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 ABSTRACT 

In this study, the modal analysis of mechanical linkages were investigated across arbitrary configurations. Rigid body motion was 

successfully decoupled from the flexible motion associated with pseudo-dynamic equilibrium configurations by leveraging linear 

elasto-dynamic modeling. These equilibrium configurations were determined through the solution of nonlinear differential 

equations. The analytical investigation reveals that the modal analysis of a mechanical linkage at arbitrary configurations is 

intricately tied to the position parameters of the linkage. Mode shapes and the spectrum of natural frequencies were dynamically 

evolved as the mechanical linkage traversed space. To validate the findings, numerical results were presented for a slider-crank 

mechanism, which were further corroborated through analytical simulations. 

Keywords: Coordinate partitioning, Embedding technique, Kinematic chain, Modal analysis 

Diferansiyel Denklemler Yoluyla Mekanik 

Bağlantıların Modal Analizinin Geliştirilmesi 
ÖZ 

Bu çalışmada, farklı konfigürasyonlara sahip mekanik bağlantıların modal analizi derinlemesine incelenmiştir. Doğrusal elasto-

dinamik modellemeden yararlanarak, katı cisim hareketi, dinamik denge konfigürasyonlarıyla ilişkili esnek hareketten 

ayrıştırılmıştır. Bu denge konfigürasyonları doğrusal olmayan diferansiyel denklemlerin çözümü yoluyla belirlenmiştir. Analitik 

yöntemlerle farklı konfigürasyonlardaki mekanik bağlantının modal analizinin, bağlantının konum parametrelerine karmaşık bir 

şekilde bağlı olduğu ortaya konmuştur. Buna göre mod şekilleri ve doğal frekansların spektrumu, mekanik bağlantıların farklı 

konfigürasyonlarında dinamik olarak değişmektedir. Sonuçların doğrulanması için, simülasyonlarla desteklenen krank - biyel 

mekanizmasının sayısal sonuçları sunulmuştur. 

Anahtar Kelimeler: Koordinat bölümleme, Gömme tekniği, Kinematik zincir, Modal analiz 

 

1. INTRODUCTION 

The structural parts which have mechanical linkages are 

exposed to vibrational forces. One of the efficient way to 

understand those dynamic forces of corresponding part is 

to apply modal analysis [1]. Modal analysis guides the 

investigation of the dynamic characteristics of parts and 

the method is used for many industrial applications such 

as analyzing vibrations, fatigue life, flexible multi-body 

systems etc. [2,3]. Spectrum of natural frequencies and 

mode shapes can be extracted. Besides, effect of distinct 

dynamic forces on the part can be visualized through 

mode shapes [4]. 

On the other hand, structural parts can be formed of 

versatile flexible linkage configurations [5-7]. Basic 

structures such as four-bar, slider-crank, and robot 

linkage mechanisms were affected by dynamic forces 

according to their using operations [8,9]. Dynamic 

responses of the structures can be refined by changing 

configuration of linkage connections [10]. Analytical 

solutions of mechanical linkages can be acquired with 

different disciplines such as linear elasto-dynamic 

analysis [11-13]. In the nature, materials show some 

degree of nonlinear elastoplastic response. Most of the 

time, material complexity is in high levels and hard to 

analyse. Therefore, dynamic analysis is evaluated in the 

linear region that assumes part’s material properties are 

homogeneous and isotropic. Then, this simplifies the fact 

that material’s behavior doesn’t change in different 

directions of space [14-15]. 

In the literature, different mechanical linkage 

configurations such as four-bar, slider-crank, internal 

combustion engine mechanisms were studied in the way 

of dynamic responses to vibrations [16-20]. Wang et al 

studied robot mechanism theory and dynamic control of 

linkage dependent mechanisms [21]. Mehta et al. 

investigated four-bar linkage dynamic analysis in space 

[22]. Palmieri et al. studied configuration dependent 

modal analysis of a robot [23]. Wang et al. and Aannaque 

et al studied elasto-dynamic analysis of robots and four-

bar mechanisms, respectively [24-25]. Midha et al. 

studied different positional configuration of linkage 

mechanisms and extracted configure-dependent natural 

frequencies and mode shapes which are presented as 

functions of the crank position [26]. Eberhard et al. used 

Timoshenko beam model to study both the axial and 
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lateral system vibrations of a manipulator linkage 

configurations [27].  

