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ABSTRACT

In the present research paper, we look into quasi bi-slant conformal ξ⊥-submersions from
Kenmotsu manifolds onto Riemannian manifolds as a generalisation of quasi hemi-slant
conformal submersions. We investigate the geometry of distributions’s leaves in order to
explain integrability conditions for distributions. Furthermore, we study of certain decomposition
theorems, additionaly provide non-trivial examples of quasi bi-slant conformal ξ⊥-submersions
from Kenmotsu manifolds. We also look at the ϕ-pluriharmonicity of quasi bi-slant conformal
ξ⊥-submersions.
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1. Introduction

Immersions and submersions have numerous important applications in differential geometry. The
characteristics of slant submersions have become a fascinating topic in differential geometry, as well as in
complex and contact geometry. The study of Riemannian submersions between Riemannian manifold were
initiated by O’ Neill [26] and Gray [12], independently. Later on, the Riemannian submersions between almost
Hermitian manifolds with name as almost Hermitian submersions were studied by Watson [40] in 1976. The
Riemannian submersions consists many applications in mathematics and in physics, specially in Yang-Mills
theory ([7], [41]), Kaluza-Klein theory ([18], [22]). The Riemannian submersions are very interesting tolls in
geometry to study Riemannian manifolds having differentiable structures. A generalization of holomorphic
submersions and anti-invariant submersions, Sahin [34] introduced the semi-invariant submersions from
almost Hermitian manifolds onto Riemannian manifolds in 2013. Subsequently, in 2016, Tatsan, Sahin,
and Yanan started studying hemi-slant Riemannian submersions from almost Hermitian manifolds onto
Riemannian manifolds and came up with a few decomposition theorems for them [39]. R Prasad et al. examined
quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds [28] and from
Kenmotsu manifolds [29], which is a step ahead. Later on, many authors investigated different kinds of
Riemannian submersions like anti-invariant submersions ([4], [33]), slant submersions [10], [35], semi-slant
submersions ([23], [24], [16], [27]) and hemi-slant submersions ([38], [1]) from almost Hermitian manifolds as
well as from almost contact metric manifolds.

The notion of Riemannian submersions from almost contact manifold was introduced by Chinea in [8]. He
also studied the fibre space, base space and total space with differential geometric point of view. To consider
the generalization of Riemannian submersions, Gundmundsson and Wood [14, 15] presented horizontally
conformal submersion, which they defined as: Let (M1, g1) and (M2, g2) be two Riemannian manifolds of
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dimension m1 and m2, respectively. A smooth map f⃗ : (M1, g1) → (M2, g2) is called a horizontally conformal
submersion, if there is a positive function λ such that

λ2g1(X1, X2) = g2(f⃗∗X1, f⃗∗X2), (1.1)

for all X1, X2 ∈ Γ(kerf⃗∗)
⊥. Thus Riemannian submersion is a particular horizontally conformal submersion

with λ = 1. Later on, Fuglede [13] and Ishihara [20] separately studied horizontally conformal submersions.
Akyol and Sahin studied conformal slant submersions [3], conformal anti-invariant submersions [36],
conformal semi-slant submersions [2], conformal semi-invariant submersions [5]. Further, R. Prasad et. al.
also studied conformal anti-invariant submersions [30]. To explore the geometry of hemi-slant conformal
submersions from almost product Riemannian manifold. Recently, Shuaib and Fatima [37] studied conformal
hemi-slant Riemannian submersions from almost product manifolds onto Riemannian manifolds.

In this paper, we study quasi bi-slant conformal ξ⊥-submersions from Kenmotsu manifold onto a
Riemannian manifold with taking ξ as a horizontal vector field. This paper is divided into six sections. Section
2 contains definitions of almost contact metric manifolds and, in particular, Kenmotsu manifolds. In section 3,
we investigates some fundamental results for quasi bi-slant conformal submersion from Kenmotsu manifolds
that are required for our main sections. The results of integrability and totally geodesicness of distributions
are presented in Section 4. In section 5, we obtain condition under which a Kenmotsu manifold become
twisted product manifold with quasi bi-slant conformal ξ⊥-submersions. In the last section, we discuss
ϕ-pluriharmonicity of quasi bi-slant conformal ξ⊥-submersions.

Note: We will use some abbreviations throughout the paper as follows:
Horizontally conformal submersion- HCS, Riemannian Manifold- RM, Almost contact metric manifold-ACM
manifold, Quasi bi-slant conformal ξ⊥-submersion- QBSC ξ⊥-submersion, gradient- G.

2. Preliminaries

Let M be a (2n+ 1)-dimensional almost contact manifold with almost contact structures (ϕ, ξ, η), where a
(1, 1) tensor field ϕ, a vector field ξ and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (2.1)

where I is the identity tensor. The almost contact structure is said to be normal if N + dη ⊗ ξ = 0, where N is
the Nijenhuis tensor of ϕ. Suppose that a Riemannian metric tensor g is given in M and satisfies the condition

g(ϕÛ, ϕV̂ ) = g(Û , V̂ )− η(Û)η(V̂ ), η(Û) = g(Û , ξ). (2.2)

Then (ϕ, ξ, η, g)-structure is called an almost contact metric structure. Define a tensor field Φ of type (0, 2) by
Φ(X̂, Ŷ ) = g(ϕX̂, Ŷ ). If dη = Φ, then an almost contact metric structure is said to be normal contact metric
structure. Let Φ be the fundamental 2-form on M , i.e, Φ(Û , V̂ ) = g(Û , ϕV̂ ). If Φ = dη, M is said to be a contact
manifold. If ξ is a Killing vector field with respect to g, the contact metric structure is called a K-contact
structure.

S.Tanno [32], classified connected almost contact metric manifolds whose automorphism groups posses the
maximum dimension. For such a manifold, the sectional curvature of a plane section containing ξ is a constant
c. One of the classes of this classification consists of warped product R×f Cn with c < 0. The tensorial equation
of these manifolds are:

(∇Ûϕ)V̂ = g(ϕÛ, V̂ )ξ − η(V̂ )ϕÛ. (2.3)

Kenmotsu [21], explored some fundamental differential geometric properties of these spaces and therefore they
are named as Kenmotsu manifolds. It can also be seen that on a Kenmotsu manifold M

∇Ûξ = −ϕ2Û = Û − η(Û)ξ. (2.4)

The covariant derivative of ϕ is defined by

(∇Û1
ϕ)V̂1 = ∇Û1

ϕV̂1 − ϕ∇Û1
V̂1, (2.5)

for any vector fields Û1, V̂1 ∈ Γ(TM). Now, we provide a definition for conformal submersion and discuss some
useful results that help us to achieve our main results.
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Definition 2.1. [6] Let f⃗ be a horizontally conformal submersion (HCS) from an ACM manifold (M1, ϕ, ξ, η, g1)

onto a Riemannian manifold (RM) (M2, g2). Then f⃗ is called a horizontally conformal submersion, if there is a
positive function λ such that

g1(Û1, V̂1) =
1

λ2
g2(f⃗∗Û1, f⃗∗V̂1), (2.6)

for any Û1, V̂1 ∈ Γ(kerf⃗∗)
⊥. It is obvious that every HCS is a particularly horizontally conformal submersion

with λ = 1.

Let f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) be a HCS. A vector field X⃗ on M1 is called a basic vector field if X⃗ ∈
Γ(ker f⃗∗)

⊥ and f⃗ -related with a vector field X⃗ on M2 i.e f⃗∗(X⃗(q)) = X⃗f⃗(q) for q ∈ M1.
The formulas provide the two (1, 2) tensor fields T and A by O’Neill are

AE1F1 = H∇HE1VF1 + V∇HE1HF1, (2.7)

TE1F1 = H∇VE1VF1 + V∇VE1HF1, (2.8)

for any E1, F1 ∈ Γ(TM1) and ∇ is Levi-Civita connection of g1. Note that a HCS f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2)
has totally geodesic fibers if and only if T vanishes identically. From equations (2.4) and (2.8), we can deduce

∇Û1
V̂1 = TÛ1

V̂1 + V∇Û1
V̂1 (2.9)

∇Û1
X̂1 = TÛ1

X̂1 +H∇Û1
X̂1 (2.10)

∇X̂1
Û1 = AX̂1

Û1 + V1∇X̂1
Û1 (2.11)

∇X̂1
Ŷ1 = H∇X̂1

Ŷ1 +AX̂1
Ŷ1 (2.12)

for any vector fields Û1, V̂1 ∈ Γ(kerf⃗∗) and X̂1, Ŷ1 ∈ Γ(kerf⃗∗)
⊥ [11].

