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1. Introduction and preliminaries

All monoids in this paper are assumed to be submonoids of the additive monoid

Q+ of nonnegative rational numbers.

All the notions that we use but not define in this paper can be found in the

standard reference book [4] by R. Gilmer. A very important reference is also the

paper [2] by D. D. Anderson, D. F. Anderson and M. Zafrullah.

Let M be a monoid. The elements of the semigroup ring F [X;M ], where F is a

field and X is a variable, are the polynomial expressions

f(X) = a1X
α1 + · · ·+ anX

αn ,

where a1, . . . , an ∈ F , α1, . . . , αn ∈ M and, if we do not specifically mention oth-

erwise, α1 > · · · > αn. We say that a1X
α1 is the leading term of f , Xα1 is the

leading monomial of f and that α1 is the degree of f . The polynomial expressions

f(X) = a, a ∈ F , are called the constant polynomial expressions (or constants),

their degree is 0, except for f(X) = 0, whose degree is −∞. F [X;M ] is an integral

domain, the nonzero constants are its only invertible elements. A nonzero nonunit

element f ∈ F [X;M ] is called an irreducible element or an atom if it cannot be

written as f = gh, where both g, h are nonzero nonunits. A nonzero nonunit el-

ement f ∈ F [X;M ] is said to be prime if f | gh implies f | g or f | h. If every
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nonzero nonunit element of F [X;M ] can be written as a finite product of atoms,

we say that the integral domain F [X;M ] is atomic.

In general, in integral domains every prime element is irreducible, but not vice-

versa. Integral domains in which every irreducible element is prime (i.e., where the

notions irreducible and prime coincide) are called AP domains.

An integral domain R is called a unique factorization domain (UFD) if the

following two conditions hold:

(i) R is atomic;

(ii) the decomposition of any nonzero nonunit into irreducibles is unique up to

associates and the order of the factors.

There is no relation between the notions atomic and AP: an integral domain can

be atomic but not AP, and vice-versa, AP but not atomic. It can also be neither

atomic, nor AP. Being both atomic and AP is equivalent (as it is easy to show) to

being a UFD.

An integral domain R is called a principal ideal domain (PID) if every ideal of

R is principal.

We have the following implication diagram:

domain

UFD ⇔ atomic AP atomic non-AP non-atomic AP non-atomic non-AP

PID

Euclidean domain

field

We now describe a factorization process of a nonzero nonunit element of an

integral domain. Let R be an integral domain and x ∈ R a nonzero nonunit.

We describe a factorization process of x. If x is irreducible, we stop. If not, we

decompose it as x = x0x1, where both x0 and x1 are nonzero nonunits. If both

x0, x1 are irreducible, we stop. If not, we take the first from the left of the elements

x0, x1 which is reducible and decompose it as a product of two nonzero nonunits.

Say x0 is reducible. We decompose it: x0 = x0,0x0,1. Now we have x = x0,0x0,1x1.

If all of the x0,0, x0,1, x1 are irreducible, we stop. If not, we take the first from the

left of the elements x0,0, x0,1, x1 which is reducible and decompose it as a product
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of two nonzero nonunits. Say x0,1 is reducible: x0,1 = x0,1,0x0,1,1. Now we have

x = x0,0x0,1,0x0,1,1x1, etc. We call this process a factorization process of x. If it

stops after finitely many steps, we say that this is a finite factorization process of

x. If it never stops, we say that this is an infinite factorization process of x.

Remark 1.1. If R is a subring of the domain F [X], F a field, and R contains

F , then R is atomic. Indeed, by the degree argument any element f ∈ R of degree

n ≥ 1 can be decomposed into at most n irreducible factors, so every factorization

process of f is finite. (The elements of F are precisely the units of R.)

Let M,M ′ be two monoids. A map µ : M → M ′ is called a monoid homomor-

phism from M to M ′ if µ(x+ y) = µ(x) +µ(y) for every x, y ∈M and µ(0) = 0. If,

in addition, µ is bijective, it is called a monoid isomorphism between M and M ′.

(The inverse bijection µ−1 : M ′ → M preserves the operation.) To every monoid

homomorphism µ : M → M ′ we can naturally associate a ring homomorphism

φ : F [X;M ]→ F [X;M ′], defined by

φ(a1X
α1 + · · ·+ anX

αn) = a1X
µ(α1) + . . . anX

µ(αn).