In the case of mechanism geometric dimensions, there 

are different aspects which varies according to 

application field. In this study, slider crank mechanisms, 

show that the crank and connecting rod lengths in a 

relation to each other. Besides, even the dimensions used 

in industrial type mechanisms are versatile, they have 

analytical and numerical solutions in terms of the 

applicability of the method. Golebiewski et al 

investigated slider crank mechanism with both analytical 

and experimental methods in terms of various parameters 

such as crank length, slider offset etc. [28]. Matekar et al. 

and Khemili et al. studied slider-crank mechanisms with 

changing clearance dimensions. Both study claimed that 

joint clearance and slider offset have an impact on 

modelling the mechanism [29,30]. Chai et al. 

investigated modal analysis of a specific slider-crank 

mechanism which is mainly used as crank shaft and 

piston in internal combustion chambers. Mode shapes 

and natural frequencies for crank shaft and piston parts 

were analyses through simulation and experiments [31]. 

Bonisoli et al. improved a detection method which 

reveals undesired dynamics in structures such as 

motorcycle piston-crank mechanisms. The method 

showed the critical components in the assembly and their 

mode-shapes requiring modifications [32]. 

In the light of those studies, an analytical study was made 

on the modal analysis of mechanical linkages that moves 

in space continuously in this article. With this goal in 

mind, several open problems like change in mode shapes 

and natural frequencies as a function of mechanical 

linkage configuration were addressed and conditions for 

a successful modal analysis of mechanical linkages were 

sought. 

The rest of the paper is organized as follows: in section 

two, a review of related works is made and the 

contribution of this paper is discussed. In section three, 

the problem statement is defined. Section four is devoted 

to theory where an analytical proof of the main claim of 

this paper is made. Section Five presents the numerical 

results of the proposed modal analysis approach. The 

main claim of this paper is that the mode shapes and 

spectrum of the natural frequencies change as a function 

of the mechanical linkage position parameters, and 

Abaqus software simulations validate these results. 

Finally, section six concludes the paper with conclusive 

statements. 

1.1. Related Works 

Basically, dynamic analysis of multi-body systems can 

be made using either differential-algebraic equations or 

ordinary differential equations. Vibration analysis of 

multi-body systems can be made assuming small motions 

around some equilibrium configuration [33,34]. 

Generally, differential algebraic formulation can be 

presented as in augmented formulation where Lagrange 

multipliers are used to augment the constraint equations 

to differential equations that are written as a function of 

redundant generalized coordinates or they can be 

transformed using the embedding technique so 

differential algebraic equations can be written in terms of 

a set of minimal differential equations. The second 

method, embedding technique can be visualized as a 

generalization of constraint elimination technique [35]. 

As it was mentioned above, vibration analysis of a multi 

body system can be formulated as a perturbation in the 

generalized coordinate set around some equilibrium point 

[36-37].  

The main claim of this paper is that when the vibration 

characteristic of any mechanical linkage changes as a 

function of its configuration parameters, it can be 

accounted for easily as proposed here. As an example 

case; A slider crank mechanism was studied and it has 

been shown that both spectrum of natural frequencies and 

the set of mode shapes change in great amounts when 

configuration of the mechanism changes as a function of 

crank angle. The authors of this paper used Matlab 

simulations to calculate these results. Abaqus software 

simulations were used to validate these numerical results. 

All simulation results have verified that both the 

spectrum of natural frequencies and the set of mode 

shapes are a function of mechanical linkage's 

configuration parameters. This conclusion was explained 

using the fact that boundary condition of each linkage in 

the mechanism change as the mechanical linkage moves 

in space; boundary conditions are a function of the 

mechanical linkage configuration parameters. 

