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Highlights 

• The Non-Equilibrium Green Function was used. 

• Resonant tunneling event observed. 

• Resonance energy levels and transmission probability through the structure were determined. 
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Abstract 

The resonance tunneling properties of sawtooth triple barrier double-well structures were 

investigated using the non-equilibrium Green's functions method. The dependence of resonance 

energies on barrier height and width and well widths was investigated. The tunneling feature of 

the structure under the electric field was investigated. It has been observed that the transmission 

probability, resonance tunneling energy, and resonance peak intensity are sensitively dependent 

on the applied electric field and structure parameters. By choosing the appropriate structure, 

devices that provide resonance transition at the desired energy can be designed in the desired 

energy level ranges. Thus, this study can provide a basis for switching and oscillator source nano-

device designs.  
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1. INTRODUCTION 

 

With the discovery of the resonant tunneling phenomenon [1], diodes and transistors with low power 

consumption and high switching speed (on the order of THz) can be produced [2]. There are many 

theoretical and experimental studies on resonant tunneling devices (RTD), which have many technological 

applications [3,4]. For the production of structures with resonance tunneling, estimating under which 

conditions the resonance tunneling event takes place is important in terms of both economy and time. For 

the investigation of the resonance tunneling properties, the Wigner function method [5], Monte Carlo 

method [6], the transfer matrix method [7], and the non-equilibrium Green function (NEGF) method [8], 

quantum simulation techniques are available. NEGF method is one of the most influential and general 

approaches to describe carrier dynamics in open quantum systems [8].  
 

It is important to note that the performance of resonance tunneling devices (RTD) is extremely sensitive to 

the atomic scale and related processes at the interfaces that affect the behavior of the material [9-10]. Thanks 

to the development of nanoscale device manufacturing technology in recent years, high-quality resonant 

tunneling structures in different geometries (rectangular, parabolic, triangle, etc.) can be produced [11]. 

Since the rectangular double barrier structure is simple and has been used to test different methods, many 

studies have been conducted on it [4,12-15]. There are studies examining electron transport in structures 

with different geometries [14-21]. Electronic transport in the inverse parabolic double barrier structure was 

studied by Bati using the non-equilibrium Green function method [16]. Ohmukai investigated the 

dependence of the resonance tunneling properties on the structure parameter in the triangular double barrier 

structure using the transfer matrix method [17]. In addition, Wang examined this structure under the electric 
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field, again using the transfer matrix method [20], and transmission calculation was made by Luo for this 

structure [21,22]. 

 

The theoretical investigation of tunneling processes in an RTD represents an important source of 

information for the development of epitaxial crystal growth technology, providing a recipe for the assembly 

of complex structures such as single and multiple triangular and trapezoidal barriers [23]. These structures 

allow the use of a triangle barrier optoelectronic switch with resonance tunneling as an important device 

for optical signal processing [24]. Triangular multi-barrier systems have been used as an alternative 

candidate for high-speed devices [25-26]. For example, InGaAs/AlAs triple barrier RT heterostructures 

optimized for operation in the Terahertz frequency range have been investigated [27].  

 

In studies involving three or more barriers, different methods have been studied, and to the best of our 

knowledge, resonance tunneling in the saw-tooth triple barrier double well (STB) structure has not been 

investigated. In this study, the resonance tunneling characteristic of the STB structure and its dependence 

on the electric field bias are examined. The model and method are explained in section 2, numerical results 

are presented in section 3, and the conclusion is given in section 4.  

 

2. MATERIAL METHOD 

 

The schematic representation of the sawtooth triple barrier potential is shown in Figure 1. 𝑉𝐿 𝑉𝑀, and 𝑉𝑅 

show left, middle, and right potential barrier height respectively,𝐿𝐵𝐿, 𝐿𝐵𝑀, and 𝐿𝐵𝑅 left, middle, and right 

potential barrier widths, and 𝐿𝑊𝐿 and 𝐿𝑊𝑅 left and right well widths. Each zone boundary location is 

indicated by 𝐿𝑖 (i=1-6). 