φ is an isomorphism if and only if µ is an isomorphism.

Example 1.2. Let M be a monoid, τ ∈ Q+ \ {0}. Then τM = {τx | x ∈ M}
is a monoid and the map µτ : M → τM , defined by µτ (x) = τx, is a monoid

isomorphism. Hence the naturally associated map φτ : F [X;M ] → F [X; τM ],

defined by

φτ (a1X
α1 + · · ·+ anX

αn) = a1X
τα1 + . . . anX

ταn ,

is a ring isomorphism.

The next proposition is easy to prove.

Proposition 1.3. If f(X) is a divisor in F [X;M ] of an element Xα, α ∈M , then

f(X) = aXβ with a ∈ F , β ∈M and α− β ∈M .

Definition 1.4. We say that a fraction
m

n
, m ∈ N0, n ∈ N, is (written) in reduced

form if gcd(m,n) = 1.

For example,
0

1
,

6

1
,

2

5
,

13

10
are written in reduced form, while

0

5
,

2

4
are not.

Lemma 1.5 (Reduced Form Lemma). Let
k

l
,
m

n
∈ Q+ be two fractions in reduced

form. Then
k

l
=
m

n
⇔ k = m and l = n.
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Proof.
k

l
=
m

n
⇔kn = lm. Let ps be a prime power that appears in l but not in

n. Let pt be the power of p that appears in n. Then 0 ≤ t < s. Let l = ps · l′,
n = pt · n′. From kptn′ = psl′m we get ps−t | kn′, a contradiction. Similarly, if

we have a prime power that appears in n, but not in l. Hence l = n. Then from

kn = lm, k = m. �

2. Essential generators

Let A be a subset of Q+. The intersection of all submonoids of Q+ which contain

A is a submonoid of Q+, in fact, the smallest submonid of Q+ containing A. It

is called the submonoid generated by A and denoted 〈A〉. We have 〈∅〉 = {0}. A

nonempty subset A of Q+ generates a submonoid M of Q+ if and only if

M = {k1a1 + · · ·+ knan | n ∈ N, ai ∈ A, ki ∈ N0 (i = 1, 2, . . . , n)}.

We call the elements of A generators of M . If M can be generated by a finite set A,

we say that M is finitely generated, otherwise we say that M is infinitely generated.

Definition 2.1. An element a ∈ M is called an essential generator of M if

〈M \ {a}〉 6= M .

Note that then, in particular, a /∈ 〈M \ {a}〉.

Examples 2.2. (i) M = N0 = 〈1〉 is a finitely generated monoid and 1 is an

essential generator of M .

(ii) M = 〈2, 5〉 is a finitely generated monoid and 2, 5 are essential generators

of M .

(iii) M = Q+ is an infinitely generated monoid with no essential generators.

(iv) M = 〈1
2
,

1

22
,

1

23
, . . . 〉 is an infinitely generated monoid with no essential

generators.

(v) M = 〈1
2
,

1

22
,

1

23
, . . . ;

1

5
〉 is an infinitely generated monoid with one essential

generator:
1

5
.

(vi) M = 〈1
2
,

1

3
,

1

5
, . . . 〉 is an infinitely generated monoid and each of the ele-

ments
1

2
,

1

3
,

1

5
, . . . is an essential generator of M .

(vii) M = {0} is a finitely generated monoid with no essential generators since

M = 〈∅〉.

Proposition 2.3. Let a be an essential generator of M . If A ⊂M is a generating

set of M , then a ∈ A.
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Proof. Suppose to the contrary, i.e., a /∈ A. Then A ⊂ M \ {a} and 〈A〉 = M ,

hence 〈M \ {a}〉 = M , a contradiction. �

Proposition 2.4. Let A be a generating set of M and let a ∈ A be such that

〈A \ {a}〉 6= M . Then a is an essential generator of M .

Proof. Suppose to the contrary, i.e.,

a = k1x1 + · · ·+ kmxm, xi ∈M \ {a}, ki ∈ N0.

