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Abstract. This paper introduces a new subclass of analytic functions em-

ploying the operator that was recently defined by the authors. The coefficients
estimate |as| (s = 2, 3) of the Taylor-Maclaurin series in this new class, as well

as the Fekete-Szegö functional problems, have been derived. Furthermore, we

obtained the sharp upper bound for the functional |a2a4 − a23| for functions
belonging to this new subclass.

1. Introduction

By A, we express the functions class f of the form

f(z) = z+

∞∑
s=2

asz
s, (1)

which are considered analytic with respect to the symmetric open unit disk U =
{z ∈ C : |z| < 1}, with the normalization conditions given by f(0) = f

′
(0)− 1 = 0.

Furthermore, we denote S as the subclass of A, which are univalent in U.
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determinant.
1 P106137@siswa.ukm.edu.my-Corresponding author; 0000-0001-6246-3359;
2 maslina@ukm.edu.my; 0000-0001-9138-916X.

.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

695



696 A. ALATAWI, M. DARUS

Let P be the family of all analytic functions p having positive real parts, given
by

p(z) = 1 +

∞∑
s=1

dsz
s , (ℜe{ds} > 0, z ∈ U) . (2)

A number of subclasses with respect to normalized analytic functions is studied as
part of Geometric Function Theory.

The concept of quantum calculus, also known as q-calculus, has played a signifi-
cant role in the advancement of Geometric Function Theory (GFT) and its extensive
application in diverse fields, including mathematical science and quantum physics.
For analyzing a variety of subclasses, q-calculus technique are essential. In Geo-
metric Function Theory, the fundamental q-hypergeometric functions were initially
applied by Srivastava and Owa (1989), who also provided a clear foundation for
employing calculus inside this theory.

Additionally, using q-calculus theory, it is possible to express univalent function
theory. More recently, the use of a fractional q-derivative operator has been ob-
served in the creation of numerous families of analytic functions (for example, in
Alsoboh and Darus [8], Elhaddad and Darus [10, 11], Mahmood and Darus [23]).
For instance, Purohit and Raina [28] investigated the usage of q-fractional oper-
ators with respect to defining several analytic function classes for U as an open
unit disc. Meanwhile, Mohammed and Darus [23] assessed properties q-analogue
operator with respect to approximation and geometry concerning specific families
of analytic function within the compact disc. A rather comprehensive analysis of
applied q-analysis in the theory of operators can be discovered in Aral et al. [9] and
Exton [12], also see ( [7], [14], [15], [16], [17], [29], [31], [34]) for further studies.
The kth Hankel determinant was explored by Noonan and Thomas [24] in 1976,
which is expressed as

Hk(s) =

∣∣∣∣∣∣∣∣∣
as as+1 as+2 · · · as+k+1

as+1 as+2 as+3 · · · as+k+2

...
...

... · · ·
...

as+k−1 as+k as+k+1 · · · as+2k−2

∣∣∣∣∣∣∣∣∣ , (s, k ∈ N).

This determinant has garnered significant attention from several researchers. The
rate of growth of Hk(s) as s tends to ∞ was determined by Noor [25] with bounded
boundary. For k = 2 and s = 1, we have H2(1) = |a3 − a22|, which is well-known by
Fekete–Szegö functional, and this may be generalized to |a3−µa22| for (µ ∈ C) (see,
for example, [8,10]). For k = 2 and s = 2, we obtain the second Hankel determinant
H2(2) = |a2a4 − a23|.

Determining the upper bounds for H2(2) attracts the attention of many authors
who have determined several families of analytic functions. In 1967, Pommerenke
[27] estimated the sharp upper bounds for the class A. Some recent applications are
studied by Abubaker and Darus [1], Ullah et al. [33], and Elhaddad and Darus [11].



SECOND-ORDER HANKEL DETERMINANT FOR A SUBCLASS OF ANALYTIC FUNCTIONS 697

Several authors have investigated it before, which may be referred to ( [2,19,22,32,
34,35,37]).

More recently, Alatawi and Darus [5, 6] provided the new q-derivative operator
Dn

q (µ, β, η, t)f(z) : A → A, which is a modified Opoola operator as follows:

Dn
q (µ, β, η, t)f(z) = z+

∞∑
s=2

Ωn
s (η, β, µ, t)asz

s, (3)

where

Ωn
s (η, β, µ, t) =

[
η +

(
[s]q + β − µ− η

)
t
]n

,

where n ∈ N0, t ≥ 0 and 1 ≤ µ+ η ≤ β.