It is easily seen that T and A are skew-symmetric, that is

g(AX̂E1, F1) = −g(E1,AX̂F1), g(TV̂ E1, F1) = −g(E1, TV̂ F1), (2.13)

for any vector fields E1, F1 ∈ Γ(TpM1).

Definition 2.2. A horizontally conformally submersion f⃗ : M1 → M2 is called horizontally homothetic if the
gradient (G) of its dilation λ is vertical, i.e.,

H(Gλ) = 0, (2.14)

at p ∈ TM1, where H is the complement orthogonal distribution to ν = kerf⃗∗ in Γ(TpM).

The second fundamental form of smooth map f⃗ is given by the formula

(∇f⃗∗)(Û1, V̂1) = ∇f⃗

Û1
f⃗∗V̂1 − f⃗∗∇Û1

V̂1, (2.15)

and the map be totally geodesic if (∇f⃗∗)(Û1, V̂1) = 0 for all Û1, V̂1 ∈ Γ(TpM) where ∇ and ∇f⃗ are Levi-Civita
and pullback connections.

Lemma 2.1. Let f⃗ : M1 → M2 be a horizontal conformal submersion. Then, we have

(i) (∇f⃗∗)(X̂1, Ŷ1) = X̂1(lnλ)f⃗∗(Ŷ1) + Ŷ1(lnλ)f⃗∗(X̂1)− g1(X̂1, Ŷ1)f⃗∗(grad lnλ),

(ii) (∇f⃗∗)(Û1, V̂1) = −f⃗∗(TÛ1
V̂1),

(iii) (∇f⃗∗)(X̂1, Û1) = −f⃗∗(∇X̂1
Û1) = −f⃗∗(AX̂1

Û1)

for any horizontal vector fields X̂1, Ŷ1 and vertical vector fields Û1, V̂1 [6].
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3. Quasi bi-slant conformal ξ⊥-submersions

Definition 3.1. Let (M1, ϕ, ξ, η, g1) be a ACM manifold and (M2, g2) a Riemannian manifold. A HCS f⃗ : M1 →
M2 where ξ ∈ Γ(kerf∗)

⊥ is called quasi bi-slant conformal ξ⊥-submersion (QBSC ξ⊥-submersion) if there exists
three mutually orthogonal distributions D, Dθ1 and Dθ2 such that

(i) kerf⃗∗ = D⊕Dθ1 ⊕Dθ2 ,

(ii) D is invariant. i.e., ϕD = D,

(iii) ϕDθ1 ⊥ Dθ2 and ϕDθ2 ⊥ Dθ1 ,

(iv) for any non-zero vector field V̂1 ∈ (Dθ1)p, p ∈ M1 the angle θ1 between (Dθ1)p and ϕV̂1 is constant and
independent of the choice of the point p and V̂1 ∈ (Dθ1)p,

(v) for any non-zero vector field V̂1 ∈ (Dθ2)q, q ∈ M1 the angle θ2 between (Dθ2)q and ϕV̂1 is constant and
independent of the choice of the point q and V̂1 ∈ (Dθ2)q,

where θ1 and θ2 are called the slant angles of submersion.

If we denote the dimensions of D, Dθ1 and Dθ2 by m1, m2 and m3 respectively, then we have the following:

(i) If m1 ̸= 0, m2 = 0 and m3 = 0, then f⃗ is an invariant submersion.

(ii) If m1 ̸= 0, m2 ̸= 0, 0 < θ1 < π
2 and m3 = 0, then f⃗ is a proper semi-slant submersion.

(iii) If m1 = 0, m2 = 0 and m3 ̸= 0, 0 < π
2 , then f⃗ is a slant submersion with slant angle θ2.

(iv) If m1 = 0,m2 ̸= 0, 0 < θ1 < π
2 and m3 ̸= 0, θ2 = π

2 , then f⃗ proper hemi-slant submersion.

(v) If m1 = 0,m2 ̸= 0, 0 < θ1 < π
2 and m3 ̸= 0, 0 <, θ2 < π

2 , then f⃗ is proper bi-slant submersion with slant
angles θ1 and θ2.

(vi) If m1 ̸= 0,m2 ̸= 0, 0 < θ1 < π
2 and m3 ̸= 0, 0 < θ2 < π

2 , then f⃗ is proper quasi bi-slant submersion with slant
angles θ1 and θ2.

Let (xi; yi; z) be cartesian coordinates on R2n+1 for i = 1, 2, 3, ..., n. An almost contact metric structure (ϕ, ξ, η, g1)
is defined as follows:

ϕ

(
a1

∂

∂x1
+ a2

∂

∂x2
+ ...+ an

∂

∂xn
+ b1

∂

∂y1
+ b2

∂

∂y2
+ ...+ bn

∂

∂yn
+ c

∂

∂z

)
=

(
−b1

∂

∂x1
+ a1

∂

∂y1
− b2

∂

∂x2
+ a2

∂

∂y2
− ...+ bn

∂

∂xn
+ an

∂

∂yn

)
,

where ξ = ∂
∂z and ai, bi, c are C∞- real valued functions in R2n+1. Let η = dz, g1 is Euclidean metric and(

∂

∂x1
,

∂

∂x2
, ...,

∂

∂xn
,

∂

∂y1
,

∂

∂y2
, ...,

∂

∂yn
,
∂

∂z

)
is orthonormal base field of vectors on R2n+1. We can easily show that (ϕ, ξ, η, g1) is Kenmotsu structure on
R2n+1. Hence, it is Kenmotsu manifold.

Example 3.1. Define a map f⃗ : R13 → R7 by

f⃗(x1, ..., x6, y1, ..., y6, z) ↣ π

(
x2 −

√
3x3

2
, y2,

x5 − x4√
2

, y4, x6, y6, z

)
which is a conformal quasi bi-slant submersion with dilation λ = π such that

X1 =
∂

∂x1
, X2 =

∂

∂y1
, X3 =

1

2

(√
3

∂

∂x2
+

∂

∂x3

)
, X4 =

∂

∂y3
,
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X5 =
1√
2

(
∂

∂x5
+

∂

∂x4

)
, X6 =

∂

∂y5

and
kerf⃗∗ = D⊕Dθ1 ⊕Dθ2 ,

where the invariant distribution D is spanned by the vectors {X1, X2} and the slant distributions Dθ1 and
Dθ2 are spanned by the vector fields {X3, X4} and {X5, X6} with slant angle θ1 = π

3 and θ2 = π
4 , respectively.

Furthermore,

(kerf⃗∗)
⊥ =

〈
Z1 =

1

2

(
∂

∂x2
−
√
3

∂

∂x3

)
, Z2 =

∂

∂y2
, Z3 =

1√
2

(
∂

∂x5
− ∂

∂x4

)
, Z4 =

∂

∂y4
,

〉
〈
Z5 =

∂

∂x6
, Z6 =

∂

∂y6
, Z7 =

∂

∂z
= ξ

〉
where the reeb vector field ξ is horizontal.

Example 3.2. Define a map f⃗ : R15 → R7 by

f⃗(x1, ..., x6, x7, y1, ..., y6, y7, z) ↣ (x1, x3 cosα− y4 sinα, y3, x4, x5 sinβ − y6 cosβ, y7, z)

which is a conformal quasi bi-slant submersion with dilation λ = 1 such that

X1 =
∂

∂y1
, X2 =

∂

∂x2
, X3 =

∂

∂y2
, X4 =

∂

∂x3
sinα+

∂

∂y4
cosα,

X5 =
∂

∂x5
cosβ +

∂

∂y6
sinβ,X6 =

∂

∂y5
,

X7 =
∂

∂x6
, X8 =

∂

∂x7
.

More precisely,
D =< X1, X2, X6, X8 >, Dθ1 =< X5, X7 >, Dθ2 =< X3, X4 >,

such that kerf⃗∗ = D⊕Dθ1 ⊕Dθ2 , where the distribution Dθ1 and Dθ2 are slant with slant angles β and α,
respectively. Moreover,

(kerf⃗∗)
⊥ =

〈
Z1 =

∂

∂x1
, Z2 =

∂

∂x3
cosα− ∂

∂y4
sinα,Z3 =

∂

∂y3
, Z4 =

∂

∂x4
, Z5 =

∂

∂x5
sinβ − ∂

∂y6
cosβ,

〉
〈
Z6 =

∂

∂y7
Z7 =

∂

∂z
= ξ

〉
where the reeb vector field ξ is horizontal.