 

2. PROBLEM STATEMENT 

For body-i in the multi-body system, Lagrange's equation 

takes the form 

i

i i
T i

i i q

d T T

dt

    
− + =   

    
C λ Q

q q
                             (1) 

i
q  is the redundant set of generalized coordinates of 

body-i. iT  is the kinetic energy of the body-i. iq
C  is the 

Jacobian matrix of the constraint equation associated 

with the body-i. λ  is the vector of Lagrange multipliers. 

In general, i

T

q
C λ  represents the generalized joint forces 

acting on body-i. 
i

Q  is the vector of generalized forces 

and it is defined as 

                                                       
i i i i i

v e= − + +Q K q Q Q                               (2) 

i
K  is the stiffness matrix of body-i. Let us define 

i

vQ  to 

be 

 
1

2

T

i i i iT i i

v i

   
= − +   

   
Q M q q M q

q
                           (3)                               

i
M  is the mass matrix of body-i. 

i

vQ  is called the 

quadratic velocity vector. Using Lagrange multipliers, 

equations of motion are formulated in term of a set of 
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redundant coordinates including the independent and 

dependent coordinate sets: 

                                        

;i

i i i i T i i

e v bq
i n+ + = +  M q K q C λ Q Q                     (4)    

Where 

2

i i i i

RR R Rf

i i i i i

f

i i

ff fsym



  

   
   

= =   
   
   

m m m R

M m m q

m q

                       (5)                                          

0 0 0

0 0 0

0 0

i

i i

i
f

T

R

i i T

q
i T
ff

q



 
   
   = =   
    

 

C

K C C

K C

                            (6)                                                  

( )

( )

( )

( )

( )

( )

i i

e v
R R

i i i i

e e v v

i i

e v
f f

 

   
   
   

= =   
   
   
   

Q Q

Q Q Q Q

Q Q

                            (7) 

 

The solution of Equation 4 has to satisfy the constraint 

equations given below: 

( , ) 0t =C q                                (8)                      

The equation of motion of the multi-body system can be 

obtained by stacking the equation of motion of each body 

in the system, see Equation 4-7; they are represented as 

follows: 

T

q e v+ + = +Mq Kq C λ Q Q                              (9) 

In this paper, it is aimed to develop a general approach to 

setup an eigenvalue problem for the modal analysis of 

open/close loop mechanical linkages which take arbitrary 

configuration in space continuously. To this end, linear-

elasto dynamic model of the open/close loop mechanical 

linkage was formulated as described in the next section. 

Then, embedding technique was used to remove the 

redundant differential equations from the set of equations 

as represented in Equation 9. This paper shows that the 

minimal set of nonlinear differential equations are a 

function of the open/close loop mechanical linkage's 

configuration parameters. Hence, modal analysis has to 

be repeated for every successive configuration taken by 

the mechanical linkage. 

 

3. THEORY 

3.1 Linear Elasto-Dynamic Modeling for Modal 

Analysis 

The general form of dynamic equation is given in 

Equation 4-9. Using the theory of linear elasto-dynamics, 

the differential equations are separated into two sets: one 

is for the rigid body motion and the second one is for the 

flexible motion.  

Changes in the mass matrix caused by the elastic 

deformation are not considered. Equation 4 can be split 

up into two row-wise equations as follows:                              

( )

( )

( )

( )

2 2

0 0

0 0

i i i i i

ii i

i i
f

fi i

i i Ti i

R R R R

i i Ti

i i i
e v RR R i

f bii i

e v

i n



 


 

 

       
   + +    
          

     
       = + −       

       

m m CR R
λ

Cm

Q Q m
q

mQ Q

      (10)

                                     

( )

( )
2

i i i i i
f f f f f

ii
ff

i i i i i

f f eq q q q q

T
ii

Rfi T

v biiqq
f

i n
 

       + =             

     
+ − −               

m q K q Q

Rm
Q C λ

m

           (11)                         

Equation 10 represents a set of nonlinear equations 

defining the dynamics of the mechanical linkage. This 

equation can be used to represent the pseudo-dynamic 

equilibrium position. Equation 11 is a system of second-

order differential equations defining the flexible motion 

field about this pseudo-dynamic equilibrium position. 

