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Abstract

This paper investigates the lateral vibration of a cantilever Timoshenko
beam with attachments. It is assumed that the beam carries a mass
attached to the free end with a linear spring and there exists a
rotational spring at the left end. Depending upon these assumptions,
mode shapes and natural frequencies are obtained in terms of non-
dimensional parameters which describe the effects of additional mass,
linear spring and rotational spring. The results are tabulated, and the
comparison of Timoshenko and Euler-Bernoulli beam approaches are
carried out for some parameters. Results reveal that natural
frequencies decrease while the values of end mass increase. Large values
of the rotational spring constant cause high natural frequencies.

Keywords: Timoshenko beam, Vibration, Spring-mass system,
Natural frequencies, Mode shapes.
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Bu ¢alismada ucunda eklemeler olan bir konsol Timoshenko kirisin
titresim analizi yapimistir. Kirisin, serbest ucunda lineer yay ile
baglanmis kiitle tasidigi ve sol ucunda dénme yayr bulundugu
varsayilmistir. Bu kabullere gére dogal frekanslar ve mod gsekilleri,
kiitlenin, serbest uca bagl lineer yayin ve dénme yayinin etkilerini
tanimlayan boyutsuz parametreler cinsinden elde edilmigstir. Sonuglar
tablolastirilmis ve bazi parametreler icin Timoshenko ve Euler-
Bernoulli kiris yaklasimlarinin karsilastirilmast yapilmistir. Sonuglar
gostermistir ki dogal frekanslar ug kiitlesinin artmasi ile diismektedir.
Burulma yayi sabitinin biiytik degerleri, ytiksek dogal frekanslari ortaya
cikartmaktadir.

Anahtar kelimeler: Timoshenko Kkiris, Titresim, kiitle-yay sistemi,
Dogal frekanslar, Mod seKilleri.

1 Introduction

Many authors have studied the free and forced vibration of
Euler-Bernoulli beams under various boundary conditions.
Low [1] studied the vibration of a beam carrying several masses
on the beam at different locations, but he did not include spring
attachment. However, for the cases where the rotary and shear
effects must be considered, Timoshenko beam theory must be
utilized. Several authors have investigated the free and forced
vibration of Timoshenko beam with attachments under various
boundary conditions. Majkut [2] proposed a method to obtain a
single equation for both free and forced vibration of the
Timoshenko beams. Several papers are also available on the
free vibration of cantilever beams carrying a concentrated
mass. Laura et al. [3], studied the free vibration of a clamped-
free beam which carries a finite mass at the free end and
obtained the natural frequencies and modal shapes. Chang [4]
investigated the vibration characteristics of a simply supported
beam with a heavy concentrated mass at its centre. Banerjee [5]
investigated the free vibration of a beam carrying a spring-mass
system using the dynamic stiffness method. He obtained the
natural frequencies and the first five mode shapes. Rossit and
Laura investigated the lateral vibration of a beam with a mass
attached to the end with a linear spring. Relatively simpler
Bernoulli beam theory has been utilized in the analysis [6].
However, for a thick beam carrying a mass load such as an
electric motor or engine, Timoshenko beam theory must be
used [7]-[10].

*Corresponding author/Yazisilan Yazar

In addition, when the mass load is too heavy, the assumption of
semi-rigid root must also be made due to the elastic nature of
the end. Some researchers have focused on a cantilever
Timoshenko beam. Rossit and Laura [11] studied a cantilever
Timoshenko beam with a spring-mass system attached to the
free end. A cantilever Timoshenko beam with a tip mass at the
free end and having rotational and translational springs has
been studied by Abramovich and Hamburger [12]. Salarieh and
Ghorashi [13] analysed the free vibration of a cantilever
Timoshenko beam with rigid mass and compared with other
beam theories. In the work by Jafari-Talookolaei and Abedi
[14], a new method was presented to obtain the exact solution
for the free vibration of a Timoshenko beam with different
boundary conditions. The vibration analysis of a cantilever
beam with an eccentric three dimensional object has been
investigated by Kati and Gokdag [15]. There are also several
research works on the tapered Timoshenko beams. Lateral
vibration analysis of a Timoshenko beam of variable cross-
section carrying several masses is carried out in [16]. In that
study, differential quadrature element method (DQEM) is used
and the changing of the frequencies of the beam is studied in
terms of parameters of the mass. Cekus [17] studied the free
vibration of a cantilever tapered Timoshenko beam by using
Lagrange multiplier formalism. The governing equations for the
Timoshenko beams with geometrical non-uniformity and
material inhomogeneity along the beam axis have been
simplified by a new method [18].
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In the present study, the vibration analysis of a cantilever beam
carrying a tip mass using Timoshenko theory is investigated.
The free end carries a mass attached to the beam by means of a
linear spring while the left hand side is semi-rigid with a
rotational spring. Natural frequencies and related mode shapes
are determined in terms of non-dimensional parameters.