 

  
Figure 1. Sawtooth triple barrier potential structure 

 

One-dimensional Schrödinger wave equation of the system is 

 

   −
ℏ2

2𝑚∗

𝑑2𝜓

𝑑𝑥2
+ 𝑈(𝑥)𝜓 = 𝐸𝜓.                                                           (1) 

 

Here, E is the electron energy, m* is the effective mass of the electron, and ℏ is the reduced Planck constant. 

The functional form of the potential energy profile of the STB structure is given by 
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𝑉𝐿

𝐿𝐵𝐿
) (𝑥 − 𝐿1),                           𝐿1 ≤ 𝑥 ≤ 𝐿2

(
𝑉𝑀

𝐿𝐵𝑀 
) (𝑥 − 𝐿3),                           𝐿3 ≤ 𝑥 ≤ 𝐿4

(
𝑉𝑅

𝐿𝐵𝑅 
) (𝑥 − 𝐿5),                           𝐿5 ≤ 𝑥 ≤ 𝐿6

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      .                                         (2) 

 

In our study, we will work with dimensionless parameters to make numerical calculations easier. The 

lengths will be scaled in terms of the effective Bohr radius (𝑎0
∗ =

4𝜋𝜖0ℏ
2

𝑚∗𝑒2
), the energies in terms of the 

effective Hartree Energy (𝐸𝐻
∗ =

ℏ2

𝑚∗𝑎0
∗2). Thus, scaled Schrödinger wave equation is in the dimensionless 

quantities 𝑥̃ and  𝑈̃ takes the form 

  

                         −
1

2

𝑑2𝜓

𝑑𝑥̃2
+ 𝑈̃(𝑥̃)𝜓 = 𝐸̃𝜓  .                                                                 (3) 

 

2.1. Non-Equilibrium Green Function Method 

 

Here, we will briefly summarize the non-equilibrium Green function method to calculate the transition 

probability. To write the Green function of the system, the space of interest is divided into N parts at Δ𝑥̃ 

regular intervals. If the scaled Schrödinger wave equation is written for each point in space using the finite 

difference method [8, 16] as 𝑈̃𝑛 = 𝑈̃(𝑥̃𝑛), we find as: 

 

                                       −𝑡̃𝜓𝑛−1 + (2𝑡̃ + 𝑈̃𝑛)𝜓𝑛 − 𝑡̃𝜓𝑛+1 = 𝐸𝜓𝑛.                                               (4) 

 

Here 𝑡̃ =
1

2Δ𝑥̃2
 is the hopping parameter. If the right and left contact interaction with the device, that is, open 

boundary conditions, are included in the system, the scaled Schrödinger wave equation becomes the 

following in matrix form 

 

                                             [𝐸𝐼 − 𝐻 − ΣL − ΣR]{𝜓} = {𝑆} .                                                          (5) 

 

[𝐻]  and  [𝐼]  belong to the (𝑁 ×  𝑁) device region Hamiltonian and identity matrix, respectively and {S}, 

(N × 1) column matrix. [ΣL] and [ΣR] are self-energy matrices of (𝑁 ×  𝑁) left and right contacts, 

respectively. Open form of the Hamiltonian matrix is 

 

                  [𝐻] =

(

 
 
 
 

2𝑡̃ + 𝑈̃1 −𝑡̃

−𝑡̃ 2𝑡̃ + 𝑈̃2

0
−𝑡̃

⋯ 0 0
⋯ 0 0

0 −𝑡̃
0 0

2𝑡̃ + 𝑈̃3
⋱

⋱ ⋮ ⋮
⋱ −𝑡̃ 0

⋮
0

⋮
⋯

⋱
0

−𝑡̃
0

2𝑡̃ + 𝑈̃𝑁−1 −𝑡̃

−𝑡̃ 2𝑡̃ + 𝑈̃𝑁 )