If each x1, . . . , xm can be generated by the elements of A \ {a}, then a can be

generated by the elements of A \ {a}, a contradiction. Hence at least one of the

elements x1, . . . , xm, when generated by the elements of A, has to use the generator

a. Say x1 = l1a1 + · · ·+ lnan + ln+1a. Then a = k1(l1a1 + · · ·+ lnan) + k1ln+1a+

k2x2 + · · ·+ kmxm. Since x1 6= a, the right hand side (RHS) is bigger than the left

hand side (LHS), a contradiction. �

Proposition 2.5. If M = 〈A〉, then we can remove from A any finite set consisting

of nonessential generators of M and the set A′ obtained in that way still generates

M .

Proof. Let A\A′ = {a1, a2, . . . , an}. By Proposition 2.4, 〈A\{a1}〉 = M . Assume

that 〈A \ {a1, . . . , ak}〉 = M . Then, again by Proposition 2.4,

〈(A \ {a1, . . . , ak}) \ {ak+1}〉 = 〈A \ {a1, . . . , ak, ak+1}〉 = M.

It follows that 〈A \ {a1, . . . , an}〉 = M , i.e., 〈A′〉 = M . �

Proposition 2.6. Let M,M ′ be two monoids, µ : M →M ′ a monoid isomorphism

and let a ∈ M . Then a is an essential generator of M if and only if µ(a) is an

essential generator of M ′.

Proof. It is enough to prove that if a is an essential generator of M , µ(a) is an

essential generator of M ′. Suppose to the contrary, i.e., 〈M \ {a}〉 6= M , however

〈M ′ \µ(a)〉 = M ′. Let µ(a) = b. We have b = k1y1 + · · ·+knyn, where y1, . . . , yn ∈
M ′ \{b}. Let x1, . . . , xn be such that µ(xi) = yi. Each of x1, . . . , xn is 6= a (since µ

is bijective). Since µ(k1x1 + · · ·+ knxn) = b, we have k1x1 + · · ·+ knxn = a (since

µ is bijective). This contradicts to 〈M \ {a}〉 6= M . �

Example 2.7. A monoid M = 〈n1, n2, . . . , nk〉, where n1, n2, . . . , nk ∈ N =

{1, 2, 3, . . . } are such that gcd(n1, n2, . . . , nk) = 1 is called a numerical monoid.

For example, M = 〈2, 5〉 = {0, 2, 4, 5, 6, 7, . . . } is a numerical monoid. For this

monoid the ring F [X;M ] is atomic by Remark 1.1, but is not AP since X5 | X10 =
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X2·X2·X2·X2·X2, however X5 - X2. The elements 2, 5 are the essential generators

of M . Since M ′ = 〈4, 10〉 is isomorphic with M (via µ2 : M → M ′, µ2(x) = 2x),

the ring F [X;M ′] is isomorphic with F [X;M ] (via φ2 : F [X;M ] → F [X;M ′]),

so F [X;M ′] is also an atomic non-AP domain. The elements µ2(2) = 4 and

µ2(5) = 10 are the essential generators of M ′. (However M ′ is not a numer-

ical monoid since gcd(4, 10) = 2.) A similar analysis holds for, for example,

M ′′ =

〈
8

7
,

20

7

〉
.

Proposition 2.8. Suppose that a is an essential generator of M and M 6= 〈a〉.
Then Xa is an irreducible non-prime element of F [X;M ].

Proof. Suppose first that there is an element b ∈M such that either 0 < b < a or

b is another essential generator of M . Let a =
p

q
, b =

m

n
, both fractions in reduced

form. Then nbp = mp = qam. Note that Xa | Xqma since Xqma = Xa ·X(qm−1)a,

i.e., Xa | Xmp = (Xb)np, but Xa - Xb (either because b < a, or because we

would have b = a + c for some c ∈ M , which is not possible since b is an essential

generator). Hence Xa ia a non-prime element of F [X;M ]. On the other side, Xa

is irreducible since the relation Xa = Xb′Xc′ , b′ 6= 0, c′ 6= 0 (which follows from

Proposition 1.3) would imply a = b′+c′, which is not possible since a is an essential

generator.

Suppose now that a is the smallest non-zero element of M and the only essen-

tial generator of M . Consider the intervals (a, 2a), (2a, 3a), (3a, 4a), . . . and let

(ma, (m+ 1)a) be the first interval in which we have an element b of M \ 〈a〉. Since

b is not an essential generator, then there are non-zero elements c, d ∈M such that

c + d = b. This is not possible since at least one of the elements c, d is ≥ ma and

the other one is ≥ a, so that c+ d ≥ (m+ 1)a, a contradiction. �

Proposition 2.9. The irreducible elements of F [X;M ] of the form Xa, a ∈ M ,

are precisely the Xa with a an essential generator of M .