2 Analysis
2.1 Frequency Analysis

Let us consider a Timoshenko beam with a semi-rigid root
(Figure 1). The mass M is attached to the free end of the beam
by means of a spring of coefficient k. L is the length of the
beam, kg is the rotational rigidity. It is well known that the
transversal motion of the beam is governed by the equations
[19] as follows:

0%y %y oy
0%y dy 0%
_r_ A - 1(b
pl Sy = KAG (52— ) + E1 = (b)

Here, I is the moment of inertia, E is the modulus of elasticity,
G is the shear modulus of elasticity, A is the cross-sectional
area, p is the density of the beam, k is the shape factor, y is the
vertical displacement, 1 is the bending angle.
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Figure 1. Timoshenko beam with various end conditions.

Egs. 1(a), 1(b) must be solved together with the boundary
conditions described. Assume that

y(x,t) = LY (x)el®t 2(a)
P(x,t) = P(x)elvt 2(b)

Where, t is the time, w is the angular frequency. Here, L is
substituted for brevity. Substituting Egs. (2) into Eq. (1); we
have

Y'() +A%s2Y () —P'(§) =0 3(a)
S - [1—- 222 P (@) +Y'(6) =0 3(b)
Where;
_ EI B pAw?L* i 1
=tz Y= Em ¢t 7= W

By eliminating ¥ (§) and its derivatives in Egs. (3), it can be
combined into a single equation as follows:

YW +PY"(§) +QY(§) =0 ()
Where;
_ pw?l? E _ pw’l? (pw’l?  AL?
P="% <1+E) P e="% <kG _T> ©)

In order to solve Eq. (5), we assume Y(§)=e%. The
characteristic equation and its roots are obtained as

a*+Pa?+Q=0
ay=—ify , ax=1if1, az=—P2, A, =p; (7)

Here,

b= P+2\/Z ;B = /_PTHZ a=p2-40

The solution of Eq. (5) can be written as
Y (&) = Cysinf & + Cycosf1 € + C3sinhf, & + Cycoshf, €

We now utilize the first of Egs.(3) to obtain W(§). Inserting Y ()
into the first of Eqgs.(3) yields

' (E) = mlclsinﬁlf + szlcosﬁlf + C3mzsinhﬁzf

+ C,mycoshB,& ()
Where;
My = A2s2 — B2, M, = A%s? + B2 (10)
Integrating Eq.(9) gives
¥(&) = —myCyicosfi € + mllCzsin,Blg‘ + myCscoshf, € (11)
+ m,C,sinhf, €
Where;
m1=%, mzz% (12)

After Eq. (9) is integrated, a constant value would surely appear
in Eq. (11). However, by substituting the solution forms
obtained into Egs. (1), it is quite simple to show that it is indeed
zero. The coefficients €y, C,, C3, C, must be determined by using
the boundary conditions at both ends of the beam. These
boundary conditions can be written as follows:

At& =0:

Y(Olg=o =0 13(a)
EI
TV®)| =k (Ole=o 13(b)
£=0

At =1:

Y')lg=1=0 13(c)
F

V'(le=1 = P (Olg=y = — =™ 13(d)

Here, F is the force exerted on the beam by the spring at £ = 1.
In order to find the force F, we write the equation of motion for
the mass M:

2

M % = ko (uy (1, 6) — s (1, 8)) (14)

Here, u, is the displacement of the mass, and u, is the deflection
of the end. Let us assume u, — u; = u. Inserting this form into
Eq. (14) gives
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d%u, d?u
15
i Mdtz + kou (15)

Let us now assume the following solution forms for u, and u:
u, = LY(1)ei®t 16(a)
u = LNel®* 16(b)
Substituting these forms into Eq. (15), we obtain

_ MY(Dw?