Remark 1. Some special operators are listed here:

(1) When q → 1− and η = 1, then Dn
q (µ, β, η, t)f(z) becomes the Opoola differ-

ential operator [26].
(2) When q → 1−, t = 1 and µ = β, then Dn

q (µ, β, η, t)f(z) becomes the
Sãlãgean differential operator [30].

(3) When t = 1 and µ = β, then Dn
q (µ, β, η, t)f(z) becomes the q- Sãlãgean

differential operator [13].
(4) When q → 1−, µ = β and η = 1, then Dn

q (µ, β, η, t)f(z) becomes the Al-
Oboudi differential operator [4].

Definition 1. Let f be given by (1). Hence, f ∈ Ln
q,b(µ, β, η, t) if it complies with

the inequality condition given below

Re
{
∂qD

n
q (µ, β, η, t)f(z)

}
> 0, (z ∈ U). (4)

If q → 1− and n = 0, then the subclass Ln
q,b(µ, β, η, t) is reduced to the class

of positive real parts, denoted by R, which was created by MacGregor [21] then
studied by Janteng et al. [18].

To demonstrate our main findings, we require the lemmas as expressed below:

Lemma 1. [20] Let p ∈ P as is in (2), then |d2 − νd21| ≤ 2max{1, |2ν − 1|} and
the sharpness result of the functions given by

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

.

Lemma 2. [27] Suppose p ∈ P given by (2), therefore |dm| ≤ 2 for all m ≥ 1.

Lemma 3. [19] Let p ∈ P as in (2), then

2d2 = d21 + x(4− d21), |x| < 1 (5)

and

4d3 = d31 + 2x(4− d21)d1 − d1(4− d21)x
2 + 2(4− d21)(1− |x|2)z, |z| < 1. (6)
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In this current work, we determine the sharp upper limits with respect to H2(2)
for the class of analytic functions Ln

q,b(µ, β, η, t) as follows.

2. Main Results

In our first theorem, motivated by the result of Zaprawa [36], we determine the
coefficients estimate |as| (s = 2, 3) of the Taylor-Maclaurin series in this new class,
as well as the Fekete-Szegö functional problems for functions in Ln

q,b(µ, β, η, t).

Theorem 1. If f ∈ Ln
q,b(µ, β, η, t), then∣∣a2∣∣ ≤ 2

[2]q
(
η +

(
[2]q + β − µ− η

)
t
)n ,

∣∣a3∣∣ ≤ 2

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n ,

and

|a3 − ℵa22| ≤
2

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n max

{
1;

2ℵ[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n

[2]2q
(
η +

(
[2]q + β − µ− η

)
t
)2n − 1

}
.

The best possible result is achieved by Köebe function.

Proof. Since f ∈ Ln
q,b(µ, β, η, t). From (3), we have

1 +

∞∑
s=2

[s]q

[
η +

(
[s]q + β − µ− η

)
t
]n

asz
s−1 = 1 +

∞∑
s=1

dsz
s. (7)

By equating the coefficients on both sides of (7) yields

a2 =
d1

[2]q
(
η +

(
[2]q + β − µ− η

)
t
)n , (8)

a3 =
d2

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n , (9)

a4 =
d3

[4]q
(
η +

(
[4]q + β − µ− η

)
t
)n . (10)

From (8), (9) and using Lemma 2, yields∣∣a2∣∣ ≤ 2

[2]q
(
η +

(
[2]q + β − µ− η

)
t
)n ,

and ∣∣a3∣∣ ≤ 2

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n .
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Now,

a3 − ℵa22 =
d2

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n − ℵd21

[2]2q
(
η +

(
[2]q + β − µ− η

)
t
)2n

=
1

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n
(
d2 −

ℵ[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n

[2]2q
(
η +

(
[2]q + β − µ− η

)
t
)2n d21

)
.

Using Lemma 1, we have |d2 − νd21| ≤ 2max{1, |2ν − 1|}

|a3 − ℵa22| ≤
2

[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n max

{
1;

2ℵ[3]q
(
η +

(
[3]q + β − µ− η

)
t
)n

[2]2q
(
η +

(
[2]q + β − µ− η

)
t
)2n − 1

}
.

Using the techniques employed by Abubaker and Darus [1], Libera and Zlotkiewicz
[19], and Janteng et al. [18], we prove the theorem given below.

Theorem 2. If f ∈ Ln
q,b(µ, β, η, t), then∣∣∣a2a4 − a23

∣∣∣ ≤ 4

[3]2q (Ω
n
3 (η, β, µ, t))

2 .

The best possible result is achieved by Köebe function.