Let f⃗ be a QBSC ξ⊥-submersion from an ACM manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2). Then, for any
U ∈ (kerf⃗∗), we have

Û = AÛ +BÛ + CÛ (3.1)

where A,B and C are the projections morphism onto D,Dθ1 , and Dθ2 . Now, for any Û ∈ (kerf⃗∗), we have

ϕÛ = δÛ + ζÛ (3.2)

where δÛ ∈ Γ(kerf⃗∗) and ζÛ ∈ Γ(kerf⃗∗)
⊥. From equations (3.1) and (3.2), we have

ϕÛ =ϕ(AÛ) + ϕ(BÛ) + ϕ(CÛ)

=δ(AÛ) + ζ(AÛ) + δ(BÛ) + ζ(BÛ) + δ(CÛ) + ζ(CÛ).

Since ϕD = D and ζ(AÛ) = 0, we have

ϕÛ = δ(AÛ) + δ(BÛ) + ζ(BÛ) + δ(CÛ) + ζ(CÛ).
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Hence we have the decomposition as :

ϕ(kerf⃗∗) = δD⊕ δDθ1 ⊕ δDθ2 ⊕ ζDθ1 ⊕ ζDθ2 . (3.3)

From equations (3.3), we have the following decomposition

(kerf⃗∗)
⊥ = ζDθ1 ⊕ ζDθ2 ⊕ µ, (3.4)

where µ is the orthogonal complement to ζDθ1 ⊕ ζDθ2 in (kerf⃗∗)
⊥ such that µ = (ϕµ)⊕ < ξ > and µ is invariant

with respect to ϕ. Now, for any X̂ ∈ Γ(kerf⃗∗)
⊥, we have

ϕX̂ = PX̂ +QX̂ (3.5)

where PX̂ ∈ Γ(kerf⃗∗) and QX̂ ∈ Γ(kerf⃗∗)
⊥.

Lemma 3.1. Let (M1, ϕ, ξ, η, g1) be an ACM manifold and (M2, g2) be a RM. If f⃗ : M1 → M2 is a QBSC ξ⊥-submersion,
then we have

−Û = δ2Û + PζÛ , ζδÛ +QζÛ = 0,

−X̂ + η(X̂)ξ = ζPX̂ +Q2X̂, δPX̂ + PQX̂ = 0,

for Û ∈ Γ(kerf⃗∗) and X̂ ∈ Γ(kerf⃗∗)
⊥.

Proof. By using equations (2.1), (3.2) and (3.5), we get the desired results.

Since f⃗ : M1 → M2 is a QBSC ξ⊥-submersion, then let’s give some useful results that will use all along the
paper.

Lemma 3.2. Let f⃗ be a QBSC ξ⊥-submersion from an ACM manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2), then we
have

(i) δ2Û = − cos2θ1 U ,

(ii) g1(δÛ , δV̂ ) = cos2 θ1 g1(Û , V̂ ),

(iii) g1(ζÛ , ζV̂ ) = sin2 θ1 g1(Û , V̂ ),

for any vector fields Û , V̂ ∈ Γ(Dθ1).

Lemma 3.3. Let f⃗ be a QBSC ξ⊥-submersion from an ACM manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2), then we
have

(i) δ2Ẑ = − cos2θ2 Ẑ,

(ii) g1(δẐ, δŴ ) = cos2 θ2 g1(Ẑ, Ŵ ),

(iii) g1(ζẐ, ζŴ ) = sin2 θ2 g1(Ẑ, Ŵ ),

for any vector fields Ẑ, Ŵ ∈ Γ(Dθ2).

Proof. The proof of above Lemmas is similar to the proof of the Theorem (2.2) of [9].

Let (M2, g2) is a Riemannian manifold and that (M1, ϕ, ξ, η, g1) is a Kenmotsu manifold. We now look at how
the tensor fields T and A of a QBSC ξ⊥-submersion f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) are affected by the Kenmotsu
structure on M1.

Lemma 3.4. Let f⃗ be a QBSC ξ⊥-submersion from an Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2), then we
have

AX̂PŶ +H∇X̂QŶ = QH∇X̂ Ŷ + ζAX̂ Ŷ + g1(QX̂, Ŷ )ξ − η(Ŷ )QX̂ (3.6)

V∇X̂PŶ +AX̂QŶ = PH∇X̂ Ŷ + δAX̂ Ŷ − η(Ŷ )PX̂ (3.7)

V∇X̂δV̂ +AX̂ζV̂ = PAX̂ V̂ + δV∇X̂ V̂ (3.8)
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AX̂δV̂ +H∇X̂ζV̂ = QAX̂ V̂ + ζV∇X̂ V̂ + g1(PX̂, V̂ )ξ (3.9)

V∇V̂ PX̂ + TV̂ QX̂ = δTV̂ X̂ + PH∇V̂ X̂ − η(X̂)δV̂ (3.10)

TV̂ PX̂ +H∇V̂ QX̂ = ζTV̂ X̂ +QH∇V̂ X̂ + g1(ζV̂ , X̂)ξ − η(X̂)ζV̂ (3.11)

V∇ÛδV̂ + TÛζV̂ = PTÛ V̂ + δV∇Û V̂ (3.12)

TÛδV̂ +H∇ÛζV̂ + η(V̂ )ζÛ = QTÛ V̂ + ζV∇Û V̂ + g1(δÛ , V̂ )ξ, (3.13)

for any vector fields Û , V̂ ∈ Γ(ker f⃗∗) and X̂, Ŷ ∈ Γ(ker f⃗∗)
⊥.

Proof. By direct calculation by using equations (3.5), (2.12) and (2.3), (2.5), we can easily obtains relations given
by (3.6) and (3.7). In a similar way, from equations (3.2), (3.5), (2.9)-(2.12) and (2.3), (2.5), we obtains all parts of
the result.

Now, we discuss some basic results which are useful to explore the geometry of QBSC ξ⊥-submersion
f⃗ : M1 → M2. For this, define the following :

(∇Ûδ)V̂ = V∇ÛδV̂ − δV∇Û V̂ (3.14)

(∇Ûζ)V̂ = H∇ÛζV̂ − ζV∇Û V̂ (3.15)

(∇X̂P )Ŷ = V∇X̂PŶ − PH∇X̂ Ŷ (3.16)

(∇X̂Q)Ŷ = H∇X̂QŶ −QH∇X̂ Ŷ , (3.17)

for any vector fields Û , V̂ ∈ Γ(ker f⃗∗) and X̂, Ŷ ∈ Γ(ker f⃗∗)
⊥.

Lemma 3.5. Let (M1, ϕ, ξ, η, g1) be Kenmotsu manifold and (M2, g2) be a RM. If f⃗ : M1 → M2 is a QBSC ξ⊥-
submersion, then we have

(∇Ûδ)V̂ = PTÛ V̂ − TÛζV̂

(∇Ûζ)V̂ = QTÛ V̂ − TÛδV̂ + g1(δÛ , V̂ )ξ

(∇X̂P )Ŷ = δAX̂ Ŷ −AX̂QŶ − η(Ŷ P X̂)

(∇X̂Q)Ŷ = ζAX̂ Ŷ −AX̂PŶ + g1(QX̂, Ŷ )ξ − η(Ŷ )QX̂

for all vector fields Û , V̂ ∈ Γ(kerf⃗∗) and X̂, Ŷ ∈ Γ(kerf⃗∗)
⊥.

Proof. By using equations (2.5), (2.9)- (2.12) and equations (3.14)-(3.17), we get the proof of the lemma.

If the tenors δ and ζ are parallel with respect to the connection ∇ of M1 then, we have

PTÛ V̂ = TÛζV̂ , QTÛ V̂ = TÛδV̂ − g1(δÛ , V̂ )ξ

for any vector fields Û , V̂ ∈ Γ(TM1).

4. Integrability and totally geodesicness of distributions

Since, f⃗ : M1 → M2 is a QBSC ξ⊥-submersion, where (M1, ϕ, ξ, η, g1) representing a Kenmotsu manifold and
(M2, g2) denoting a Riemannian manifold. The existence of three mutually orthogonal distributions, including
an invariant distribution D, a pair of slant distributions Dθ1 and Dθ2 , is guaranteed by the definition of
QBSC ξ⊥-submersion. We begin the subject of distributions integrability by determining the integrability of
the slant distributions as follows:
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Theorem 4.1. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2). Then
slant distribution Dθ1 is integrable if and only if

1

λ2
{g2(∇f⃗

Û1
f⃗∗ζV̂1 +∇f⃗

V̂1
f⃗∗ζÛ1, f⃗∗ζCẐ)}

=
1

λ2
{g2((∇f⃗∗)(Û1, ζV̂1) + (∇f⃗∗)(V̂1, ζÛ1), f⃗∗ζCẐ)}

− g1(TV̂1
ζδÛ1 − TÛ1

ζδV̂1, Ẑ)− g1(TÛ1
ζV̂1 − TV̂1

ζÛ1, ϕAẐ + δCẐ),

(4.1)

for any Û1, V̂1 ∈ Γ(Dθ1) and Ẑ ∈ Γ(D⊕Dθ2).

