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Due to low production cost, coal is still the most important source of electricity production worldwide. This important position of coal also makes 
the evaluation of coal resources important. One of the most important attributes to be assessed in this evaluation is estimating the calorific value 
distribution of deposit. In geostatistical estimation currently kriging and its variants are being used widely. Alternatively new techniques are being 
developed and one of them is the Radial Based Functions based method. In this study, Conditioned Radial Basis Function (CRBF) is used to estimate 
the calorific value distribution of a coal deposit while estimations are also performed with ordinary kriging (OK). Results of both estimation meth-
ods are compared with respect to composite calorific values. Results show that CRBF produced a higher estimation range than OK with closer mean 
to composite. However, like OK, results are still smoother than the composite values.  
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Introduction

Coal is the most important natural resource used for electricity 
generation in the world, with a share of 38.3% in electrical energy 
production. In Türkiye, 37.1% of the electrical energy is covered 
by coal, like the world, and it takes the status of the most import-
ant electrical energy source for Türkiye which is the 19th biggest 
economy in the world. The total coal reserve of the world is ap-
proximately 1.07 trillion tons with annual coal consumption of 8 
billion tons.  The relationship between reserves and consumption 
in the world is similar in Türkiye while total coal reserve of the 
Türkiye is 19.32 billion tons, while coal consumption is around 
115 million tons (Turkish Coal Enterprises, 2021). As can be seen, 
when the reserve and consumption rates are examined both in 
the world and in Türkiye, coal is the most important natural re-
source that supports sustainable electricity generation today. For 
this reason, it is of great importance to reveal the coal resources.

The most important variable in coal resources is the calorif-
ic value (Chelgani, 2021). A coal asset with insufficient calorific 
value cannot be considered as a coal source. The calorific value in 
coal beds varies depending on the location (Olea et al., 2011). It is 
not possible to take steps such as feasibility and production plan-

ning without modeling this variability. For this reason, the calo-
rific value variability in coal resources and the amount of coal re-
sources have been the subject of many studies. Fang et al. (1980) 
examined the usability of geostatistical methods in the estima-
tion of coal resources. In addition, Srivastava (2013) noted the 
widespread use of geostatistical methods in revealing the spatial 
variability of coal resources and referred to many related studies. 
Demirel et al. (2000) performed resource estimation of the coal 
field in the Çanakçı, which is located in Ermenek region, using the 
kriging method. Tercan and Karayiğit (2001), carried out coal re-
source estimation studies in Kalburçayırı in Sivas - Kangal region 
and Tercan et al. (2013) revealed some coal resources in Western 
Anatolia. Whateley et al. (1997) coal resource estimations with 
different methods and compared the methods in the Turgut coal 
deposit located in Muğla-Yatağan. Inaner et al. (2008) on the other 
hand, made the resource estimation of the Bayır field in Yatağan. 
Ertunc et al. (2013) estimated the variability of calorific value in 
coal beds which was modeled by covariance-matched kriging. On 
the other hand, Afzal (2018) made a coal resource estimation us-
ing kriging and inverse distance methods in Parvadeh coal depos-
it in Iran and evaluated the results. Jeuken et al. (2020) compared 
the inverse distance weighting and kriging techniques in a coal 
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deposit in Queensland, Australia. They made resource estimation 
using many methods. Sideri et al. (2020) estimated the mean low-
er calorific value of coal by using ordinary kriging methods. In this 
study, methods such as ordinary kriging, covariance-matching 
kriging and inverse distance weighting methods were used. The 
methods used in coal resource estimation are still in the devel-
opment stage. For example, Atalay and Tercan (2017) conducted 
coal resource estimation with Copulas. In the framework of newly 
developing approaches, radial basis function estimation has never 
been used in the estimation of coal resources (Atalay et al. 2021).