Proof. If a is an essential generator, we cannot have Xa = XbXc with b, c ∈
M \ {0} since a = b+ c implies that a is not essential. Hence, by Proposition 1.3,

Xa is irreducible.

Conversely, if Xa is irreducible, we cannot write a = b+ c for any b, c ∈M \{0},
hence a cannot be generated by M \{a}. Hence a is an essential generator of M . �

Proposition 2.10. If M 6= {0} cannot be generated by essential generators, then

F [X;M ] is not atomic.
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Proof. Suppose to the contrary, i.e., that F [X;M ] is atomic. Let A be the set

of all essential generators of M . Let a ∈ M \ 〈A〉 and let Xa = Xa1Xa2 · · ·Xan

be an irreducible decomposition of Xa (it has to have this form by Proposition

1.3). Then by Proposition 2.9 each of a1, . . . , an is an essential generator of M and

a = a1 + · · ·+ an. Hence a ∈ 〈A〉, a contradiction. �

Question 2.11. Does the opposite direction of Proposition 2.10 hold? In other

words, if M can be generated by essential generators, is F [X;M ] then necessarily

atomic? (The next section provides an example where it is.)

3. The monoid M =

〈
1

2
,

1

3
,

1

5
, . . .

〉
In this section M always denotes the monoid

〈
1

2
,

1

3
,

1

5
, . . .

〉
.

Lemma 3.1. Every element α ∈M can be uniquely written in the form

α = k +
a1
p1

+ · · ·+ ar
pr
, (1)

where k ∈ N0, r ≥ 0, p1, . . . , pr are distinct primes and a1, . . . , ar are integers such

that 1 ≤ ai < pi (i = 1, . . . , r). (We call (1) the unique representation of α. We

call k the integer part of α and
a1
p1

+ · · ·+ ar
pr

the fractional part of α.)

Proof. Let α ∈M . Then

α =
bi1
pi1

+ · · ·+ bin
pin

for some distinct primes pi1 , . . . , pin and integers bi1 , . . . , bin all ≥ 1. Each
bij
pij

can

be written as kij +
aij
pij

, where kij ≥ 0 is an integer and 0 ≤ aij < pij . Writing

k = ki1 + · · · + kin and relabeling the denominators of those
aij
pij

in which aij ≥ 1

as p1, . . . , pr, we get the form (1).

Now we show the uniqueness of (1). Suppose

α = k +
a1
p1

+ · · ·+ ar
pr

= l +
b1
q1

+ · · ·+ bs
qs

are two forms (1) of α. Then

kp1 . . . pr + a1p̂1 . . . pr + · · ·+ arp1 . . . p̂r
p1 . . . pr

=
lq1 . . . qs + b1q̂1 . . . qs + · · ·+ bsq1 . . . q̂s

q1 . . . qs

and each fraction is in reduced form. (Here p̂i or q̂j means that factor is omitted.)

Hence by the Reduced Form Lemma we have {p1, . . . , pr} = {q1, . . . , qs}. After
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relabeling we have

k +
a1
p1

+ · · ·+ ar
pr

= l +
b1
p1

+ · · ·+ br
pr
.

Now if, for example, a1 > b1, we write

k +
a1 − b1
p1

+ · · ·+ ar
pr

= l +
b2
p2

+ · · ·+ br
pr
,

and so the LHS has p1 but the RHS does not, a contradiction with what we proved

above. Hence ai = bi for i = 1, . . . , r. Hence k = l. �

Lemma 3.2. Let α, β, γ ∈M be such that α = β+ γ. Then the sum of the integer

parts of β and γ is less than or equal to the integer part of α. In particular, the

integer parts of β and γ are less than or equal to the integer part of α.

Proof. Let

α = kα +
a1
p1

+ · · ·+ al
pl
,

β = kβ +
b1
q1

+ · · ·+ bm
qm

,

γ = kγ +
c1
r1

+ · · ·+ cn
rn

be the unique representations of α, β, γ. Then

β + γ = kβ + kγ +
b1
q1

+ · · ·+ bm
qm

+
c1
r1

+ · · ·+ cn
rn
.