Proof. For all Û1, V̂1 ∈ Γ(Dθ1) and Ẑ ∈ Γ(D⊕Dθ2) by using equations (2.1), (2.2), (2.5), (2.14) and (3.2), we get

g1([Û1, V̂1], Ẑ) = g1(∇Û1
δV̂1, ϕẐ) + g1(∇Û1

ζV̂1, ϕẐ)− g1(∇V̂1
δÛ1, ϕẐ)− g1(∇V̂1

ζÛ1, ϕẐ).

By using equations (2.1), (2.2), (2.5), and (3.2), we have

g1([Û1, V̂1], Ẑ) = −g1(∇Û1
δ2V̂1, Ẑ)− g1(∇Û1

ζδV̂1, Ẑ) + g1(∇V̂1
δ2Û1, Ẑ)

+ g1(∇V̂1
ζδÛ1, Ẑ) + g1(∇Û1

ζV̂1, ϕAẐ + δCẐ + ζCẐ)

− g1(∇V̂1
ζÛ1, ϕAẐ + δCẐ + ζCẐ).

Taking account the fact of Lemma 3.2 with equation (2.10), we get

g1([Û1, V̂1], Ẑ) = cos2θ1g1([Û1, V̂1], Ẑ) + g1(TV̂1
ζδÛ1 − TÛ1

ζδV̂1, Ẑ)

+ g1(TÛ1
ζV̂1 − TV̂1

ζÛ1, ϕAẐ + δCẐ)

+ g1(H∇Û1
ζV̂1 −H∇V̂1

ζÛ1, ζCẐ).

By using equation (2.6), formula (2.15) with Lemma 2.1, we finally get

sin2θ1g1([Û1, V̂1], Ẑ) =
1

λ2
{g2(∇f⃗

Û1
f⃗∗ζV̂1 −∇f⃗

V̂1
f⃗∗ζÛ1, f⃗∗ζCẐ)}

+
1

λ2
{−g2((∇f⃗∗)(Û1, ζV̂1), f⃗∗ζCẐ) + g2((∇f⃗∗)(V̂1, ζÛ1), f⃗∗ζCẐ)}

+ g1(TÛ1
ζV̂1 − TV̂1

ζÛ1, δAẐ + δCẐ) + g1(TV̂1
ζδÛ1 − TÛ1

ζδV̂1, Ẑ).

In a similar way, we can examine the condition of integrability for slant distribution Dθ2 as follows:

Theorem 4.2. Let f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) be a QBSC ξ⊥-submersion, where (M1, ϕ, ξ, η, g1) a Kenmotsu
manifold and (M2, g2) a RM. Then slant distribution Dθ2 is integrable if and only if

1

λ2
{g2((∇f⃗∗)(Û2, ζV̂2)− (∇f⃗∗)(V̂2, ζÛ2), f⃗∗ζBẐ)}

= g1(TV̂2
ζδÛ2 − TÛ2

ζδV̂2, Ẑ) + g1(TÛ2
ζV̂2 − TV̂2

ζÛ2, ϕAẐ + δBẐ)

+
1

λ2
{g2(∇f⃗

Û2
f⃗∗ζV̂2 −∇f⃗

V̂2
f⃗∗ζÛ2, f⃗∗ζBẐ)}.

for any Û2, V̂2 ∈ Γ(Dθ2) and Ẑ ∈ Γ(D⊕Dθ1).

Proof. By using equations (2.1), (2.2), (2.5) and (3.2), we have

g1([Û2, V̂2], Ẑ) = g1(∇V̂2
δ2Û2, Ẑ) + g1(∇V̂2

ζδÛ2, Ẑ)− g1(∇Û2
δ2V̂2, Ẑ)

− g1(∇Û2
ζδV̂2, Ẑ) + g1(∇Û2

ζV̂2 −∇V̂2
ζÛ2, ϕẐ),

for any Û2, V̂2 ∈ Γ(Dθ2) and Ẑ ∈ Γ(D⊕Dθ1). From equation (2.10) and Lemma 3.3, we get

sin2θ2g1([Û2, V̂2], Ẑ) = g1(TV̂2
ζδÛ2 − TÛ2

ζδV̂2, Ẑ) + g1(TÛ2
ζV̂2 − TV̂2

ζÛ2, ϕAẐ + δBẐ)

+ g1(H∇Û2
ζV̂2 −H∇V̂2

ζÛ2, ζBẐ).
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Since f⃗ is QBSC ξ⊥-submersion, using conformality condition with equations (2.6) and (2.15), we finally get

sin2θ2g1([Û2, V̂2], Ẑ) = g1(TV̂2
ζδÛ2 − TÛ2

ζδV̂2, Ẑ) + g1(TÛ2
ζV̂2 − TV̂2

ζÛ2, ϕAẐ + δBẐ)

+
1

λ2
{g2(∇f⃗

Û2
f⃗∗ζV̂2 −∇f⃗

V̂2
f⃗∗ζÛ2, f⃗∗ζBẐ)}

− 1

λ2
{g2((∇f⃗∗)(Û2, ζV̂2) + (∇f⃗∗)(V̂2, ζÛ2), f⃗∗ζBẐ)}.

This completes the proof of the theorem.

Since, the invariant distribution is mutually orthogonal to the slant distributions in accordance with the
concept of QBSC ξ⊥-submersion, this led us to investigate the necessary and sufficient condition for the
invariant distribution to be integrable.

Theorem 4.3. Let f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) be a QBSC ξ⊥-submersion, where (M1, ϕ, ξ, η, g1) a Kenmotsu
manifold and (M2, g2) a RM. Then the invariant distribution D is integrable if and only if

g1(TÛδAV̂ − TV̂ δAÛ , ζBẐ + ζCŴ )

+ g1(V∇ÛδAV̂ − V∇V̂ δAÛ , δBẐ + δCẐ) = 0,
(4.2)

for any Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ1 ⊕Dθ2).

Proof. For all Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ1 ⊕Dθ2) with using equations (2.1), (2.2), and decomposition (3.1), we
have

g1([Û , V̂ ], Ẑ) = g1(∇ÛδAV̂ , ϕBẐ + ϕCẐ)− g1(∇V̂ δAÛ , ϕBẐ + ϕCẐ).

By using equations (2.9), (3.2), we finally have

g1([Û , V̂ ], Ẑ) = g1(TÛδAV̂ − TV̂ δAÛ , ζBẐ + ζCẐ)

+ g1(V∇ÛδAV̂ − V∇V̂ δAÛ , δBẐ + δCẐ).

This completes the proof of theorem.

After discussing the prerequisites for distribution’s integrability, it is time to examine the necessary and
sufficient conditions that must also exists in order for distributions to be totally geodesic. We begin by looking
at the condition of totally geodesicness for invariant distribution.

Theorem 4.4. Let f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) be a QBSC ξ⊥-submersion, where (M1, ϕ, ξ, η, g1) a Kenmotsu
manifold and (M2, g2) a RM. Then invariant distribution D defines totally geodesic foliation on M1 if and only if

(i) λ−2g2{((∇f⃗∗)(Û , ϕV̂ ), f⃗∗ζẐ)} = g1(V∇ÛϕV̂ , δẐ)

(ii) λ−2{g2((∇f⃗∗)(Û , ϕV̂ ), f⃗∗QX̂)} = g1(V∇ÛϕV̂ , P X̂)− g1(Û , V̂ )η(X̂),

for any Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ1 ⊕Dθ2), X̂ ∈ (kerf∗)
⊥.

Proof. For any Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ1 ⊕Dθ2) by using equations (2.2), (2.5) and (3.2), we may write

g1(∇Û V̂ , Ẑ) = g1(V∇ÛϕV̂ , δẐ) + g1(TÛϕV̂ , ζẐ).

By using the horizontal conformality of f⃗ with equation (2.6) and (2.15), we get

g1(∇Û V̂ , Ẑ) = g1(V∇ÛϕV̂ , δẐ)− λ−2g2((∇f⃗∗)(Û , ϕV̂ ), f⃗∗ζẐ)− .

On the other hand, using equations (2.2), (2.5) with horizontal conformality of f⃗ , we finally have

g1(∇Û V̂ , X̂) = g1(V∇ÛϕV̂ , P X̂)− λ−2g2((∇f⃗∗)(Û , ϕV̂ ), f⃗∗QX̂)− g1(Û , V̂ )η(X̂).