In mineral resource estimation, in addition to classical meth-
ods such as inverse distance and kriging, relatively new advanced 
methods such as radial basis functions are also used. Due to the 
nature of the method, estimations made with radial basis func-
tions do not meet the requirements for resource estimation to be 
positive definite and the estimation to be within a certain range. 
For this reason, direct estimation with radial basis functions will 
generate erroneous results. For this reason, a new approach is 
needed to make estimation with radial basis functions. 

Since the radial basis function cannot be used in direct estima-
tion safely, in this study, estimation is made using the conditioned 
radial basis function developed using radial basis functions and 
results were compared with kriging. For the purpose of estima-
tion, first of all, a 3D model of the coal bed was created. After that, 
the kriging steps were applied. For kriging, the experimental var-
iogram was calculated and the model variogram was fitted and the 
calorific value was estimated by ordinary kriging. After the kriging 
process, the calorific value of the coal was estimated by the condi-
tioned radial basis function. As a result, kriging and the developed 
conditioned radial basis function interpolation are compared in 
terms of summary statistics. 

1. Method

1.1. Ordinary Kriging

Kriging is basically an interpolation method based on the min-
imization of error variances using distance-based variability. To 
perform estimation using kriging, the variability depending on the 
distance must first be determined (Thomas, 2013). Variability due 
to distance is usually obtained by calculating experimental vario-
gram values. The experimental variogram is calculated as shown 
in Eq. 1 (Cressie,1990, Journel and Huijbregts, 1978)
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By fitting the variogram model, it is possible to set up kriging equations. The kriging method, like many 
other estimation methods, works by assigning weights to the data adjacent to the desired location (Eq. 
3)Pardo-Iquzquiza et al. 2013). 
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Here; 𝐶𝐶2 is nugget effect, 𝐶𝐶 is sill value, h is distance and  𝑎𝑎 is range.  

By fitting the variogram model, it is possible to set up kriging equations. The kriging method, like many 
other estimation methods, works by assigning weights to the data adjacent to the desired location (Eq. 
3)Pardo-Iquzquiza et al. 2013). 
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  

 

𝛾𝛾 𝑥𝑥$,𝑥𝑥$ 𝛾𝛾 𝑥𝑥$,𝑥𝑥% . 𝛾𝛾 𝑥𝑥$,𝑥𝑥, 1
𝛾𝛾 𝑥𝑥%,𝑥𝑥$ 𝛾𝛾 𝑥𝑥%,𝑥𝑥% . 𝛾𝛾 𝑥𝑥%,𝑥𝑥, 1

. . . . 1
𝛾𝛾 𝑥𝑥,,𝑥𝑥$ 𝛾𝛾 𝑥𝑥,,𝑥𝑥% . 𝛾𝛾 𝑥𝑥,,𝑥𝑥, 1

1 1 1 1 0

𝜆𝜆$
𝜆𝜆%
.
𝜆𝜆,
𝜇𝜇

=

𝛾𝛾 𝑥𝑥@,𝑥𝑥$
𝛾𝛾 𝑥𝑥@,𝑥𝑥%

.
𝛾𝛾 𝑥𝑥@,𝑥𝑥,

1

		 	 	 	 	 (5)	

By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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(4)

Here,  is Lagrange multiplier and  

	

3 
	

𝜆𝜆) ∗ 𝑧𝑧 𝑥𝑥) + 𝜇𝜇,
)-$ = 𝛾𝛾 𝑥𝑥2, 𝑥𝑥)

𝜆𝜆) = 1,
)-$

, 𝑖𝑖 = 1, … , 𝑛𝑛								 	 	 	 	 	 (4)	

Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  

 