_ MY(Dw?L
N Mw? — ko ’ N €

iwt 17
M(J.)z - ko ( )

The force F acted upon by the spring now reads

Mw?L
Mw?
Ko L

F =kou= Y(1)e™* (18)

By combining Eq.(13d) and Eq. (18), the last form of the last
condition in Eqgs.(13) can be rewritten as

Y (Ole=1 = ¥()le=1 = az¥ (D) (19)
Where;
B —Mw?L
e (M) G0

By utilizing the boundary conditions, the four equations are
obtained in terms of the unknown coefficients as follows:

C,+C,=0 21(a)
My Cy + MyCy +myb C; —mybiC3 =0 21(b)
diC; +d,Cy +d3C3+dyC=0 21(c)
10y +e,0, +e3C3+e,0,=0 21(d)
Where;
kgL
b, = %

d1 = ﬁllsinﬂl B dz = ﬁllcosﬁl
d3 = ﬁlzsinhﬁz B d4_ = TTLZCOShﬁz

e, = ficosPy + mqcosf; — azsinf; (22)
e, = —f;sinfl; — mysinf; — azcosf;
e; = f,coshf, — m,coshf, — azsinhf,
e, = B,sinhf, — m,sinhf, — ascoshpf,
Egs. (21) can also be written in matrix form as
[Al[c] = [o] (23)
Where;
0 1 0 1 C:
_ m1b1 7711 _m2b1 7712 _ CZ
[A] - dl d2 d3 d4 ’ [C] - C3 (24)
€ €2 €3 €4 Cy

The frequency equation is obtained by taking det[A] = 0. The
explicit form of the frequency equation is as follows:

—myby(dse, — daes) — mybi(die, — dseq)
—my(die; — dzeq)
—myby(dze; — dse;) (25)
+m;(die; — dze;)
+ mzbl(dlez - dzel) =0

In the case of a rigid wall, by taking b; = o, Eq.(25) can be
simplified into the form

—my (dsey — dyez) —my(die, — dseq)
—my(dye; —dse;) (26)
+my(die; —dye) =0

2.2  Eigen-Function analysis

Eigen-functions of the problem can be determined by writing
the coefficients C,, C5, C, in terms of C;:

CZ = —81C1 27(3)
Cs = 5,C, 27(b)
Cs = .Gy 27(9)

Thus, Y (§) is obtained in the form of
Y(&) = Cy[sin;& — s;cosP € + s,sinhB,€ + s;coshB,é]  (28)
Where;

hy S m (my —m,) (E)

S =—, =

! h, 2 m; myby f_lz _ (29)
hmd T by = dy 4, T

1 — Y1 mz 3 2 — U2 3 m2b1 4

To find the value of C;, the condition of orthogonality can be
utilized:

1

f(PALZYn(f)Ym(f) + pI¥, (§)¥m (§))dE

J (30)

+ MLkg
(erzn - ko)(erzz — ko)

Y (DY (1) = 8pm

Here, &,,,, is Kronecker delta. Inserting Egs. (27) into Eq. (30)
and evaluating the integral, the constant C; can be obtained.

3 Results and discussion

In order to validate the present solution, a cantilever
Timoshenko beam with carrying mass-spring system at the free
end is considered by taking b; = 10'?, whose equation is given
in Egs. (22). The reason why b; is taken high is that the
rotational spring’s effect becomes inactive and therefore
behaves as a fixed support. The results are compared with the
study of Rossit and Laura [11] in Table 1, and it is seen that they
are in good agreement. After validation study, numerical
studies have been carried out for different combinations of
dimensionless variables. They are tabulated in Tables 2-7. The
beam properties used in the analysis are E = 210 GPa,
G =80.76 GPa, k =5/6, p = 7800 kg/m3, L = 1m, h = 0.1 m,
b = 0.05m.