This completes the proof of the theorem.
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In similar way, we can discuss the geometry of leaves of slant distribution Dθ1 as follows:

Theorem 4.5. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2). Then
slant distribution Dθ1 defines totally geodesic foliation on M1 if and only if

1

λ2
g2((∇f⃗∗)(Ẑ, ζBŴ ), f⃗∗ζCÛ)

=
1

λ2
g2(∇f⃗

Ẑ
f⃗∗ζBŴ , f⃗∗ζCÛ) + cos2 θ1g1(∇ẐBŴ , Û)

− g1(TẐζδBŴ , Û) + g1(TẐζBŴ , δÂÛ) + g1(TẐζBŴ , δĈÛ)

(4.3)

and

λ−2{g2(∇f⃗

Ẑ
f⃗∗ζδBŴ , f⃗∗X̂)− g2(∇f⃗

Ẑ
f⃗∗ζBŴ , f⃗∗QX̂)}

=
1

λ2
g2((∇f⃗∗)(Ẑ, ζδBŴ ), f⃗∗X̂))− 1

λ2
g2((∇f⃗∗)(Ẑ, ζBŴ ), f⃗∗QX̂))

+ cos2θ1g1(∇ẐBŴ , X̂) + g1(TẐζBŴ , P X̂)− sin2 θ1(Ẑ, Ŵ )η(X̂),

(4.4)

for any Ẑ, Ŵ ∈ Γ(Dθ1), Û ∈ Γ(D⊕Dθ2) and X̂ ∈ Γ(kerf⃗∗)
⊥.

Proof. By using equations (2.1), (2.2), (2.5) and (3.2), we get

g1(∇ẐŴ , Û) = g1(∇ẐζBŴ , ϕ(AÛ + CÛ))− g1(ϕ∇ẐδBŴ , Û),

for Ẑ, Ŵ ∈ Γ(Dθ1) and Û ∈ Γ(D⊕Dθ2) . Again using equations (2.3), (2.5), (3.2), (2.10) with Lemma 3.2, we
may write

g1(∇ẐŴ , Û) = cos2θ1g1(∇ẐBŴ , Û)− g1(TẐζδBŴ , Û) + g1(TẐζBŴ , δAÛ)

+ g1(TẐζBŴ , δCÛ) + g1(H∇ẐζBŴ , ζCÛ).

Since, f⃗ is HCS, using Lemma 2.1 with equations (2.6) and (2.15), we have

g1(∇ẐŴ , Û) = cos2θ1g1(∇ẐBŴ , Û)− g1(TẐζδBŴ , Û) + g1(TẐζBŴ , δAÛ)

+ g1(TẐζBŴ , δCÛ) +
1

λ2
g2(∇f⃗

Ẑ
f⃗∗ζBŴ , f⃗∗ζCÛ)

− 1

λ2
g2((∇f⃗∗)(Ẑ, ζBŴ ), f⃗∗ζCÛ).

(4.5)

On the other hand, for Ẑ, Ŵ ∈ Γ(Dθ1) and X̂ ∈ Γ(kerf⃗∗)
⊥, by using equations (2.2), (2.4), (2.5) and (3.2), we get

g1(∇ẐŴ , X̂) = g1(∇ẐδBŴ , ϕX̂) + g1(∇ẐζBŴ , ϕX̂)− g1(Ẑ, Ŵ )η(X̂).

From Lemma 3.2 with equations (2.10) and (3.5), the above equation takes the form

g1(∇ẐŴ , X̂) = cos2θ1g1(∇ẐBŴ , X̂)− g1(H∇ẐζδBŴ , X̂) + cos2 θ1g1(Ẑ, Ŵ )η(X̂)

+ g1(TẐζBŴ , P X̂) + g1(H∇ẐζBŴ ,QX̂)− g1(Ẑ, Ŵ )η(X̂).

Since f⃗ is horizontally conformal and from equations (2.6) and (2.15), we have

g1(∇ẐŴ , X̂) = cos2θ1g1(∇ẐBŴ , X̂) + g1(TẐζBŴ , P X̂)

+
1

λ2
g2((∇f⃗∗)(Ẑ, ζδBŴ ), f⃗∗X̂)− 1

λ2
g2(∇f⃗

Ẑ
f⃗∗ζδBŴ , f⃗∗X̂)

− 1

λ2
g2((∇f⃗∗)(Ẑ, ζBŴ ), f⃗∗QX̂) +

1

λ2
g2(∇f⃗

Ẑ
f⃗∗ζδBŴ , f⃗∗QX̂)

− (1− cos2 θ1)g1(Ẑ, Ŵ )η(X̂).

This completes the proof of theorem.
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In the following theorem, we study the necessary and sufficient conditions for slant distribution Dθ2 to be
totally geodesic.

Theorem 4.6. Let f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) be a QBSC ξ⊥-submersion, where (M1, ϕ, ξ, η, g1) a Kenmotsu
manifold and (M2, g2) a RM. Then slant distribution Dθ2 defines totally geodesic foliation on M1 if and only if

1

λ2
g2((∇f⃗∗)(Ẑ, ζCŴ ), f⃗∗ζBV̂ )− cos2θ2g1(∇ẐCŴ , V̂ )

= −g1(TẐζδCŴ , V̂ ) +
1

λ2
g2((∇f⃗∗)(ζCŴ , Ẑ), f⃗∗ζBV̂ )

+ g1(TẐζCŴ , δAV̂ ) + g1(TẐζCŴ , δBV̂ )

(4.6)

and

λ−2{g2(∇f⃗

Ẑ
f⃗∗ζδCŴ , f⃗∗Ŷ )− g2(∇f⃗

Ẑ
f⃗∗ζCŴ , f⃗∗QŶ )}

=
1

λ2
g2((∇f⃗∗)(Ẑ, ζδCŴ ), f⃗∗Ŷ )− 1

λ2
g2((∇f⃗∗)(Ẑ, ζCŴ ), f⃗∗QŶ )

+ cos2θ2g1(∇ẐCŴ , Ŷ ) + g1(TẐζCŴ , P Ŷ )− sin2 θ2g1(Ẑ, Ŵ )η(Ŷ ),

(4.7)

for any Ẑ, Ŵ ∈ Γ(Dθ2), V̂ ∈ Γ(D⊕Dθ1) and Ŷ ∈ Γ(kerf⃗∗)
⊥.

Proof. The proof of above theorem is similar to the proof of Theorem 4.5.

Since, f⃗ is QBSC ξ⊥-submersion, its vertical and horizontal distribution are (kerf⃗∗) and (kerf⃗∗)
⊥,

respectively. Now, we examine the necessary and sufficient conditions under which distributions defines
totally geodesic foliation on M1. With regards to the totally geodesicness of vertical distribution, we have

Theorem 4.7. Let f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) be a QBSC ξ⊥-submersion, where (M1, ϕ, ξ, η, g1) a Kenmotsu
manifold and (M2, g2) a RM. Then kerf⃗∗ defines totally geodesic foliation on M1 if and only if

1

λ2
{g2(∇f⃗

Û
f⃗∗ζδBV̂ +∇f⃗

Û
f⃗∗ζδCV̂ , f⃗∗X̂)}

= g1(TÛAV̂ + cos2θ1TÛBV̂ + cos2θ2TÛCV̂ , X̂) + g1(TÛζV̂ , P X̂)

+
1

λ2
{g2((∇f⃗∗)(Û , ζδBV̂ ) + (∇f⃗∗)(Û , ζδCV̂ ), f⃗∗X̂)}

+
1

λ2
{g2(∇f⃗

Û
f⃗∗ζV̂ − (∇f⃗∗)(Û , ζV̂ ), f⃗∗QX̂)}+ g1(ζÛ , ζV̂ )η(X̂).

(4.8)

for any Û , V̂ ∈ Γ(kerf⃗∗) and X̂ ∈ Γ(kerf⃗∗)
⊥.

Proof. For any Û , V̂ ∈ Γ(kerf⃗∗) and X̂ ∈ Γ(kerf⃗∗)
⊥ by using equations (2.2), (2.4), (2.5) with decomposition

(3.1), we get

g1(∇Û V̂ , X̂) = g1(∇ÛϕAV̂ , ϕX̂) + g1(∇ÛϕBV̂ , ϕX̂)

+ g1(∇ÛϕCV̂ , ϕX̂)− g1(Û , V̂ )η(X̂).

By using (2.1) and the equation (3.2) with Lemma 3.2 and Lemma 3.3, we have

g1(∇Û V̂ , X̂) = g1(∇ÛAV̂ , X̂) + g1(δÛ , δAV̂ )η(X̂) + cos2θ1g1(∇ÛBV̂ , X̂)

+ g1(δÛ , δBV̂ )η(X̂) + cos2θ2g1(∇ÛCV̂ , X̂) + g1(δÛ , δCV̂ )η(X̂)

+ g1(∇ÛζBV̂ , ϕX̂)− g1(∇ÛζδBV̂ , X̂)− g1(∇ÛζδCV̂ , X̂)

+ g1(∇ÛζCV̂ , ϕX̂)− g1(Û , V̂ )η(X̂).