𝛾𝛾 𝑥𝑥$,𝑥𝑥$ 𝛾𝛾 𝑥𝑥$,𝑥𝑥% . 𝛾𝛾 𝑥𝑥$,𝑥𝑥, 1
𝛾𝛾 𝑥𝑥%,𝑥𝑥$ 𝛾𝛾 𝑥𝑥%,𝑥𝑥% . 𝛾𝛾 𝑥𝑥%,𝑥𝑥, 1

. . . . 1
𝛾𝛾 𝑥𝑥,,𝑥𝑥$ 𝛾𝛾 𝑥𝑥,,𝑥𝑥% . 𝛾𝛾 𝑥𝑥,,𝑥𝑥, 1

1 1 1 1 0

𝜆𝜆$
𝜆𝜆%
.
𝜆𝜆,
𝜇𝜇

=

𝛾𝛾 𝑥𝑥@,𝑥𝑥$
𝛾𝛾 𝑥𝑥@,𝑥𝑥%

.
𝛾𝛾 𝑥𝑥@,𝑥𝑥,

1

		 	 	 	 	 (5)	

By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
 

1
𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 

𝜆𝜆) ∗,
)-$ ∅ 𝑥𝑥) − 𝑥𝑥@ =f								 	 	 	 	 	 	 	 	 (7)	

In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  

variogram value of 
that corresponds to distance between estimation point and sam-
ple point. As seen in Equation 4, the sum of the weights used in the 
estimation equals 1. A matrix equation that satisfies the conditions 
above is given in Eq. 5 (Myers,1992, Olea et al., 2011, Olea, 2012). 

	

3 
	

𝜆𝜆) ∗ 𝑧𝑧 𝑥𝑥) + 𝜇𝜇,
)-$ = 𝛾𝛾 𝑥𝑥2, 𝑥𝑥)

𝜆𝜆) = 1,
)-$

, 𝑖𝑖 = 1, … , 𝑛𝑛								 	 	 	 	 	 (4)	

Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  

 

𝛾𝛾 𝑥𝑥$,𝑥𝑥$ 𝛾𝛾 𝑥𝑥$,𝑥𝑥% . 𝛾𝛾 𝑥𝑥$,𝑥𝑥, 1
𝛾𝛾 𝑥𝑥%,𝑥𝑥$ 𝛾𝛾 𝑥𝑥%,𝑥𝑥% . 𝛾𝛾 𝑥𝑥%,𝑥𝑥, 1

. . . . 1
𝛾𝛾 𝑥𝑥,,𝑥𝑥$ 𝛾𝛾 𝑥𝑥,,𝑥𝑥% . 𝛾𝛾 𝑥𝑥,,𝑥𝑥, 1

1 1 1 1 0

𝜆𝜆$
𝜆𝜆%
.
𝜆𝜆,
𝜇𝜇

=

𝛾𝛾 𝑥𝑥@,𝑥𝑥$
𝛾𝛾 𝑥𝑥@,𝑥𝑥%

.
𝛾𝛾 𝑥𝑥@,𝑥𝑥,

1

		 	 	 	 	 (5)	

By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
 

1
𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 

𝜆𝜆) ∗,
)-$ ∅ 𝑥𝑥) − 𝑥𝑥@ =f								 	 	 	 	 	 	 	 	 (7)	

In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  

                  

(5)

By solving the kriging matrix equation, the estimation weights 
are calculated, and thus estimations can be performed by placing 
the unknown weights in Eq. 3. 

1.2. Radial Basis Function

Radial basis functions are first introduced to estimate topog-
raphy and other irregular surfaces while scattered data is avail-
able (Hardy, 1971).  It is used for many applications in engineering 
problems in engineering and scientific problems while interpola-
tion is one of them. Radial basis functions are effective tool for data 
interpolation problems (Schaback and Wendland,2001). 

The main characteristic of the radial basis function is value 
of the function is changes monotonically with distance respect to 
central point (Orr, 1996).  A radial basis function (RBF) can be de-
fined as a function that takes values based on the distance from 
origin or center point (Eq. 6). 