Constraint equations are expressed as a vector: 

( , , ) 0d e

pt =C q q                              (12)   

Here, 
d

q , 
e

q  are the independent/dependent 

rigid/flexible coordinates, respectively. Note that 

constraint equations are dependent on both rigid body 

coordinates and coordinates associated with flexible 

coordinates. Using the generalized coordinate 

partitioning of 
T

dT eT =  q q q  let us take the derivative 

of constraint equation given in Equation 12, twice. This 

equation leads to an expression where the acceleration 

term q  appears explicitly. Define some new constants: 

de e d

q q q

−= −C C C                                                         (13) 

                                                                    

( ) 2 [ ]e

q q qt tt
q

−


 = − + +
  

C C C q q C q C                     (14)

   

Let us define 
de

qB  and 
de
γ  as 

                                                    

de de

deq

q 

   
= =   

  

I 0
B γ

C C
                                         (15) 

                    

One can write an expression for q  where it is expressed 

in terms of the acceleration of independent coordinates 

i.e. 
d

q .  

 
de d de

q= +q B q γ                                                         (16)                                 

When the flexible mechanism is fixed at a particular 

configuration to make the modal analysis of mechanism 

links, it is assumed that all velocity and acceleration 

terms associated with the rigid body motion take zero 

values. Since, in the application of linear elasto-dynamic 
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modeling to the modal analysis of a mechanism, it is 

assumed that the mechanism is fixed in space or the rigid 

body motion is removed from the subsequent vibration 

analysis, it is claimed that the velocity/acceleration terms 

related to rigid body motion are all go to zero. Hence, 

Equation 10-11 can be simplified further using this 

assumption. 

                                      

( )

( )

( )

( )

i ii f

i
fi i

i i iT
e v RR R iR

fT ii i

e v 
 

      
         = + −                 

Q Q mC
λ q

C mQ Q
      (17)

              

                              

( )i i i i ii
f f f f ff

i i i i i T

f f eq q q q qq

         + = −               
m q K q Q C λ (18)              

  

Note that in structural dynamic analysis of a mechanism 

at an arbitrary position, the acceleration vector can take 

high values, however, the displacement vector is defined 

as an infinitesimal deformation about the static 

equilibrium position i.e. elastic deformations fq . 

Therefore, displacements are expected to take small 

values. One can use the first-order Taylor series 

expansion of the constraint equations using constraint 

Jacobian matrix and express the dependent displacements 

in terms of independent displacement. This process 

follows the same approach that is employed for the 

virtual displacement vector. ( )C q  represents the 

component due to displacements in coordinates. Now, let 

us decompose the vector of elastic coordinates into 

dependent and independent coordinates. If 
e

fq  are 

selected such that 
f

e

qC  has full rank then e

fq  can be 

expressed in terms of d

fq : 

( )
f f

de de e

f q qf

−= +q qC C C q                                           (19)                        

f f f

de e d

q q q

−= −C C C                                            (20)                                     

Finally, fq  can be written in terms of 
d

fq  

 

 
( )

f f

d
de ef f
q q

−

   
= +   
      

I 0
q q

C C C q
                           (21)                                               

  

In structural dynamic analysis of a mechanism that starts 

from standstill; if all initial conditions are zero then 

displacement, velocity and acceleration vectors are zero. 

Then one can assume that ( ) 0=C q . Furthermore, when 

the flexible mechanism is fixed at a particular 

configuration, all displacement related to rigid body 

motion goes to zero as well so Equation 21 is simplified.  