From equations (2.9), (2.10) and (3.5), we may yields

g1(∇Û V̂ , X̂) = g1(TÛAV̂ + cos2θ1TÛBV̂ + cos2θ2TÛCV̂ , X̂)− g1(Û , V̂ )η(X̂)

− g1(H∇ÛζδBV̂ +H∇ÛζδCV̂ , X̂) + g1(TÛζBV̂ + TÛζCV̂ , P X̂)

+ g1(H∇ÛζBV̂ +H∇ÛζCV̂ , QX̂) + g1(δÛ , δV̂ )η(X̂).
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From decomposition (3.1), the above equation takes the form

g1(∇Û V̂ , X̂) = g1(TÛAV̂ + cos2θ1TÛBV̂ + cos2θ2TÛCV̂ , X̂) + g1(TÛζV̂ , P X̂)

− g1(H∇ÛζδBV̂ +H∇ÛζδCV̂ , X̂) + g1(H∇ÛζV̂ , QX̂)− g1(ζÛ , ζV̂ )η(X̂).

Using the horizontal conformality of f⃗ with equations (2.6) and (2.15), we have

g1(∇Û V̂ , X̂) = g1(TÛAV̂ + cos2θ1TÛBV̂ + cos2θ2TÛCV̂ , X̂) + g1(TÛζV̂ , P X̂)

+
1

λ2
{g2((∇f⃗∗)(Û , ζδBV̂ ) + (∇f⃗∗)(Û , ζδCV̂ ), f⃗∗X̂)}

− 1

λ2
{g2(∇f⃗

Û
f⃗∗ζδBV̂ +∇f⃗

Û
f⃗∗ζδCV̂ , f⃗∗X̂)}

+
1

λ2
{g2(∇f⃗

Û
f⃗∗ζV̂ − (∇f⃗∗)(Û , ζV̂ ), f⃗∗QX̂)} − g1(ζÛ , ζV̂ )η(X̂).

This completes the proof of the theorem.

We can now talk about the geometry of leaves of horizontal distribution. The following theorem presents
the necessary and sufficient condition under which horizontal distribution defines totally geodesic foliation on
M1.

Theorem 4.8. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2),. Then
(kerf⃗∗)

⊥ defines totally geodesic foliation on M1 if and only if

1

λ2
g2(∇f⃗

X̂
f⃗∗QŶ , f⃗∗ζẐ) +

1

λ2
g2((∇f⃗∗)(X̂, ζP Ŷ ), f⃗∗Ẑ)

g1(V∇X̂δP Ŷ , Ẑ)− g1(AX̂QŶ , δẐ) + g1(X̂, grad lnλ)g1(QŶ , ζẐ)

+ g1(QŶ , grad lnλ)g1(X̂, ζẐ)− g1(ζẐ, grad lnλ)g1(X̂,QŶ ),

(4.9)

for any X̂, Ŷ ∈ Γ(kerf⃗∗)
⊥ and Ẑ ∈ Γ(kerf⃗∗).

Proof. Note that, we have from ??,

g1((∇X̂ϕ)Ŷ , ϕẐ) = g1(ϕX̂, Ŷ )η(ϕẐ)− η(Ŷ )g1(ϕX̂, ϕẐ) = 0,

where we used η ◦ ϕ = 0 and g1(ϕX̂, ϕẐ) = g1(X̂, Ẑ)− η(X̂)η(Ẑ) = 0. Similarly, we have that

g1((∇X̂ϕ)PŶ , ϕẐ) = g1(ϕX̂, P Ŷ )η(ϕẐ)− η(PŶ )g1(ϕX̂, ϕẐ) = 0,
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where we have used that η(Ẑ) = η(PŶ ) = 0. We used these in next computation. By applying (??), (??) and (??),
we compute as follows:

g1(∇X̂ Ŷ , Ẑ) =g1(ϕ∇X̂ Ŷ , ϕẐ)− η(∇X̂ Ŷ )η(Ẑ)

= g1(∇X̂ϕŶ − (∇X̂ϕ)Ŷ , ϕẐ)

= −g1(ϕ
2∇X̂PŶ , ϕẐ) + g1(∇X̂QŶ , ϕẐ)

= −g1(ϕ∇X̂PŶ , Ẑ) + g1(∇X̂QŶ , δẐ + ζẐ)

= −g1(∇X̂ϕP Ŷ − (∇X̂ϕ)PŶ , Ẑ) + g1(∇X̂QŶ , δẐ + ζẐ)

= −g1(∇X̂δP Ŷ , Ẑ)− g1(∇X̂ζP Ŷ , Ẑ)

+ g1(∇X̂QŶ , δẐ) + g1(∇X̂QŶ , ζẐ)

= −g1(V∇XδP Ŷ , Ẑ)− g1(AX̂ζP Ŷ , Ẑ)

+ g1(H∇XQY, ζẐ) + g1(AX̂QŶ , δẐ)

= −g1(V∇XδP Ŷ , Ẑ)− 1

λ2
g2(f⃗∗AX̂ζP Ŷ , f⃗∗Ẑ)

+
1

λ2
g2(∇f⃗∗

X̂
f⃗∗QŶ − (∇f⃗∗)(X̂,QŶ ), f⃗∗ζẐ) + g1(AX̂QŶ , δẐ)

= −g1(V∇X̂δP Ŷ , Ẑ) +
1

λ2
g2((∇f⃗∗)(X̂, ζP Ŷ ), f⃗∗Ẑ)

+
1

λ2
g2(∇f⃗∗

X̂
f⃗∗QŶ , f⃗∗ζẐ) + g1(AX̂QŶ , δẐ)

− g1(X̂, grad lnλ)g1(QŶ , ζẐ)− g(QŶ , grad lnλ)g1(X̂, ζẐ)

+ g(ζẐ, grad lnλ)g1(X̂,QŶ ).

(4.10)

This completes the proof of theorem.

We now have some necessary and sufficient conditions for QBSC ξ⊥-submersion f⃗ : M1 → M2 to be totally
geodesic map. In this regard, we are presenting the following result.

Theorem 4.9. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2). Then
f⃗ : (M1, ϕ, ξ, η, g1) → (M2, g2) is totally geodesic map if and only if

(i) f⃗∗{cos2θ1∇ÛBV̂ + cos2θ2∇ÛCV̂ −∇ÛζδBV̂ −∇ÛζδCV̂ }
= f⃗∗{Q(H∇ÛζBV̂ +H∇ÛζCV̂ + TÛδAV̂ )}
+ f⃗∗{ζ(TÛζBV̂ + TÛζCV̂ + V∇ÛδAV̂ )}
+ g1(Û , V̂ )− g1(δÛ , δBV̂ )− g1(δÛ , δCV̂ )f⃗∗ξ

(ii) f⃗∗{cos2θ1∇X̂BÛ + cos2θ2∇X̂CÛ −∇X̂ζδBÛ −∇X̂ζδCÛ}
= f⃗∗{Q(AX̂δAÛ +H∇X̂ζBÛ +H∇X̂ζCÛ)}
− g1(PX̂, δBÛ)f⃗∗ − g1(PX̂, δCÛ)f⃗∗

for any Û , V̂ ∈ Γ(kerf⃗∗) and X̂, Ŷ ∈ Γ(kerf⃗∗)
⊥.

Proof. Now, using equations (2.15), (2.5), (2.3)and (2.1). we can write

(∇f⃗∗)(Û , V̂ ) = −f⃗∗{η(∇Û V̂ )ξ − ϕ∇ÛϕV̂ },

for any Û , V̂ ∈ Γ(kerf⃗∗). From decomposition (3.1) and equation (3.2), we have

(∇f⃗∗)(Û , V̂ ) = f⃗∗{ϕ∇ÛδAV̂ + ϕ∇ÛδBV̂ + ϕ∇ÛζBV̂

+ ϕ∇ÛδCV̂ + ϕ∇ÛζCV̂ + g1(Û , V̂ )ξ}.