Proof. Since f ∈ Ln
q,b(µ, β, η, t). from (8), (9) and (10), we observe the following∣∣∣a2a4 − a23

∣∣∣ = ∣∣∣∣∣ d1d3

[2]q[4]q
(
η +

(
[2]q + β − µ− η

)
t
)n (

η +
(
[4]q + β − µ− η

)
t
)n

− d22

[3]2q
(
η +

(
[3]q + β − µ− η

)
t
)2n
∣∣∣∣∣ .

Since the function p(z) ∈ P, we assume without loss of generality that a1 > 0, and
for the sake of notation’s accessibility, we let a1 = z, (0 ≤ z ≤ 2). By substituting
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the values of a2 and a3 from the system of equations (9), we have∣∣∣a2a4 − a23

∣∣∣ = 1

4

∣∣∣∣∣∣
(
z4 + 2x(4− z2)z2 − z2(4− z2)x2 + 2z(4− z2)(1− |x|2)

)
[2]q[4]qΩn

2 (η, β, µ, t)Ω
n
4 (η, β, µ, t)

− z4 + 2z2(4− z2)x+ x2(4− z2)2

[3]2q (Ω
n
3 (η, β, µ, t))

2

∣∣∣∣∣
=

1

4

∣∣∣∣∣
(

1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
z4

+

(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
2x(4− z2)z2

−

(
z2

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 4− z2

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
x2(4− z2)

+
2z(4− z2)(1− |x|2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

∣∣∣∣ .
Employing the triangle inequality, |z| ≤ 1 and replacing |x| by ν, we obtain∣∣∣a2a4 − a23

∣∣∣ = ∣∣∣∣∣
(

1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
z4

+

(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
2ν(4− z2)z2

−

(
z2

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 4− z2

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
ν2(4− z2)

+
2z(4− z2)(1− ν2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

∣∣∣∣ .
∣∣∣a2a4 − a23

∣∣∣ = 1

4

{(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
z4

+

(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
2ν(4− z2)z2

−

(
z(z− 2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 4− z2

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
ν2(4− z2)

+
2z(4− z2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

}
= H(ν, z),

(11)
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where z ∈ [0, 2] and |x| = ν ≤ 1.
Subsequently, we maximize the function H(ν, z) on the closed square [0, 1]×[0, 2].

We now partially differentiate H(ν, z) given in (11) with respect to ν, which yields

∂Hq(ν, z)

∂ν
=

1

2

(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
(4− z2)z2

− 1

2

(
z(z− 2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 4− z2

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
ν(4− z2),

implying that H(ν, z) increases with respect to z. This suggests that H(ν, z) may
not possess a maximum value in the closed square [0, 1] × [0, 2]. Apart from that,
by fixing z ∈ [0, 2] we obtain

max
ν∈[0,1]

H(ν, z) = H(1, z) = K(z).

K(z) =
1

4

{(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
z4

+

(
1

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 1

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
2(4− z2)z2

−

(
z(z− 2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 4− z2

[3]2q (Ω
n
3 (η, β, µ, t))

2

)
(4− z2)

+
2z(4− z2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

}
.

Then

K
′
(z) =

2z(4− z2)

[2]q[4]qΩn
2 (η, β, µ, t)Ω

n
4 (η, β, µ, t)

− 2z(4− z2)

[3]2q (Ω
n
3 (η, β, µ, t))

2 .

It is now clear that K
′
(z) < 0 for 0 < z < 2 and K(z) possess real critical points at

z = 0, implying the upper bound with respect to (11) corresponding to z = 0 and
ν = 1. Here, ∣∣∣a2a4 − a23

∣∣∣ ≤ 4

[3]2q (Ω
n
3 (η, β, µ, t))

2 .

Setting n = 0 and q → 1−, we obtain the following results.

Corollary 1. [18] If f ∈ R, then∣∣∣a2a4 − a23

∣∣∣ ≤ 4

9
.
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3. Conclusions

The q-calculus gained great importance among many researchers due to its nu-
merous various applications in geometric function theory, especially in analytic
function theory. This article primarily aims to estimates of the Taylor-Maclaurin
coefficients |as| (s = 2, 3) for functions in this new class, as well as solve the
Fekete-Szegö functional problems. Additionally, we aim to derive the second Han-
kel determinants for functions within the new subclass Ln

q,b(µ, β, η, t) of analytic
functions in the open unit disk U. This subclass is attained by using a differential
Operator Involving q-Opoola Operator. Using the results obtained in this article,
we can generalize and enhance some recently published articles.
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[37] Çağlar, M., Orhan, H., Srivastava, H., Coefficient bounds for q-starlike functions as-

sociated with q-Bernoulli numbers, J. Appl. Anal. Comput., 15(4) (2023), 2354-2364.

https://doi.org/10.11948/20220566


	1. Introduction
	2. Main Results
	3. Conclusions
	References