For ease of interpretation, dimensionless parameters a, and as
are defined as follows:

a, = pAL/M and asg = koL3/EI
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Here, a, is the ratio of the beam mass to the added mass and ag
is the ratio of the linear spring coefficient to the bending
stiffness.

The variation of natural frequencies with b; are shown in
Tables 2, 3. In Table 3, the mass is assumed to be zero. It can be
seen from these tables that, for increasing values of by, which is
associated with the rotational spring coefficient (kz), all

natural frequencies increase. The frequency values obtained for
zero mass are higher than those found for the case of non-zero
mass (Table 2). Thus, the mass attached decreases the values of
frequencies. In addition, for the beam with a non-zero end mass,
the rates of increase in each natural frequency are slightly
higher than those for the case with no mass, except for the first
mode.

Table 1. Dimensionless frequencies (2) of the beam with spring mass at its free end. (75 = \/I/A and 2 = \/w?L*pA/EI).

U} 2, Q3 Q4 Qs Q6
as = 0.1
a, =5 0.695154 3.571296 21.89797 60.74417 117.5177 191.1809 Present
r¢/L =0.01
0.695153 3.5713 21.898 60.7442 117.518 191.181 [11]
as = 1
a, =2 1.205223 4101427 21.98027 60.77323 117.5324 191.1898 Present
r¢/L = 0.01
1.20522 410143 21.9803 60.7732 117.532 191.19 [11]
as = 10
a, =1 1.418757 7.440483 22.85213 61.06872 117.6808 191.2786 Present
rG/L =0.01
1.41875 7.44048 22.8521 61.0687 117.681 191.279 [11]
s = ©
a, =05 1.157604 15.78384 49.79175 102.1493 171.7104 257.062 Present
rG/L =0.01
1.15760 15.7838 49.7918 102.149 171.710 257.062 [11]
as = 0.1
a, =5 0.694873 3.493776 19.11237 46.60619 78.90373 113.7507 Present
r¢/L = 0.05
0.694873 3.49378 19.1124 46.6062 78.9037 113.751 [11]
as = 1
a, = 1.200783 4.02287 19.19198 46.6337 789174 113.7587 Present
r¢/L = 0.05
1.20078 4.02287 19.192 46.6337 789174 113.759 [11]
as = 10
a, =1 1.403972 7.291428 20.05012 46.91589 79.05583 113.8392 Present
r¢/L = 0.05
1.40397 7.29143 20.0501 46.9159 79.0558 113.839 [11]
aS = 00
a, =0.5 1.143655 14.23311 39.46071 70.84078 105.3227 141.3791 Present
r¢/L = 0.05
1.14365 14.2331 39.4607 70.8408 105.323 141.379 [11]
Table 2. The variation of frequencies with b, for a, = 0.1,a5 = 1.
by w; (rad/s) w, (rad/s) w3 (rad/s) w, (rad/s) ws (rad/s)
0.1 13.88 273.72 2283.63 6948.23 13504.55
0.4 23.97 306.44 2320.06 6983.90 13534.9
0.8 29.28 340.31 2364.28 7028.73 13573.58
1 30.84 354.28 2384.72 7050.06 13592.19
10 39.48 526.79 2799.79 7585.85 14114.64
100 40.8 591.87 3092.27 8125.24 14778.07
Table 3. The variation of frequencies with b, for a, = 101° (M = 0),a5 = 1.
by w4 (rad/s) w, (rad/s) w3 (rad/s) w, (rad/s) ws (rad/s)
0.1 80.98 2264.48 6942.44 13501.84 21336.22
0.4 156.55 2301.38 6978.16 13532.19 21361.5
0.8 212.27 2346.12 7023.05 13570.89 21393.92
1 232.66 2366.79 7044.4 13589.51 21409.61
10 441.86 2785.06 7580.75 14112.12 21874.97
100 512.47 3078.68 8120.5 14775.7 22555.41
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In Table 4, the values of as, which equals to koL3/EI, is
increased and natural frequencies are tabulated. It is observed
that natural frequencies increase with increasing values of as.
This is valid for all frequencies. However, at frequencies with
high modes, the values are not appreciably affected by the
varying values of as. It can also be concluded from Table 4 that
the frequencies do not change too much for large values of as.
This means that the spring becomes ineffective and behaves
like a massless rigid body.