By using equations (2.3), (2.5), (2.9) and (2.10), the above equation takes the form

(∇f⃗∗)(Û , V̂ ) = f⃗∗{ϕTÛδAV̂ + ϕV∇ÛδAV̂ }+ f⃗∗(∇ÛϕδBV̂ )− g1(δÛ , δBV̂ )f⃗∗ξ

+ f⃗∗(ϕTÛζBV̂ + ϕH∇ÛζBV̂ ) + f⃗∗(∇ÛϕδBV̂ )− g1(δÛ , δCV̂ )f⃗∗ξ

+ f⃗∗{ϕTÛζCV̂ + ϕH∇ÛζCV̂ + g1(Û , V̂ )ξ}.
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Since f⃗ is HCS, by using Lemma 3.2 and Lemma 3.3 with equation (3.2), we finally get

(∇f⃗∗)(Û , V̂ ) = f⃗ ∗ {Q(H∇ÛζBV̂ +H∇ÛζCV̂ + TÛδAV̂ )

+ ζ(V∇ÛδAV̂ + TÛζBV̂ + TÛζCV̂ )}

− f⃗∗{cos2θ1∇ÛBV̂ + cos2θ2∇ÛCV̂ −∇ÛζδBV̂ −∇ÛζδCV̂ }

+ {g1(Û , V̂ )} − g1(δÛ , δBV̂ )− g1(δÛ , δCV̂ )f⃗∗ξ.

From this, the (i) part of theorem proved. On the other hand, for any Û ∈ Γ(kerf⃗∗) and X̂ ∈ Γ(kerf⃗∗)
⊥ by using

equations (2.15), (2.5), (2.3) (2.4)and (2.1), we can write

(∇f⃗∗)(X̂, Û) = f⃗∗(ϕ∇X̂ϕÛ).

By using decomposition (3.1) with equation (3.2), we have

(∇f⃗∗)(X̂, Û) = f⃗∗{ϕ(∇X̂δAÛ +∇X̂δBÛ +∇X̂ζBÛ +∇X̂δCÛ +∇X̂ζCÛ)}.

By taking account the fact from equations (2.11) and (2.12), we get

(∇f⃗∗)(X̂, Û) = f⃗∗{ϕ(AX̂δAÛ + V∇X̂δAÛ) +∇X̂ϕδBÛ − g1(PX̂, δBÛ)ξ

+ ϕ(H∇X̂ζBÛ +AX̂ζBÛ) +∇X̂ϕδCÛ − g1(PX̂, δCÛ)ξ

+ ϕ(H∇X̂ζCÛ +AX̂ζCÛ)}.

Finally, since f⃗∗ is a HCS, and from Lemma 3.2, Lemma 3.3, we can write

(∇f⃗∗)(X̂, Û) = f⃗∗{Q(AX̂δAÛ +H∇X̂ζBÛ +H∇X̂ζCÛ)}

+ f⃗∗{ζ(V∇X̂δAÛ +AX̂ζBÛ +AX̂ζCÛ)}

− f⃗∗(cos
2θ1∇X̂BÛ + cos2θ2∇X̂CÛ −∇X̂ζδBÛ −∇X̂ζδCÛ)

− g1(PX̂, δBÛ)f⃗∗ξ − g1(PX̂, δCÛ)f⃗∗ξ.

From which we obtain (ii) part of theorem. This completes the proof of theorem.

5. Decomposition Theorems

In this section, we recall the following result from [31] and discuss some decomposition theorems by using
prior theorems. Let g be a Riemannian metric tensor on the manifold M = M1 ×M2, then

(i) M = M1 ×λ M2 is a locally product if and only if M1 and M2 are totally geodesic foliations,
(ii) a warped product M1 ×λ M2 if and only if M1 is a totally geodesic foliation and M2 is a spherics foliation,

i.e., it is umbilic and its mean curvature vector field is parallel,
(iii) M = M1 ×λ M2 is a twisted product if and only if M1 is a totally geodesic foliation and M2 is a totally

umbilic foliation.

The presence of three orthogonal complementary distributions D, Dθ1 , and Dθ2 , which are integrable
and totally geodesic under the conditions that we have stated previously, is ensured by the fact that f⃗ :
(M1, ϕ, ξ, η, g1) → (M2, g2) is QBSC ξ⊥-submersion. It makes sense to now look for the conditions in which the
total space M1 converts into locally twisted product manifolds. In order to explore the geometry of QBSC ξ⊥-
submersion f⃗ , we are providing the following result.

Theorem 5.1. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2). Then M1

is locally twisted product of the form M1(ker f⃗∗)
×M1(ker f⃗∗)⊥

if and only if

1

λ2
g2((∇f⃗∗)(Û , ζV̂ ), f⃗∗QX̂) = g1(TÛδV̂ ,QX̂) + g1(V∇ÛδV̂ + TÛζV̂ , P X̂)

+
1

λ2
g2(∇f⃗

U f⃗∗ζV̂ , f⃗∗QX̂)− g1(Û , V̂ )η(X̂)

(5.1)
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and

g1(X̂, Ŷ )H = Q(∇X̂ϕŶ ) + f⃗∗|−1

(ker f⃗∗)⊥
(∇f⃗

X̂
f⃗∗QŶ ) +AX̂PŶ + ζ(grad lnλ)g1(X̂,QŶ )

−Q(G lnλ)g1(QŶ , ζÛ)−Q(G lnλ)g1(X̂, ζÛ).
(5.2)

where H is a mean curvature vector and for any Û , V̂ ∈ Γ(kerf⃗∗) and X̂ ∈ Γ(kerf⃗∗)
⊥.

Proof. For any Û , V̂ ∈ Γ(kerf⃗∗) and X̂ ∈ Γ(kerf⃗∗)
⊥ and using equations (2.2), (2.5), (2.11) and (2.12), we have

g1(∇Û V̂ , X̂) = g1(TÛδV̂ ,QX̂) + g1(V∇ÛδV̂ + TÛζV̂ , P X̂)− g1(Û , V̂ )η(X̂)

+ g1(H∇ÛζV̂ , QX̂)

From using formula (2.6), (2.15) and since f⃗ is HCS, the above equation finally takes the form

g1(∇Û V̂ , X̂) = g1(TÛδV̂ ,QX̂) + g1(V∇ÛδV̂ + TÛζV̂ , P X̂)− g1(Û , V̂ )η(X̂)

− 1

λ2
g2((∇f⃗∗)(Û , ζV̂ ), f∗QX̂) +

1

λ2
g2(∇f⃗∗

Û
ζV̂ , f⃗∗QX̂)

It follows that the equation (5.1) satisfies if and only if M1(kerf⃗∗)
is totally geodesic. On the other hand, for

Û ∈ Γ(kerf⃗∗) and X̂, Ŷ ∈ Γ(kerf⃗∗)
⊥ by using equations (2.2), (2.5) and (3.5), we get

g1(∇X̂ Ŷ , Û) = g1(∇X̂PŶ , ϕÛ) + g1(∇X̂QŶ , ϕÛ)

= g1(V∇X̂PŶ +AX̂QŶ , δÛ)

+ g1(AX̂PŶ ζÛ)g1(H∇X̂QŶ , ζÛ).

By using the equations (2.10) with the horizontal conformality of f⃗ , we may write

g1(∇X̂ Ŷ , Û) = g1(V∇X̂PŶ +AX̂QŶ , δÛ) +
1

λ2
g2(∇f⃗

X̂
f⃗∗QŶ , f⃗∗ζÛ)

g1(AX̂PŶ , ζÛ)− g1(X,G lnλ)g1(QŶ , ζÛ)− g1(QŶ ,G lnλ)g1(X̂, ζÛ)

+ g1(ζÛ , grad lnλ)g1(X̂, ζQŶ ).

From the above equation we conclude that M1(kerf⃗∗)⊥
is totally umbilical if and only if equation (5.2)

satisfied

6. ϕ-Pluriharmonicity of Quasi bi-slant Conformal ξ⊥-Submersion

Y. Ohnita established J-pluriharminicity from a almost hermitian manifold in [25]. In this section, we extend
the concept of ϕ-pluriharmonicity to almost contact metric manifolds.

Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2) with slant
angles θ1 and θ2. Then QBSC submersion is ϕ-pluriharmonic, D-ϕ-pluriharmonic, Dθi-ϕ-pluriharmonic,
(D−Dθi)-ϕ pluriharmonic (where i = 1, 2), kerf⃗∗-ϕ-pluriharmonic, (kerf⃗∗)⊥-ϕ-pluriharmonic and ((kerf⃗∗)

⊥ −
kerf⃗∗)-ϕ-pluriharmonic if

(∇f⃗∗)(Û , V̂ ) + (∇f⃗∗)(ϕÛ, ϕV̂ ) = 0, (6.1)

for any Û , V̂ ∈ Γ(D), for any Û , V̂ ∈ Γ(Dθi), for any Û ∈ Γ(D), V̂ ∈ Γ(Dθi) (where i = 1, 2), for any Û , V̂ ∈
Γ(kerf⃗∗), for any Û , V̂ ∈ Γ(kerf⃗∗)

⊥ and for any Û ∈ Γ(kerf⃗∗)
⊥, V̂ ∈ Γ(kerf⃗∗) respectively.