	

3 
	

𝜆𝜆) ∗ 𝑧𝑧 𝑥𝑥) + 𝜇𝜇,
)-$ = 𝛾𝛾 𝑥𝑥2, 𝑥𝑥)

𝜆𝜆) = 1,
)-$

, 𝑖𝑖 = 1, … , 𝑛𝑛								 	 	 	 	 	 (4)	

Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  

 

𝛾𝛾 𝑥𝑥$,𝑥𝑥$ 𝛾𝛾 𝑥𝑥$,𝑥𝑥% . 𝛾𝛾 𝑥𝑥$,𝑥𝑥, 1
𝛾𝛾 𝑥𝑥%,𝑥𝑥$ 𝛾𝛾 𝑥𝑥%,𝑥𝑥% . 𝛾𝛾 𝑥𝑥%,𝑥𝑥, 1

. . . . 1
𝛾𝛾 𝑥𝑥,,𝑥𝑥$ 𝛾𝛾 𝑥𝑥,,𝑥𝑥% . 𝛾𝛾 𝑥𝑥,,𝑥𝑥, 1

1 1 1 1 0

𝜆𝜆$
𝜆𝜆%
.
𝜆𝜆,
𝜇𝜇

=

𝛾𝛾 𝑥𝑥@,𝑥𝑥$
𝛾𝛾 𝑥𝑥@,𝑥𝑥%

.
𝛾𝛾 𝑥𝑥@,𝑥𝑥,

1

		 	 	 	 	 (5)	

By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
 

1
𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
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RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 

𝜆𝜆) ∗,
)-$ ∅ 𝑥𝑥) − 𝑥𝑥@ =f								 	 	 	 	 	 	 	 	 (7)	
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  

In table 1 c and r parameters determine the shape of the func-
tion which affects the function output value. As seen from the table 
many alternative kernel functions are available. However, Gauss-
ian kernel is the most widely used one. 

Estimation with radial basis function, like in kriging, depends 
on the estimation of the weights associated with sampling points. 
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Figure 1. Plan view of the drillings 

As seen in Figure 1, the average distance between the drillings 
is 500 m and the drilling frequency varies. Drilling frequency is 
approximately 800 m in the southwestern parts, while it is around 
400 m in the northern parts. For the purpose of estimation, first of 
all, a 3D geological model of the coal seam was created. The section 
method, which is the most commonly used method in creating a 
geological model, was used and the model obtained is shown in 
Figure 2.

 

Figure 2. Solid model top view

With the creation of the 3D solid model, a block model was cre-
ated to make estimations. Block dimensions were determined as 
25 x 25 and 1 m in X, Y and Z directions, respectively. As a result 
of this process, the total blocks were created, and these are shown 
in Figure 3.

Figure 3. Block model top view 
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
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effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 

𝜆𝜆) ∗,
)-$ ∅ 𝑥𝑥) − 𝑥𝑥@ =f								 	 	 	 	 	 	 	 	 (7)	

In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  

 mea-
surement values   of the equation established on the left side of the 
matrix equation. Also, on the right side of the equation, the f inter-
polant is used in a similar way.

	

3 
	

𝜆𝜆) ∗ 𝑧𝑧 𝑥𝑥) + 𝜇𝜇,
)-$ = 𝛾𝛾 𝑥𝑥2, 𝑥𝑥)

𝜆𝜆) = 1,
)-$

, 𝑖𝑖 = 1, … , 𝑛𝑛								 	 	 	 	 	 (4)	

Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  

 

𝛾𝛾 𝑥𝑥$,𝑥𝑥$ 𝛾𝛾 𝑥𝑥$,𝑥𝑥% . 𝛾𝛾 𝑥𝑥$,𝑥𝑥, 1
𝛾𝛾 𝑥𝑥%,𝑥𝑥$ 𝛾𝛾 𝑥𝑥%,𝑥𝑥% . 𝛾𝛾 𝑥𝑥%,𝑥𝑥, 1

. . . . 1
𝛾𝛾 𝑥𝑥,,𝑥𝑥$ 𝛾𝛾 𝑥𝑥,,𝑥𝑥% . 𝛾𝛾 𝑥𝑥,,𝑥𝑥, 1

1 1 1 1 0

𝜆𝜆$
𝜆𝜆%
.
𝜆𝜆,
𝜇𝜇

=

𝛾𝛾 𝑥𝑥@,𝑥𝑥$
𝛾𝛾 𝑥𝑥@,𝑥𝑥%

.
𝛾𝛾 𝑥𝑥@,𝑥𝑥,

1

		 	 	 	 	 (5)	

By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  
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In Eq. 7 the distance of all values to be used in the estimation is the value of the kernel function used, 
and , 𝑓𝑓 𝑥𝑥  represents the value of the function at the relevant distance. Accordingly, with the solution of 
the matrix equation for all λ's, that is, the weights to be used in the estimation, the estimation process is 
performed as in the Eq. 3. 