 
 
 
 

 .                                (6) 

 

Self-energy and source terms are   

 

 [ΣL] = (

−𝑡̃𝑒𝑖𝑘̃𝐿Δ𝑥 0
       0 0

⋯
0
0

⋮ ⋱ ⋮
0 ⋯ 0

), [ΣR] = (

0 ⋯        0
⋮ ⋱        ⋮
0
0

⋯
0 0

0 −𝑡̃𝑒𝑖𝑘̃𝑅Δ𝑥

), {S}=(

−𝑡(̃𝑒𝑖𝑘̃𝐿Δ𝑥 − 𝑒−𝑖𝑘̃𝐿Δ𝑥

0
⋮
0

). 
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Here 𝑘̃𝐿 and 𝑘̃𝑅 are wave vectors of left and right contact plane waves, respectively. The solution of the 

Schrödinger wave equation in matrix form in terms of Green's function is {𝜓} = [𝐺]{𝑆}. Here the retarted 

Green's function matrix ([G]) of the system is in closed form expressed as 

  

                                              [𝐺] = [(𝐸̃ + 𝑖𝜂)𝐼 − 𝐻 − ΣL − ΣR]
−1 .                                               (7) 

    

Here 𝜂 is an infinitesimal positive real number. Transmission coefficient after determining the Green 

function of the system is calculated as 

 

                                                     𝑇(𝐸̃) = 𝑇𝑟[ΓL𝐺ΓR𝐺
+] .                                                                (8) 

 

Here ΓL = i[ΣL − ΣL
+] and ΓR = i[ΣR − ΣR

+] are the broadening matrices. 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

In this work, we assume that our system is constructed with GaAs/AlGaAs materials. The value of effective 

mass is taken as 0.067𝑚0 (where 𝑚0is the free-electron rest mass) and relative dielectric constant is taken 

as 12.7 through the structure [28]. The effective Bohr radius 𝑎0
∗   and effective Hartree energy  𝐸𝐻

∗  are 

computed as 10.1061 nm and 11,2193 meV, respectively. In our work, we use the dimensionless form of 

energy and length for numerical simplicity. After numeric calculation, we convert units of length and 

energy into nm and meV, respectively. 

 

Here, the resonance tunneling characteristic of the STB structure will be examined. Figure 2 is plotted for 

LBL=LBM=LBR 5 nm and LWL = LWR =5 nm without electric field bias (F = 0). Figure 2 (a) shows the 

probability of passing electrons through barriers according to the energy of the incoming electron. When 

the energy of the electron is smaller than the barrier potential energy, it is observed that all of the electrons 

coming with the energy close to the energy level in the well can pass. This phenomenon is called resonance 

tunneling. It is seen that as the barrier heights increase, the number of resonance energy levels in the well 

increases. 

 
Figure 2. (color online) a) Graph of the variation of the transmission coefficient with the incident 

electron energy. Barrier heights vary symmetrically the same VL= VM =VR=50, 250, and 500 meV. b) The 

graph of resonance energy with barrier heights. System parameters were chosen as LBL=LBM=LBR 5 nm, 

LWL = LWR =5 nm and F = 0.0 

 

It is seen that as the barrier heights increase, the number of resonance energy levels in the well increases. 

Increasing barrier heights increases the blockade in the wells, so resonance peak widths are narrowing. This 
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means that electrons can only pass at certain energies. This is the desired situation in switching devices. In 

Figure 2 (b), the variation graph of resonance energy levels with barrier heights is plotted. Resonance 

energy levels shift to higher energies (blue shift) with increasing barrier height.  