Table 4. The variation of frequencies with as for
a, =05,b; =0.1.

W, Wy w3 Wy Ws

(rad/s)  (rad/s) (rad/s) (rad/s) (rad/s)

as

0.01 10.08 85.11 2264.67 694249  13501.87
0.05 19.04 100.67  2265.43  6942.72  13501.97
0.1 22.98 117.9 2266.38  6943.01 13502.11
0.5 28.52 211.66  2274.03 694533  13503.19

1 29.48 288.18  2283.67 6948.23  13504.55
10 30.41 808.53 2467.5 7001.6 13529.22

100 30.51 1408.2  3953.76  7632.74  13799.03
1000 30.52 1521.75 5447.79 10900.82 16906.39
20000 30.52 1533.89 5625.76 11741.15 19243.49
25000 30.52 1534.01 5627.55 11748.61 19262.59

The variation of frequencies with a, involving mass M is shown
in Table 5. As expected, the frequencies increase with
increasing a,. However, unlike the frequencies with low modes,
the frequencies with high modes are not influenced by the
change of a,.

Table 5. The variation of frequencies with a, for
as = 0.1 ,b1 =0.1.

N W, W3 Wy wWs

a (rad/s)  (rad/s) (rad/s) (rad/s) (rad/s)
0.01 3.32 11541  2266.38 6943.01 13502.11
0.05 7.41 115.61  2266.38 6943.01 13502.11
0.1 10.46 115.86  2266.38 6943.01 13502.11
0.5 22.98 117.9 2266.38  6943.01 13502.11
1 31.78 120.57  2266.38 6943.01 13502.11
10 68.87 17595 226639 6943.01 13502.11

10000 80.96 2263.92  4737.62  6943.52 13502.15

In Table 6, in the case of nearly rigid wall (ki > 0), frequencies
are obtained for varying values of as. The increase in k, (or as)
values has a higher effect on the frequencies with low modes
than the higher ones.

Table 6. The variation of frequencies with a5 for
as = 0.5,b; = 1010 (kg = o).

as ((:;d ©2 @3 “4 @5
/s) (rad/s) (rad/s) (rad/s) (rad/s)

0.01 10.57 523.36 3131.69 8236.47 14940.56
0.05 23.49 526.75 3132.22 8236.66 14940.66
0.1 32.94 530.97 3132.89 8236.9 14940.77
0.5 69.21 563.93 3138.26  8238.77 14941.71

1 91.29 603.12 3145.01 8241.12 14942.88
10 15493 1071.19 3273.06  8284.15 14964.17

Tables 7(a), 7(b) show the difference between Timoshenko and
Euler-Bernoulli beam approaches. In the case of rigid wall, the
results for Euler-Bernoulli beam are taken from the literature
[6]. The difference between these results becomes smaller at
lower modes. In Table 7(b), the constant b; has been taken as
b, = 10'2, while it is b; = 10° in the Table 7(a). It is shown
that b; = 10° is the value that can be considered as a rigid wall
since the changes of frequencies become negligible. From the

comparison of both tables, it can be concluded that the
difference between the results of both models is not due to the
rotational spring’s coefficient (kg), but due to the shear and
rotary effects of the beam.

Table 7(a). Comparison of Timoshenko and Euler-Bernoulli
beams fora, = 1,as = 1,b; = 10%° (kg = o),h/L = 0.1

4 _PA 2 4)
(,8 =@ L*).
B B2 Bs By Bs
Timoshenko 97653 20106 45822 74175 9.9881
Beam

Euler Beam 0.92705 2.0177 4.7038 7.8568 10.996
0.353 2.619 5.752 9.606
1 0,
Difference 0.056% % % % %

Table 7(b). Comparison of Timoshenko and Euler-Bernoulli
beams fora, = 1,as = 1,b; = 102 (kg = »),h/L = 0.1

)
By B2 Bs Bs Bs

Timoshenko 092653 20106 45822 74175  9.9881
EulerBeam 092705 20177 47038 7.8568 10996

0.353 2.619 5.752 9.606

. 0,
Difference 0.056% % % % %

Mode shapes are demonstrated in Figures 2-11. The first four
ones are associated with the changing values of b; in the case
that end mass exists. On the contrary of these mode shapes, end
mass has been considered not existing by taking a, = 101 in
Figures 6, 7. Figures 8-11 show how a5 affects the mode shapes.