If qi = rj , we write
bi
qi

+
cj
rj

=
bi + cj
qi

= ki,j +
di,j
qi

, where 0 ≤ di,j < qi and ki,j

is 0 or 1. If di,j = 0, we omit
di,j
qi

. After these additions and omitions, if there

are any, and after adding all the ki,j to kβ + kγ , the RHS is written in the unique

representation form. Hence kα = kβ + kγ +
∑
ki,j . Hence kα ≥ kα + kβ . In

particular, kα ≥ kβ and kα ≥ kγ . �

Lemma 3.3. The element
1

p
∈M , p prime, cannot be written as

1

p
= α+ β with

α, β ∈M \ {0}.

Proof. Suppose to the contrary. Then the integer parts of α, β are 0, so the unique

representations of α and β are

α =
a1
p1

+ · · ·+ al
pl
,

β =
b1
q1

+ · · ·+ bm
qm

.
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None of p1, . . . , pr, q1, . . . , qs, can be equal to p, otherwise α+ β >
1

p
. When we

write

α+ β =
a1
p1

+ · · ·+ al
pl

+
b1
q1

+ · · ·+ bm
qm

,

then α+ β =
a

p1 · · · plq1 · · · qm
for some integer a ≥ 1, while p does not divide

p1 · · · plq1 · · · qm. Thus α+ β 6= 1

p
, a contradiction. �

Lemma 3.4. The irreducible elements of F [X;M ] of the form Xα, α ∈ M , are

precisely the elements X1/p, p prime.

Proof. Follows from Lemma 3.3 and Proposition 2.9. �

Lemma 3.5. If the unique representation of α ∈M is α =
a1
p1

+ · · ·+ ar
pr

, then

Xα = X1/p1 . . . X1/p1︸ ︷︷ ︸
a1

. . . X1/pr . . . X1/pr︸ ︷︷ ︸
ar

is, up to associates, the only decomposition of Xα into irreducibles. In particular,

any factorization process of Xα has the (same) finite number of steps.

Proof. Follows from Proposition 1.3 and Lemma 3.4. �

Lemma 3.6. For every α ∈M \ {0}, Xα has every factorization process finite.

Proof. The proof is by induction on the integer part of α. If the integer part

of α is 0, the statement follows from Lemma 3.5. Suppose that for every α ∈
M \ {0} with integer part < k all factorization processes of Xα are finite. Let

α = k +
a1
p1

+ · · ·+ ar
pr

be the unique representation of α. Let Xα = Xβ · Xγ be

the first step of a fixed factorization process of Xα. If the integer parts of both

β, γ are < k, then both β, γ have all factorization processes finite by the inductive

hypothesis and so the factorization process of α is finite. Suppose that one of β, γ

has the integer part equal to k and (by Lemma 3.2) the other one to 0. We will

assume that the integer part of β is k (it is not a big difference if we assume that

γ has the integer part k). It follows that, after relabeling,

β = k +
a1
p1

+ · · ·+ am
pm

+
bm+1

pm+1
+ · · ·+ bn

pn
,

γ =
cm+1

pm+1
+ · · ·+ cn

pn
+
an+1

pn+1
+ · · ·+ ar

pr
,

where m ≥ 0, n ≥ m+ 1, bi + ci = ai (i = m+ 1, . . . , n). Since γ has at least one

addend in its unique representation, the fractional part of the unique representation

of β is “smaller” than the fractional part of the unique representation of α. The
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next step in the factorization process of Xα would be a factorization of Xβ , namely

Xβ = Xδ ·Xε. If both δ and ε have integer part < k, they have finite factorization

processes and since Xγ also has a finite factorization process, then the factorization

process of Xα = XδXεXγ is finite. If δ has the integer part equal to k (similarly if

ε has the integer part equal to k), then the fractional part of δ would be “smaller”

than the fractional part of β. There can be only finitely many steps in which the

integer part of one of the factors stays k and the fractional part is “smaller” and

“smaller”, so after finitely many steps the integer parts of both factors become < k

and we can apply the inductive hypothesis. �

Theorem 3.7. Let M =

〈
1

2
,

1

3
,

1

5
, . . .

〉
. Then the domain F [X;M ] is atomic non-

AP. Moreover, no nonzero nonunit element of F [X;M ] has an infinite factorization

process.