Then, one can write     

                                                 

f fq

d d

f

de de

f q ff=  =q B q Bq q                            (22)                            

    

Equation 22 can be substituted into Equation 18. This 

equation is pre-multiplied by 
f

deT

qB . One can show that 

f f

deT T

q qB C  is a null matrix. Then, one can write the 

following equation: 

d

ff f

dd d d

f f

d d d

f ff+ =M q K q Q                                            (23)                                               

  

f f

dd deT de

q fff qf =M B M B                                          (24)                       

   

f f

dd deT de

fq qff f=K B K B                             (25)                        

   

f eff q

dd deT

f=Q B Q                                                      (26)                         

   

This is a classical equation of motion for the modal 

analysis of a linear system. Note that both d

ff

d
K  and d

ff

d
M  

are functions of 
d

q  since 
f

de

qB  is a function of 
d

q  i.e. 

( )
f

de d

qB q . It is obvious that natural frequency spectrum is 

a function of 
d

q .  

 

3.2 LU Decomposition of Constraint Jacobian Matrix 

LU decomposition can be applied to the Jacobian matrix 

of the constraint equations i.e. qC  to find the set of 

independent and dependent coordinates. LU 

decomposition of the qC  is represented as follows: 

                                       

( )  
TT T

q q=  =C P LU C LU P                            (27)                   

             

                                  

 
T p p

q = =  =C δq LU δq 0 δq Pδq              (28)                           

             

The first 
cn  columns of  

T
LU gives an 

c cn n  matrix; 

this matrix can be used as 
e

qC .It can be shown that 
e

qC  

has full rank, so it is inverse exists.  Hence, one can show 

that 

 ep dpde

q q

−= −δq C C δq                             (29)                                 

  

where 

                                       
e T T d T T

q q
e d

   = − =   C U L C U L                            (30)                                 

The original coordinates can always be recovered by the 

following transformation: 
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1
e d

dep dp dep q q

−
−
 

=  =  
 

C C
δq B δq B P

I
                         (31)                                     

Since, matrix P  is a permutation matrix, its inverse 

always exists. Note that 
dp

δq  is a permutation of the 

original set of redundant coordinates. 

 

4. MODAL ANALYSIS OF A SLIDER-CRANK 

MECHANISM AT ARBITRARY 

CONFIGURATION IN SPACE 

In this section, modal analysis of a slider-crank 

mechanism was made. The dimensions of the mechanism 

are given in Figure 1.  

 

Figure 1. Slider-crank mechanism. Dimensions are given in 

mm. 

 

Figure 2. Four-different configurations of slider-crank 

mechanism.  

It is assumed that the cross-section of the links are 
22 2mm . It was assumed that the mechanism is made 

of steel material. The slider mass is assumed to be 0.1kg  

.Modal analysis of this mechanism was made at four 

different crank angle: i) 2
0

o
 =  ii) 2

45
o

 =  iii) 2
165

o
 =  

iv) 2
225

o
 = . Mainly, four different configurations of 

slider-crank mechanism were generated and shown in 

Figure 2 with Cartesian coordinate system. A finite 

element model was constructed in Abaqus software at 

four different configurations and natural frequency and 

mode shapes were extracted and compared with the 

Matlab software analytical results. Abaqus software 

results have verified that the method proposed here is 

very accurate. Natural frequencies calculated by the 

method proposed here is compared with the Abaqus 

software results in Table 1-2. Modes are not shown here 

due to space limitations but numerical comparisons have 

shown that mode shapes are almost identical. The 

function of the modal scale factor (MSF) provides a 

qualitative way of comparing two modal vector sets. In 

this approach, scaled modal vectors are used for 

correlation. When two modal vectors are scaled 

similarly, elements of each vector can be averaged, 

differentiated, or sorted to provide a best estimate of the 

modal vector [38]. According to that, Table 3-6 show 

MSF numbers which shows comparison of mode shapes 

for four configurations with crank and coupler members 

and calculated by the method developed here and run on 

Matlab program and mode shapes calculated by Abaqus 

software. To investigate the modal characteristics of the 

mechanism, configuration one was examined in detail. 