The estimation of radial basis functions is in the range ±∞	due to the nature of the operators. However, 
it is not possible for mineral resources to have a negative value. In addition, mineral resources reach a 
limited value. For example, the average calorie of the known best quality coal occurrences is around 
8000 kCal/kg. As can be seen, the radial basis function that generates estimation results in the range 
of ±∞	can not be used directly in mineral resource estimation. For this reason, the method should be 
adapted to mineral resource estimation. 

1.3. Conditioned Radial Basis Function  
Since radial basis functions cannot be used in direct estimation, in this study, the estimation approach 
with conditioned radial basis functions, which is suitable for resource estimation, that guarantees positive 
definiteness and where the estimation results are within the desired limits, is used. This approach differs 
from the original approach in two points: 

1) In estimation, only neighboring data is used. 
2) Changing the kernel function cr parameter if the estimation is not within the desired range.  

The goal in the first step given above is to increase the probability that the results to be in the desired 
range by performing regional conditioning.	However, the results obtained in this step may not always be 
within the desired ranges.	For this reason, an additional step was needed in the method. In this step, if 
the estimation is not within the desired range, the cr parameter shown in Table 1 is changed 
systematically. cr value is assigned, starting from zero, and it is checked whether the estimated value is 
within the desired range. The cr value is increased until the estimation is within the desired range. 

2. Case Study 
A coal field in the Türkiye-Thrace region was used for the application. A total of 128 vertical drillings with 
a length of 38 326 m were made in the field.	The total thickness of coal cut from these drillings is 876 
m. The coal seams are relatively thin, and the thickness of the coal seam is 6.5 m. The drillings made 
are shown in Figure 1. 
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In Eq. 7 the distance of all values   to be used in the estimation 
is the value of the kernel function used, and ,  represents the val-
ue of the function at the relevant distance. Accordingly, with the 
solution of the matrix equation for all λ›s, that is, the weights to 
be used in the estimation, the estimation process is performed as 
in the Eq. 3.

The estimation of radial basis functions is in the range due to 
the nature of the operators. However, it is not possible for mineral 
resources to have a negative value. In addition, mineral resourc-
es reach a limited value. For example, the average calorie of the 
known best quality coal occurrences is around 8000 kCal/kg. As 
can be seen, the radial basis function that generates estimation re-
sults in the range of can not be used directly in mineral resource 
estimation. For this reason, the method should be adapted to min-
eral resource estimation.

1.3. Conditioned Radial Basis Function 

Since radial basis functions cannot be used in direct estima-
tion, in this study, the estimation approach with conditioned radi-
al basis functions, which is suitable for resource estimation, that 
guarantees positive definiteness and where the estimation results 
are within the desired limits, is used. This approach differs from 
the original approach in two points:

1) In estimation, only neighboring data is used.

2) Changing the kernel function cr parameter if the estimation 
is not within the desired range. 

The goal in the first step given above is to increase the prob-
ability that the results to be in the desired range by performing 
regional conditioning. However, the results obtained in this step 
may not always be within the desired ranges. For this reason, an 
additional step was needed in the method. In this step, if the esti-
mation is not within the desired range, the cr parameter shown 
in Table 1 is changed systematically. cr value is assigned, starting 
from zero, and it is checked whether the estimated value is within 
the desired range. The cr value is increased until the estimation is 
within the desired range.