Theorem 6.1. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2) with slant
angles θ1 and θ2. Suppose that f⃗ is Dθ1-ϕ-pluriharmonic. Then Dθ1 defines totally geodesic foliation M1 if and only if

f⃗∗(ζTδÛζδV̂ +QH∇δÛζδV̂ )− f⃗∗(AζÛδV̂ +H∇δÛζV̂ )

= cos2 θ1f⃗∗(QTδÛ V̂ + ζV∇δÛ V̂ )−∇f⃗

ϕÛ
f⃗∗ϕV̂ − cos2 θ1g1(Û , V̂ )f⃗∗ξ +∇f⃗

ζÛ
f⃗∗ζV̂

− ζÛ(lnλ)f⃗∗ζV̂ − ζV̂ (lnλ)f⃗∗ζÛ + sin2 θ1g1(Û , V̂ )f⃗∗(grad lnλ)

for any Û , V̂ ∈ Γ(Dθ1).
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Proof. For any Û , V̂ ∈ Γ(Dθ1) and since, f⃗ is Dθ1-ϕ-pluriharmonic, then by using equation (2.9) and (2.15), we
have

0 =(∇f⃗∗)(Û , V̂ ) + (∇f⃗∗)(ϕÛ, ϕV̂ )

f⃗∗(∇Û V̂ ) ⇔ −f⃗∗(∇ϕÛϕV̂ ) +∇f⃗

ϕÛ
f⃗∗(ϕV̂ )

= − f⃗∗(AζÛδV̂ + V∇ζÛδV̂ + TδÛζV̂ +H∇δÛζV̂ )

+ (∇f⃗∗)(ζÛ , ζV̂ )−∇f⃗

ζÛ
f⃗∗ζV̂ +∇f⃗

ϕÛ
f⃗∗ϕV̂

+ f⃗∗(ϕ∇δÛϕδV̂ − η(∇δÛδV̂ )ξ)

On using equations (3.2), (3.5) with Lemma 2.1 and Lemma 3.2, the above equation finally takes the form

f⃗∗(∇Û V̂ ) = − cos2 θ1f⃗∗(PTδÛ V̂ +QTδÛ V̂ + δV∇δÛ V̂ + ζV∇δÛ V̂ )

+ f⃗∗(δTδÛζδV̂ + ζTδÛζδV̂ + PH∇δÛζδV̂ +QH∇δÛζδV̂ )

− f⃗∗(AζÛδV̂ + V∇ζÛδV̂ + TδÛζV̂ +H∇δÛζV̂ )

+ ζÛ(lnλ)f⃗∗ζV̂ + ζV̂ (lnλ)f⃗∗ζÛ − g1(ζÛ , ζV̂ )f⃗∗(grad lnλ)

+ g1(δÛ , δV̂ )f⃗∗ξ −∇f⃗

ζÛ
f⃗∗ζV̂ +∇f⃗

ϕÛ
f⃗∗ϕV̂ .

from which we get the desired result.

Theorem 6.2. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2) with slant
angles θ1 and θ2. Suppose that f⃗ is Dθ2-ϕ-pluriharmonic. Then Dθ2 defines totally geodesic foliation M1 if and only if

f⃗∗(ζTδẐζδŴ +QH∇δẐζδŴ )− f⃗∗(AζẐδŴ +H∇δẐζŴ )

= cos2 θ2f⃗∗(QTδẐŴ + ζV∇δẐŴ )−∇f⃗

ϕÛ
f⃗∗ϕV̂ − cos2 θ2g1(Ẑ, Ŵ )f⃗∗ξ +∇f⃗

ζẐ
f⃗∗ζŴ

− ζẐ(lnλ)f⃗∗ζŴ − ζŴ (lnλ)f⃗∗ζẐ + sin2 θ2g1(Ẑ, Ŵ )f⃗∗(grad lnλ)

for any Ẑ, Ŵ ∈ Γ(Dθ2).

Proof. The proof of the theorem is similar to the proof of Theorem 6.1.

Theorem 6.3. Let f⃗ be a QBSC ξ⊥-submersion from Kenmotsu manifold (M1, ϕ, ξ, η, g1) onto a RM (M2, g2) with slant
angles θ1 and θ2. Suppose that f⃗ is ((kerf⃗∗)⊥ − kerf⃗∗)-ϕ-pluriharmonic. Then the following assertion are equivalent.

(i) The horizontal distribution (kerf⃗∗)
⊥ defines totally geodesic foliation on M1.

(ii) (cos2θ1)f⃗∗{QTPX̂BÛ + ζV∇PX̂BÛ +QAQX̂BÛ + ζV∇QX̂BÛ}
+ (cos2θ2)f⃗∗{QTPX̂CÛ + ζV∇PX̂CÛ +QAQX̂CÛ + ζV∇QX̂CÛ}
− f⃗∗{ζAQX̂ζδBÛ + ζAQX̂ζδCÛ −H∇PX̂ζÛ}
= −f⃗∗{QTPX̂AÛ + ζV∇PX̂AÛ +QAQX̂δAÛ + ζV∇QX̂AÛ}
+ f⃗∗{ζTPX̂ζδBÛ +QH∇PX̂ζδBÛ + ζTPX̂ζδCÛ +QH∇PX̂ζδCÛ}+QH∇QX̂ζδBÛ

+QH∇QX̂ζδCÛ − f⃗∗(∇X̂ Û) +∇f⃗

ϕX̂
f⃗∗ζÛ + g1(PX̂δÛ)f⃗∗ξ.

for any X̂ ∈ Γ(kerf⃗∗)
⊥ and Û ∈ Γ(kerf⃗∗)

Proof. For any X̂ ∈ Γ(kerf⃗∗)
⊥ and Û ∈ Γ(kerf⃗∗), since f⃗ is ((kerf⃗∗)

⊥ − kerf⃗∗)-ϕ-pluriharmonic, then by using
(2.15), (3.2) and (3.5), we get

f⃗∗(∇QX̂ζÛ) = −f⃗∗(∇PX̂δÛ +∇PX̂ζÛ +∇QX̂δÛ)− f⃗∗(∇X̂ Û) +∇f⃗

ϕX̂
f⃗∗ζÛ .
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Taking account the fact from (2.1) and (2.10), we have

f⃗∗(∇QX̂ζÛ) = −f⃗∗(TPX̂ζÛ +H∇PX̂ζÛ)− f⃗∗(∇X̂ Û) +∇f⃗

ϕX̂
f⃗∗ζÛ

+ f⃗∗(ϕ∇PX̂ϕδÛ) + g1(PX̂, δÛ)f⃗∗ξ + f⃗∗(ϕ∇QX̂ϕδÛ).

Now on using decomposition (3.1), Lemma 3.2, Lemma 3.3 with equations (3.2), we may yields

f⃗∗(∇QX̂ζÛ) = f⃗∗{−ϕ∇PX̂AÛ − cos2 θ1ϕ∇PX̂BÛ − cos2 θ2ϕ∇PX̂CÛ + g1(PX̂, δÛ)f⃗∗ξ

+ f⃗∗{−ϕ∇QX̂AÛ − cos2 θ1ϕ∇QX̂BÛ − cos2 θ2ϕ∇QX̂CÛ

+ f⃗∗{ϕ∇PX̂ζδBÛ + ϕ∇PX̂ζδCÛ + ϕ∇QX̂ζδBÛ + ϕ∇QX̂ζδCÛ}

− f⃗∗(H∇PX̂ζÛ)− f⃗∗(∇X̂ Û) +∇f⃗

ϕX̂
f⃗∗ζÛ .

From equations (2.9)-(2.12) and after simple calculation, we may write

− cos2θ1(QTPX̂BÛ + ζV∇PX̂BÛ +QAQX̂BÛ + ζV∇QX̂BÛ)

− cos2θ2(QTPX̂CÛ + ζV∇PX̂CÛ +QAQX̂CÛ + ζV∇QX̂CÛ)

+ f⃗∗{ζAQX̂ζδBÛ + ζAQX̂ζδCÛ −H∇PX̂ζÛ}

− f⃗∗{QTPX̂AÛ + ζV∇PX̂AÛ +QAQX̂AÛ + ζV∇QX̂AÛ}

+ f⃗∗{ζTPX̂ζδBÛ +QH∇PX̂ζδBÛ + ζTPX̂ζδCÛ +QH∇PX̂ζδCÛ}

+ f⃗∗(QH∇QX̂ζδBÛ +QH∇QX̂ζδCÛ)− f⃗∗(∇X̂ Û) +∇f⃗

ϕX̂
f⃗∗ζÛ + g1(PX̂, δÛ)f⃗∗ξ

which completes the proof of theorem.
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