First five mode shapes and natural frequencies calculated 

by Abaqus for configuration one are plotted in Figure 3-

7. 

 

Figure 3. Modal analysis of slider-crank mechanism with 

Abaqus software for configuration-one: mode shape-01. 

 

Figure 4. Modal analysis of slider-crank mechanism with 

Abaqus software for configuration-one: mode shape-02. 

 

Figure 5. Modal analysis of slider-crank mechanism with 

Abaqus software for configuration-one: mode shape-03. 
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Figure 6. Modal analysis of slider-crank mechanism with 

Abaqus software for configuration-one: mode shape-04. 

 

Figure 7. Modal analysis of slider-crank mechanism with 

Abaqus software for configuration-one: mode shape-05. 

 

These mode shapes show that modal characteristics of the 

mechanism depends on the boundary condition of 

individual components and the joint kinematics that 

constrains the relative motion among neighboring 

components. Modal analysis of the slider-crank 

mechanism shows that mode shapes of the crank and 

coupler link almost identical to each other at different 

configurations. This observation is explained by simple 

beam model of crank and coupler links, boundary 

conditions of both links change very little so modal 

analysis results do not change considerably.  

 

Table 1. Natural frequency of the slider-crank mechanism at 

four different configurations: Matlab analytical results are 

compared with Abaqus software results for configuration one 

and two. 

     Natural Frequency ( rad/sec) 

Mode Matlab-01 %Err-01 Matlab-02 %Err-02 

Mode-02 15.912 0.0188 15.007 0.013 

Mode-03 58.932 0.0265 57.932 0.021 

Mode-04 73.507 0.0799 64.6971 0.025 

Mode-05 131.60 0.0617 129.8657 0.036 

Mode-06 233.07 0.0827 230.1752 0.059 

Mode-07 262.08 0.2543 253.9726 0.141 

Mode-08 359.33 0.1511 359.2785 0.086 

Mode-09 518.05 0.2242 516.7660 0.122 

Mode-10 565.45 0.6078 568.5836 0.334 

Table 2. Natural frequency of the slider-crank mechanism at 

four different configurations: Matlab analytical results are 

compared with Abaqus software results for configuration three 

and four. 

      Natural Frequency ( rad/sec) 

Mode Matlab-01 %Err-01 Matlab-02 %Err-02 

Mode-02 16.4753 0.0157 14.9218 -0.0039 

Mode-03 59.1462 0.0186 57.8785 0.0054 

Mode-04 77.9673 0.1150 66.6812 0.0394 

Mode-05 133.299 0.1115 129.7825 0.0304 

Mode-06 234.494 0.0908 230.1621 0.0579 

Mode-07 268.291 0.5287 255.7737 0.1852 

Mode-08 359.830 0.4361 358.9230 0.1018 

Mode-09 518.912 0.9028 516.2853 0.1525 

Mode-10 557.894 1.8261 569.0805 0.4341 

Table 3. MSF number of mode shapes for configuration-one: 

Matlab analytical results are compared with Abaqus software 

results. 

MSF-01 Crank-x Crank-y Coupler-x Coupler-y 

Mode-02 1.0000 1.0000 1.0000 1.0000 

Mode-03 1.0000 1.0000 1.0000 1.0000 

Mode-04 1.0000 1.0000 1.0000 1.0000 

Mode-05 1.0000 1.0000 1.0000 1.0000 

Mode-06 1.0000 1.0000 1.0000 1.0000 

Mode-07 1.0000 1.0000 1.0000 0.9999 

Mode-08 1.0000 1.0000 1.0000 1.0000 

Mode-09 1.0000 1.0000 1.0000 0.9999 

Mode-10 1.0000 0.9999 1.0000 0.9736 

Table 4. MSF number of mode shapes for configuration-two: 

Matlab analytical results are compared with Abaqus software 

results. 

