordinal.  When dealing 

with imbalanced data, where there is a considerable 

gap between the different categories of groups, 

accuracy alone is insufficient. Figure 7 (a), (b), and 

(c) presents the confusion matrices for the ConvNet 

and hybrid models obtained using Dataset A. 

 

 

 

 

Figure 7. The confusion matrices of (a) CNN model, (b) 

VGG16+XGBoost model and (c) VGG16+SVM model on 

Dataset A. 
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Figure 8 (a), (b), and (c) shows the confusion 

matrices for the pre-trained models acquired from 

Dataset B. Moreover, Table 7 compares the 

performances of our proposed models with recent 

state-of-the-art studies from the literature. 

 

 

 

 

Figure 8. The confusion matrices of (a) ResNet50 model, 

(b) Xception model and (c) DenseNet201 model on 

Dataset B. 

 

Table 7. Performance comparisons with some state-of-the-

art studies from the literature 

Reference Top Accuracy 

[34] 95.00% 

[35] 96.00% 

[36] 96.56% 

[37] 87.00% 

[38] 96.68% 

[39] 97.40% 

[40] 96.33% 

[41] 97.00% 

[42] 97.00% 

[43] 98.05% 

[44] 99.69% 

[45] 96.73% 

[46] 95.00% 

[47] 97.00% 

[48] 98.23% 

This study 99.10% 

 

The results of the experimental analysis 

conducted in this paper begins with the learning 

curves shown by Figure 5 and Figure 6. These plots 

are very significant as they indicate the performance 

of the models in terms of training and validation 

losses and accuracies. Typically, they are used to 

detect overfitting and underfitting in models. Based 

on these curves, the models perform well since the 

gap between average losses and accuracies is 

minimal. The variation in the number of epochs 

shown by various plots is another factor worthy of 

consideration concerning these graphs. These 

differences are due to the early stopping and reduced 

learning rate callback methods used during model 

training. These callbacks continuously monitor the 

models convergence to determine the optimal 

learning rates. Consequently, training was terminated 

early with epochs between 17 and 30, demonstrating 

the quality of the models. These factors also cause 

large models such as the ResNet50 and DensNet201 

to have non-smooth learning curves while producing 

excellent results. 

After obtaining the plots of the individual 

deep learning models learning curves, the average 

precision, recall, F1-score, and accuracy metrics from 

the test data was calculated. Table 5 and Table 6 show 

the summary of the experimental results obtained 

from the proposed models conducted on the two 

datasets for the three-class and binary-class image 

classification. The proposed CNN model achieved an 

estimated accuracy of 98.91%. It also attained an 

average precision value of 98.92%, 98.90% recall, 
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and 98.90% F1-score for COVID-19, pneumonia, and 

normal images. The VGG16 + XGBoost and VGG16 

+ SVM hybrid models obtained 98.44% and 95.60% 

accuracies, respectively. However, they recorded 

similar average precision, recall, and F1-score value 

of 96.00%. For the fine-tuned pre-trained models, the 

Xception model performed the best, reaching a test 

accuracy of 99.14%. The precision, recall, and F1-

score values all showed consistent results at 99.14%. 

Following that, the DensNet201 model achieved an 

accuracy of 99.00%, with precision, F1-score, and 

recall also at 99.00%. Lastly, the pre-trained 

ResNet50 model achieved an accuracy of 98.90%, 

with identical values for precision, recall and F1-

score, all at 98.86%. 