2. Case Study

A coal field in the Türkiye-Thrace region was used for the ap-
plication. A total of 128 vertical drillings with a length of 38 326 m 
were made in the field. The total thickness of coal cut from these 
drillings is 876 m. The coal seams are relatively thin, and the thick-
ness of the coal seam is 6.5 m. The drillings made are shown in 
Figure 1.
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Data were composited at 1 m length for estimation with krig-
ing and conditioned radial basis function. Summary statistics of 
the obtained data are shown in Table 2. Since the average distance 
between the data varies considerably, calculating the mean of the 
data directly may lead to erroneous inferences (Stein,2012, Tercan 
2004). For this reason, declustered means of the data were calcu-
lated while calculating the declustered average, the existing area 
was divided into 1000 m x 1000 m intervals, and the data falling 
within these intervals was redefined according to the number of 
data whose weights fell on the average.

Table 2. Summary statistics of the composites 

Number 
of data

Minimum Average Declustered 
Mean

Median Maximum Standard 
deviation

270 41 1428 1544 1456 3116 483

As can be seen in Table 2, the mean value and the declustered 
mean value are relatively different from each other. This is because 
the average distance between the data differs significantly. In this 
case, the mean for declustered data is higher than raw data. This 
means more frequent drilling in areas with low calorific value is 
made. 

2.1 Estimation with Kriging 

For estimation by kriging, firstly, the experimental variogram 
was calculated. Data frequency and spread did not allow for the 
computation of consistent directional variograms. For this reason, 
the experimental variogram was calculated and fitted as isotropic 
in the horizontal direction. The fitted variogram model is given in 
Table 3.

Table 3. Fitted variogram model

C0 C a (Horizontal, m) a(Vertical, m) 
83 000 150 000 1100 4

The cross-validation method was used to determine the us-
ability of the adapted variogram in estimations. Cross validation 
results are shown in Table 4.

Table 4. Cross validation results

Mean -10.23
Variance 255060
Average kriging variance 238269
Percentage of errors within two std. deviation 94.56

While the mean error was determined as low as -10 kCal/kg, 
the variance and mean kriging variances were close to each other. 
Also, Percentage of errors within two standard deviations, was a 
high value of 94.56%. Taking all these conditions into account, the 
cross-validation results show the usability of the variogram model 
for predictions. Estimation was performed using the fitted vario-
gram model and summary statistics on the estimation results ob-
tained Table 5 and the estimation map is given in Figure 4.

Table 5. Summary statistics of kriging estimate

Minimum (kCal/kg) 518
Median (kCal/kg) 1506
Average (kCal/kg) 1499
Maximum (kCal/kg) 2350
Standard deviation 134.57

Figure 4. Kriging estimate of roof of the coal model

As can be seen in Table 5, the estimations using kriging were 
found between 518 and 2350 kCal/kg with an average of 1499 
kCal/kg. In addition, in Figure 4, consistent with the calorific value 
summary statistics, the coal ceiling is with relatively low variabili-
ty in the range of 1000 to 2000 kCal/kg.

2.2 Estimation with Conditioned Radial Basis Function (CRBF)

Estimation with the conditioned radial basis function is made 
using the steps described in the relevant section. The same block 
model and composites were used as in kriging. There is currently 
no program for estimation with conditioned radial basis functions. 
For this reason, the algorithm was written in MATLAB environ-
ment and a program that made predictions was written. 

As seen in Table 6, there is more than one alternative that can 
be used as a kernel function in a radial basis function. It is neces-
sary to determine which of these alternatives is to be used. After 
determining the kernel function to be used, parameter optimiza-
tion of the relevant kernel function should be done. In the opti-
mization of the kernel function and parameter, many alternatives 
have been tried and the option that produces the average closest 
to the average of the composites from these alternatives has been 
preferred. The estimation range was between 40 and 3000 kCal/
kg, considering the lowest and highest values of the composite val-
ues. As a result, estimation was performed using the MATLAB code 
written to perform the estimation. Gaussian kernel function distri-
bution parameter is preferred as 1.9 in estimation. The statistics 
of the obtained results are given in Table 6 and the estimation map 
is shown in Figure 5.
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Table 6. Summary statistics of CRBF estimate 