 

Figure 3 shows the effect of the middle barrier height on the resonance tunneling event in the STB structure. 
It is observed that as the height of the middle barriers increases, the resonance energy level shifts towards 

high energy. It is seen that as the middle barrier height increases, the first and second energy intervals and 

the 3rd and 4th energy intervals narrow and converge at a certain value. In Figures 2 and 3, it is seen that 

the probability of transition in resonance energy T (Eres) shows very small changes in the 1st and 2nd 

resonance energy at the next energy levels close to unity value. 

 

 
Figure 3. (color online) a) The variation of the transition probability with respect to the incident 

electron energy for three different medium potential barrier heights (VM= = 50, 250, and 500 meV). b) 

The graph of the resonance energy change depending on the medium potential barrier height. System 

parameters were chosen as LWL=LWR=5 nm, VL=VR=250 meV, and F = 0.0 

 

In Figure 4 (a), the dependence of the probability of passing electrons on the incident electron's energy for 

three different barrier thicknesses (LBL=LBM=LBR=2.0, 5.0, and 10.0 nm) are plotted. It is seen that almost 

all electrons pass through at resonant energy levels (T (Eres) ≈1). In the case of increased barrier thickness, 

the resonance peaks are narrowed because the blockade becomes stronger. In Figure 4 (b), the plot of the 

location of the resonance energy levels depending on the barrier thickness is given. As barrier thickness 

increases, other energy levels except for the first resonance energy level shift to lower energies (redshift). 

At the energy level, it increases until the barrier widths match the well widths and then takes a constant 

value. The difference in energy levels decreases with increasing barrier thickness. 
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Figure 4. (color online) a) The variation of the transition probability according to the incident 

electron energy for three different barrier widths (LBL=LBM=LBR=2.0, 5.0 ve 10.0 nm). b) The graphs of 

the resonance energy depending on the barrier widths. System parameters were chosen as LWL =LWR=5 

nm, VL=VM=VR=250 meV, and F=0.0 

 

 
Figure 5. a). The variation of the transition probability with respect to the incident electron energy 

for three medium barrier widths (LBM=2.0, 5.0, and 10.0 nm). b) The graph of change of resonance 

energy depending on the middle barrier width. The system parameters were chosen as LBL =LBR=5 nm, 

LWL =LWR=5 nm, VL=VM=VR=250 meV, and F = 0.0 

 

In Figure 5, when there is no external electric field bias (F = 0), system parameters are plotted for LBL 

=LBR=5 nm, LWL =LWR=5 nm, VL=VM=VR=250 meV. In Figure 5 (a), the variation of the transition 

probability with respect to the incoming electron energy for three medium barrier widths (LBM = 2.0, 5.0, 

and 10.0 nm) is plotted. It is observed that the change in the thickness of the edge barrier (LBL = LBR = 5 

nm) and the medium barrier thickness increases the asymmetry in the structure and the peak lengths, that 

is, the probability of passage, are reduced. In Figure 5 (b), the variation of resonance energy levels 

depending on the middle barrier thickness is plotted. Compared to Figure 4, the change in the middle barrier 

resulted in the lower energy level of the 3rd energy level and the emergence of the 4th resonance energy 

level at higher energy. 
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Figure 6. (color online) a) The variation of the transition probability according to the incident 

electron energy for three different well widths (LWL= LWR=2.0, 5.0 and 10.0 nm). b) The graph of the 

resonance energy variation depending on the well widths. System parameters were chosen as LBL = LBM 

=LBR=5 nm, VL=VM=VR=250 meV, and F = 0.0 

 

Figure 6 has been drawn to investigate the effect of well widths on resonance tunneling. In Figure 6 (a), the 

dependence of the probability of passing electrons on the energy of the incident electron for three different 

well widths (LWL=LWR=2.0, 5.0, and 10.0 nm) is plotted. Figure 6 (b) shows the location of the resonance 

energy levels depending on the width of the well. As the wells expand, resonance energy levels shift 

exponentially to lower energy. This happens because the energy levels in the well are formed at lower 

energies as the well expands. In addition, as the well expands, the number of energy levels remaining in the 

well increases, so the number of resonance peaks increases due to the resonance energy. 