MSF-02 Crank-x Crank-y Coupler-x Coupler-y 

Mode-02 1.0000 1.0000 1.0000 1.0000 

Mode-03 1.0000 1.0000 1.0000 1.0000 

Mode-04 1.0000 1.0000 1.0000 1.0000 

Mode-05 1.0000 1.0000 1.0000 1.0000 

Mode-06 1.0000 1.0000 1.0000 1.0000 

Mode-07 1.0000 1.0000 1.0000 0.9999 

Mode-08 1.0000 1.0000 1.0000 1.0000 

Mode-09 1.0000 1.0000 1.0000 1.0000 

Mode-10 1.0000 1.0000 1.0000 0.9972 

 

5. CONCLUSIONS 

In this article, modal analysis of open/close loop 

kinematic chains were studied. Equation of motion of a 

mechanical linkage was derived using the embedding 

technique and differential-algebraic equations. 
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Table 5. MSF number of mode shapes for configuration three: 

Matlab analytical results are compared with Abaqus software 

results. 

MSF-03 Crank-x Crank-y Coupler-x Coupler-y 

Mode-02 1.0000 1.0000 1.0000 1.0000 

Mode-03 1.0000 1.0000 1.0000 1.0000 

Mode-04 1.0000 1.0000 1.0000 1.0000 

Mode-05 1.0000 1.0000 1.0000 1.0000 

Mode-06 1.0000 1.0000 1.0000 1.0000 

Mode-07 1.0000 0.9999 1.0000 0.9994 

Mode-08 1.0000 1.0000 1.0000 0.9997 

Mode-09 1.0000 0.9998 0.9999 0.9972 

Mode-10 1.0000 0.9984 1.0000 0.9272 

 

Table 6. MSF number of mode shapes for configuration-four: 

Matlab analytical results are compared with Abaqus software 

results. 

MSF-04 Crank-x Crank-y Coupler-x Coupler-y 

Mode-02 1.0000 1.0000 1.0000 1.0000 

Mode-03 1.0000 1.0000 1.0000 1.0000 

Mode-04 1.0000 1.0000 1.0000 1.0000 

Mode-05 1.0000 1.0000 1.0000 1.0000 

Mode-06 1.0000 1.0000 1.0000 1.0000 

Mode-07 1.0000 1.0000 1.0000 1.0000 

Mode-08 1.0000 1.0000 1.0000 1.0000 

Mode-09 1.0000 1.0000 1.0000 1.0000 

Mode-10 1.0000 1.0000 1.0000 0.9854 

 

In this formulation, if any component of the mechanical 

linkages is replaced then the equation of motion can still 

be obtained by a local modification of the differential-

algebraic equations. 

In this study, it has been shown that modal analysis of a 

mechanical linkage depends on the configuration of the 

mechanism in space. A slider-crank mechanism was 

examined as a case study. It has been shown that mode 

shapes and natural frequency are a function of the 

configuration. This study has made two contributions to 

the literature: i) differential-algebraic equation and 

embedding technique formulation to the modal analysis 

was proposed and ii) interaction of the mechanism 

configuration in space and the results of modal analysis 

was examined.  

One can be inferred from this study that, since the length 

of the crank is shorter than the connecting rod, the mode 

shapes and natural frequencies of the crankshaft are not 

identical with the mode shapes and natural frequencies of 

the connecting rod. Therefore, the dynamic behavior of 

the assembly and components does not coincide. And yet, 

the dynamic behavior of the crankshaft and connecting 

rod behaves approximately like a cantilever beam. The 

fact that similar results were obtained in the Abaqus 

program supports this analytical approach. 

For the case of industrial applications, slider crank 

mechanism could be improved in terms of its dynamic 

response. Specifically, if operating frequency was 

known, high-frequency vibrations can be detected, 

natural frequencies of assembly could be modified in 

order to eliminate resonances and mode shapes which are 

requiring modifications could be revealed by the 

presented method.  
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