Minimum (kCal/kg) 40

Median (kCal/kg) 1570
Average (kCal/kg) 1542
Maximum (kCal/kg) 3001
Standard deviation 500.47

Figure 5. CRBF estimate of roof of the coal model

In Table 6, coal is estimated between 40 and 3001 kCal/kg with 
an average of 1542 kCal/kg. In addition, the standard deviation of 
the estimation is 500.47. Coal quality variability is relatively high-
er, and high-quality coal and low-quality coal are adjacent to each 
other in the south of the field.

In order to compare estimation results, histograms of the com-
posites and estimation results are given in Figure 6.  
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As seen from the Figure 6 kriging estimates are centered be-
tween 1500 and 2000 kCal/kg values while it is expected due to 
the well-known smoothing property of the method. CRBF esti-
mates are close to composite values while deviation exists at calo-
rific values between 2250 and 2750 kCal/kg. To compare summa-
ry statistics of the estimate’s percent of deviations from composite 

statistics are are given in Table 7 while percentages of deviations 
are calculated as in Eq. 8. 
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Table 7. Deviation of summary statistics of estimates from composite sum-
mary statistics

Deviation CRBF Kriging
Minimum (%) -2.44 1163.41
Median (%) 4.28 1.37
Average (%) 7.83 3.43
Maximum (%) -3.74 -24.60
Standard deviation(%) 3.50 -72.17

As seen from Table 7 deviation of the CRBF estimates are low-
er in minimum, maximum and standard deviation while kriging 
estimates produced closer estimates to composites in terms of 
median and average. The deviation of the kriging is dramatic in 
minimum and standard deviation which is result of smoothing. 

3. Results and Discussions 

In this study, Conditioned Radial Basis Function, and kriging 
methods for spatial estimation of quality are used and compared. 
For the purpose of comparison, a coal field in the Türkiye-Thrace 
region has been used. The spatial distribution of the coal calorific 
value was estimated by both methods. Experimental variograms 
were calculated and modeled for estimation by kriging. The exper-
imental variogram shows that the average calorific value continu-
ity in the field is approximately 1100 m and 4 m in horizontal and 
vertical directions respectively. Estimates are also made with the 
CRBF for comparison purposes. The Gaussian kernel function was 
used, and the cr was determined as 1.9.

It was observed that the average of the CRBF estimates were 
closer to composite estimates. In addition, the estimation interval 
of the CRBF is closer to the raw data. From this point of view, it 
has been observed that CRBF produces more desirable results in 
terms of estimation. However, the minimum value obtained with 
CRBF is 1 kCal/kg lower than the composite minimum values. Al-
though this value may seem insignificant, it may indicate one of 
the flaws of estimation with CRBF. Because, in general, estimators 
are expected to interpolate, but as it can be seen, CRBF estimated 
a value outside the range of composites, albeit at an insignificant 
level. The highest estimate values   obtained by both methods were 
lower than the composite estimates. 

Estimation steps with both methods are similar while only at-
tachment of the weights associated with the sampling points are 
only the difference. In estimation with kriging variogram values 
were used while in CRBF kernel function used instead. No vario-
gram modelling is required in estimation with CRBF instead esti-
mation of cr value is required. Results show that CRBF can be used 
as an alternative to kriging while technique can be used to check 
the estimations with kriging. 

The parameters used in the method were determined by tri-
al-and-error method. This approach is troublesome and the ker-
nel function to be used may differ depending on the person using 
the method. Similarly, the parameters of the kernel function were 
determined by trial-and-error method. For this reason, it is nec-
essary to develop standard methods for the determination of the 
kernel function and its related parameter. The method has been 
tried for the first time in the coal field. Testing the method with 
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other coal quality variables is important in terms of testing the us-
ability of the method.
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