 

 
Figure 7. (color online)  a) The variation of the transition probability for three different right well 

widths (LWR=2.0, 5.0, and 10.0 nm) with respect to the incident electron energy. b) Graph of change of 

resonance energy depending on the right well width. System parameters were chosen as LWR=5 nm, LBL = 

LBM =LBR=5 nm, VL=VM=VR=250 meV, and F = 0.0 

 

Figure 7 is drawn to examine the resonance tunneling event when the width of the right well changes while 

the left well width is constant (LWL= 5 nm). In Figure 7 (a), while the well widths are symmetrical at 5 nm, 

the resonance peak is 1, that is, all incoming electrons can tunnel. In the case of asymmetry between the 
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widths of the wells, the resonance peak lengths become considerably smaller. In Figure 7 (b), the variation 

graph of the resonance energy depending on the right well width is plotted. System parameters were chosen 

as LWR=5 nm, LBL = LBM =LBR=5 nm, VL=VM=VR=250 meV, and F = 0.0. In the case of asymmetry, the 

exponential change in resonance energies is not observed. However, the increase in the width of the right 

well also causes resonance energy levels to occur at lower energies. Asymmetry causes a reduction in the 

length of resonant peaks. This means that the probability of electrons tunneling through specific energy 

levels decreases. 

       

 
Figure 8. (color online) a) TBS under the electric field bias resonance energy levels b) The 

variation of the transition probability for three different electric field bias (F=0.0, 20, and 50 kV/cm2) 

with respect to the incident electron energy. c) Graph of change of resonance energy depending on 

electric field bias d) Change of resonance peak amplitude with electric field. System parameters were 

selected as LWL= LWR=5 nm LBL=LBM =LBR=5 nm and VL=VM=VR=250 meV 

 

Figure 8 (a) shows the potential shape in case of application of electric field bias (𝑒𝐹𝑥) when 𝐹 = 0, 20, 

and 50 kV / cm. System parameters were chosen as LWL= LWR=5 nm, LBL=LBM =LBR=5 nm, and 

VL=VM=VR=250 meV. Figure 8 (b) shows the variation of the resonance peak amplitude with the electric 

field bias. It is seen that as the electric field bias increases, the resonance peak amplitude decreases. Figure 

8 (c) shows the changes in resonance energy levels due to electric field bias. It is observed that as the 

electric field bias increases, the 1st and 3rd resonance energy levels, that is, the right well energy levels, 

shift to lower energy. Energy levels 2 and 4 are shifting to higher energy. In Figure 4 (d), the variation of 
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the probability of transition in the resonance energy level due to electrical bias is plotted. The graph shows 

that the 1st and 3rd resonance peak amplitudes disappear as the electric field bias increases. It is seen that 

the transition from resonant energy is fluctuating and the transition stops in high electric field bias. In the 

resonance energy peak, there is a complete transition. The RT effect can be made switching in nano-devices. 

The transmission can be controlled by increasing or decreasing the particle energy, thanks to particles with 

certain energies passing. 

 

4. RESULTS 

 

The dependence of the resonance energy on the well width, barrier widths, and heights in the saw tooth 

double barrier structure was analyzed using the finite difference method based on non-equilibrium Green's 

function method. While the electric field bias is very weak, all particles in the resonance tunneling energy 

are tunnels, in other words, the transmission coefficient is one. When the symmetry is broken or when the 

electric field intensity is increased in a symmetrical structure, the possibility of transmission decreases, i.e. 

the resonance tunneling peak intensity decreases. While resonant tunneling energy shifts to lower energy 

values as the well width increases, it shifts to higher energies with the increase of barrier heights. Changes 

in barrier heights have little or no effect on resonance peak intensity. As a result, useful device applications 

can be developed by controlling the resonance tunneling characteristic with these parameters in triple 

barrier structures. 
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