Proof. Let f ∈ F [X;M ] be a nonzero nonunit element. For atomicity of F [X;M ]

it is enough to show that f has a finite factorization process. We claim that, in

fact, every factorization process of f is finite. Suppose to the contrary, i.e., that f

has an infinite factorization process. Denote it (after a relabeling at each step)

f = f0f1 = f0f1,0f1,1 = f0f1,0f1,1,0f1,1,1 = . . . .

Denote the leading monomials of f, f0, f1, f1,0, f1,1, . . . by Xα, Xα0 , Xα1 , Xα1,0 ,

Xα1,1 , . . . Then

Xα = Xα0Xα1 = Xα0Xα1,0Xα1,1 = Xα0Xα1,0Xα1,1,0Xα1,1,1 = . . .

is an infinite factorization process of Xα, which is a contradiction by Lemma 3.6.

F [X;M ] is not AP since

X1/2 | X1/2X1/2 = X = X1/3X1/3X1/3,

however X1/2 - X1/3. (X1/2 is irreducible by Lemma 3.4.) �

4. The case of finitely generated submonoids of Q+

Proposition 4.1. If M 6= {0} is a finitely generated monoid, then M has essential

generators a1, . . . , an such that M = 〈a1, . . . , an〉.

Proof. Let A = {a1, . . . , an} be a generating set of M such that |A| ≤ |B| for all

generating sets B of M . Clearly, A exists because M is finitely generated. Thus,

by Proposition 2.4, each ai is an essential generator of M . �
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Theorem 4.2. Let M be a finitely generated monoid. Then precisely one of the

following situations occurs:

(i) M = {0}; then F [X;M ] = F , a field.

(ii) M = 〈a〉, a 6= 0; then F [X;M ] ∼= F [X], an Euclidean domain.

(iii) M = 〈a1, . . . , an〉, n ≥ 2, all ai essential generators of M ; then F [X;M ] is

an atomic non-AP domain.

Proof. Taking into account what we have previously said about monoid isomor-

phisms and associated ring isomorphisms, and taking into account Proposition 2.6

and Proposition 4.1, the only statement of this theorem that remains to be proved

is that in the case (iii) F [X;M ] is atomic and non-AP. The non-AP part follows

from Proposition 2.8. We now show that F [X;M ] is atomic. Using the isomor-

phism µτ with τ equal to the least common multiple of the denominators of the

elements a1, . . . , an we may assume that M ⊂ N0. Then F [X;M ] is a subring of

F [X] containing F . Hence F [X;M ] is atomic by Remark 1.1. �

Remark 4.3. By Theorem 22 of Allen and Dale [1], every submonoid M of N0 is

finitely generated. Hence for F [X;M ] precisely one of the three cases from Theorem

4.2 occurs.

5. The case of infinitely generated submonoids of Q+

Proposition 5.1. Suppose M cannot be generated by essential generators. Then

every generating set of M contains infinitely many nonessential generators.

Proof. Suppose to the contrary. Let A be a generating set of M having only

finitely many nonessential generators, say a1, . . . , an. We may assume that all of

them are 6= 0 and that a1 < · · · < an. Then A \ {a1} is still a generating set of

M by Proposition 2.4. Continuing this process we get that A \ {a1, . . . , an} is a

generating set of M , a contradiction. �

Lemma 5.2. Let
m1

n1
, . . . ,

mt

nt
∈M , in reduced form, at least one of them nonzero.

Then gcd(m1, . . . ,mt) and lcm(n1, . . . , nt) are relatively prime.

Proof. Suppose to the contrary. Then there is a prime p which divides both

gcd(m1, . . . ,mt) and lcm(n1, . . . , nt). Hence

(∀mi) p | mi,

(∃nj) p | nj .

Hence
mj

nj
is not in reduced form, a contradiction. �
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Lemma 5.3. Let
m1

n1
, . . . ,

mt

nt
∈M , in reduced form, at least one of them nonzero.

Suppose that
gcd(m1, . . . ,mt)

lcm(n1, . . . , nt)
∈M.

Then

τ =
lcm(n1, . . . , nt)

gcd(m1, . . . ,mt)

is an element of Q+, in reduced form, such that:

τ
mi

ni
∈ N0 for all i;

1

τ
∈M.