The adoption of several essential image pre-

processing techniques, such as reshaping, resizing, 

and cropping, as well as the class resampling 

techniques described previously, are among the main 

contributing factors for these vast models to achieve 

such performance with minimal computer resource 

consumption. In addition, the inclusion of callback 

functions has significantly aided in the prevention of 

overfitting and early convergence, as the reduced 

learning rate class, for instance, monitors the loss and 

decreases the learning rate when there is no 

discernible improvement. Moreover, these results are 

very impressive in comparison to many recent 

published state-of-the-arts work. Performance 

comparison presented by Table 7 is the evidence of 

this assertion since it was created by picking the best 

accuracies of some work conducted in the literature to 

the best of our knowledge and compared with the ones 

obtained by our proposed models. The comparison is 

organized into three sections to represent 

performance of the studies. The first section 

comprises [34] – [38] studies using the conventional 

CNN models to detect lungs diseases. The second 

category of studies [39] – [43] are the ones performed 

by fine-tuning the pre-trained models. Lastly, these 

studies [44] – [48] were based on the various hybrid 

models for COVID-19 and pneumonia detection. For 

the ConvNet and pre-trained models, our proposed 

models have the best accuracies compared to these 

novel studies to the best of our knowledge. Also, our 

proposed hybrid models are the second best in terms 

of accuracy. These accomplishments are only feasible 

due to the time and effort devoted to meticulously 

scrutinizing each experimental stage, including data 

collection, in-depth literature review, 

conceptualization, model training, experimental 

result gathering, etc. The adoption of this strategy 

stems from a desire to build upon recent work to 

create robust tools that will benefit the scientific 

community. 

Several further studies have leveraged the 

might of deep learning algorithms to diagnose the 

novel COVID-19 disease using other techniques with 

high performances. For instance, to aid with fast and 

inexpensive methods in combating the recent 

pandemic, researchers developed a software that 

integrates the web design approach to create an 

interactive GUI (Graphical User Interface (GUI) [49]. 

Their software, CoviExpert, involves making 

combined independent predictions by training on 

1,584 CXR images to detect COVID-19 cases with 

high classification accuracy. In another study, 

researchers aimed to minimize the performance 

reduction of models posed by obtaining datasets from 

various sources in image classification problems [50]. 

To achieve that, they offered a self-supervised block 

for feature standardization and optimization on three 

pre-trained models, VGG, Xception, and DenseNet, 

as a baseline to extract features from four CXR lung 

disease classification datasets and observed improved 

classification outcomes. Lastly, researchers in [51] 

suggested a hybrid multimodal framework that fused 

two separate models employing the weighted sum-

rule fusion approach to segment and classify CXR 

images and collected cough samples. After using the 

necessary signal processing and Mel frequency 

cepstral coefficient to pre-process the cough samples, 

the fused model attained high classification 

accuracies for the CXR images and the cough 

samples. These alter-native methods to COVID-19 

detection are a solid indication that one has no limit 

in employing deep learning approaches to develop 

robust models that can quickly and efficiently 

diagnose diseases in biomedical data with less cost 

and human errors. 

 

4. Conclusion  

 

The deep learning-based methods provide an efficient 

way of diagnosing chest-related diseases, particularly 

the recent COVID-19 virus. Three categories of 

models namely, conventional CNN, hybrid, and pre-

trained models proposed in this study to classify CXR 

images into normal, pneumonia or COVID-19 and 

normal or COVID-19 classes. The suggested CNN 

and hybrid models achieved test accuracies of 

98.91%, 98.44% and 95.60%, respectively. Also, the 

fine-tuned ResNet50, Xception, and DenseNet201 
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models achieved test accuracies of 98.90%, 99.14%, 

and 99.00%, respectively. These outcomes showed 

the significance of the study and, without a doubt, 

maked us confident that the models can indeed be 

deployed in real-life scenarios to aid radiologist with 

robust tools for early disease detection and diagnosis.   

For future research, we aim to use alternative 

resampling methods, such as combinations of under 

sampling and oversampling or synthetic minority 

oversampling techniques called SMOTE to address 

the class imbalance. We also wish to use additional 

hybrid models, such as merging CNN with ELM 

(Extreme Learning Machine) or convolution auto-

encoders with deep learning classification using the 

encoded features to classify the images. Research in 

these domains will allow exploring other boundaries 

in image classification to create robust models for 

aiding medical experts in quick diagnoses and 

treatment of ailments. 
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