Proof. That τ is in reduced form follows from Lemma 5.2. The first claim is clear

since τ is in reduced form. The second claim follows from the assumption. �

The next theorem is a slight generalization of a theorem by R. Daileda from [3]

(given in Corollary 5.5). The proof follows Daileda’s proof.

Theorem 5.4. Let M be a monoid such that for any elements
m1

n1
, . . . ,

mt

nt
from M ,

in reduced form, at least one of which is nonzero, we have
gcd(m1, . . . ,mt)

lcm(n1, . . . , nt)
∈M .

Then F [X;M ] is AP.

Proof. Let f(X) = a1X
α1 +· · ·+anXαn be an irreducible element of F [X;M ]. We

want to show that f is prime. Suppose that f(X) | a(X)b(X), where a(X), b(X) ∈
F [X;M ]. We need to show that either f(X) | a(X) or f(X) | b(X). We have

a(X)b(X) = f(X)h(X) for some h(X) ∈ F [X;M ]. Let E(a), E(b), E(f), E(h) be

the sets of exponents of a, b, f, h, respectively, and let E = E(a)∪E(b)∪E(f)∪E(h).

Let E =

{
m1

n1
, . . . ,

mt

nt

}
, all elements written in reduced form. At least one of them

is nonzero since f is irreducible. Let τ =
lcm(n1, . . . , nt)

gcd(m1, . . . ,mt)
. In F [X; τM ] we have

the relation

φτ (a)φτ (b) = φτ (f)φτ (h)

and all the polynomials in this relation belong to F [X]. Hence φτ (f) divides

φτ (a)φτ (b) in F [X]. Note that τM ⊃ N0 since
1

τ
∈M , hence F [X; τM ] ⊃ F [X].

Since f is irreducible in F [X;M ], φτ (f) is irreducible in F [X; τM ], hence in F [X].

Hence φτ (f) is prime in F [X] and so φτ (f) | φτ (a) or φτ (f) | φτ (b), say φτ (f) |
φτ (a). Then φτ (a) = φτ (f) · a′(X), where a′(X) ∈ F [X] ⊂ F [X; τM ]. If we apply

the inverse isomorphism φ1/τ : F [X; τM ]→ F [X;M ], we get a(X) = f(X)φ1/τ (a′),

i.e., f(X) | a(X). Thus f(X) is prime. Hence F [X;M ] is AP. �
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Corollary 5.5 (Daileda [3]). F [X;Q+] is a nonatomic AP domain.

Proof. F [X;Q+] is an AP domain by the previous theorem. It is nonatomic by

Proposition 2.10. �

Corollary 5.6. Let M =

〈
1

2
,

1

22
,

1

23
, . . .

〉
. Then F [X;M ] is a nonatomic AP

domain.

Proof. The same arguments as for the previous corollary. �

Question 5.7. One may now wonder if for any M without essential generators

F [X;M ] is AP. Consider, for example, the monoid

M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
.

For the elements
1

2
,

1

5
we have

gcd(1, 1)

lcm(2, 5)
=

1

10
/∈M . So we cannot use Theorem

5.4 to conclude that F [X;M ] is AP. Is it non-AP? More concretely, is the element

f(X) = X1/2 +X1/5 of this domain irreducible? It is not prime since

X1/2 +X1/5 | (X1/2 +X1/5)2 = X1/5(X4/5 + 2X1/2 +X2/5),

however X1/2 +X1/5 does not divide any of the elements X1/5 and X4/5 +2X1/2 +

X2/5. In general, we would like to characterize all the monoids M such that

F [X;M ] is AP.

Remark 5.8. If M is an infinitely generated monoid, then precisely one of the

following situations occurs:

(i) M has no essential generators. Then F [X;M ] is non-atomic (by Propo-

sition 2.10). It can be AP (examples in the corollaries 5.5 and 5.6), the

question 5.7 asks if it can be non-AP.

(ii) M has at least one essential generator, but cannot be generated by essential

generators. Then F [X;M ] is non-atomic (by Proposition 2.10) and non-

AP (by Proposition 2.8). An example of a monoid of this type is

M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5

〉
.

(iii) M can be generated by essential generators. Then F [X;M ] is non-AP (by

Proposition 2.8). It can be atomic (by the example of the section 3), the

question 2.11 asks if it can be non-atomic.

Proposition 5.9. If M is infinitely generated, then F [X;M ] is not a UFD.

Proof. Follows from the discussion in Remark 5.8. �
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