The first four Figures show that the increasing value of b;
changes the linearity of the beginning part of the mode shapes,
and peak points slightly move to the free end.

l— Mode1 % Mode2 O Mode3 ® Mode4 [] Mode5 |

0 0.1 02 03 04 05 086 07 08 09 1
e=xIL

Figure 2. Mode shapes for b; = 0.1, as =1, a4, = 0.1.

|— Mode1 % Mode2 O Mode3 @ Mode4 [J Mode5

0 01 02 03 04 05 06 07 08 09 1
E=x/L

Figure 3. Mode shapes for b; =1, as =1, a4, =0.1.
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| —— Mode 1 % Mode2 OMode3 @ Mode4 [] Mode5

0 01 02 03 04 05 06 07 08 09 1
&=xlL

Figure 4. Mode shapes for b; = 10, a5 =1, a4, = 0.1.

[— Mode1 % Mode2 OMode3 @ Mode4 [] Mode5

-

[ 0.1 02 03 04 05 06 07 08 09 1
e=x/L

Figure 5. Mode shapes for b; = 100, a5 =1, a, = 0.1.

[ —— Mode1 % Mode2 OMode3 @ Mode4 [] Mode5

02+

01- /5

Y(§)

0.1

0.2

03

0 01 02 03 04 05 06 07 08 09 1
£=xIL

Figure 6. Mode shapes for b; = 0.1,as = 1,a, = 101° (M = 0).

|— Mode 1 % Mode2 OMode3 @ Moded4 [] Mode5 ‘

0 0.1 02 03 04 05 06 07 08 098 1
&=x/L

Figure 7. Mode shapes for b; = 100, a5 = 1,
a, = 1019 (M = 0).

I— Mode 1 % Mode2 OMode3 @ Mode4 [J Mode5

03t
0 01 02 03 04 05 06 07 08 09 1
&=x/L

[ —— Mode 1 % Mode2 O Mode3 ® Mode 4 [J Mode 5 |

0 01 02 03 04 05 06 07 08 09 1
&=x/L

Figure 9. Mode shapes for b; = 0.1, a5 = 10, a4 =

l —— Mode1 % Mode2 OMode3 @ Moded4 [] Mode5 ‘

05 06 07
&=xIL

[— Mode1 % Mode2 OMode3 @ Moded4 [] Mode5

0 0.1 02 03 04 05 06 07 08 09 1

&=x/L

Figure 8. Mode shapes for b; = 0.1, a; = 0.01, a, = 0.5.

Figure 10. Mode shapes for b; = 0.1, as = 100, a, = 0.5.

Figure 11. Mode shapes for b; = 0.1, a5 = 1000, a, = 0.5.
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It can be seen from Figures 6, 7 that if the end mass is assumed
to be zero, the linearity of the initial part of the mode shapes is
changed as in the case where the end mass exists. On the whole,
it can be mentioned that mode shapes are slightly affected by
the change of b, in this case. Moreover, Figures 2, 6 and Figures
5,7 show that the first mode shape is not observed in the case
where the end mass does not exist. Namely, the nth mode shape
in the case where there is no mass shows resemblance with the
(n + 1)th mode shape in the case where the end mass exists.

Figures 8-11 show that although mode shapes are more
affected as the value of ag increases in terms of changing
amplitudes and shapes, they are less affected in the first mode
after the value of ag = 10.

4 Conclusion

In this study, mode shapes and natural frequencies were
analysed in terms of some parameters such as ay, as, b; for the
elastically restrained cantilever Timoshenko beam carrying a
spring mass system at its free end. Here, as (as = koL3/EI) and
by (by = kgL/EI) contain the ratios of linear spring and
rotational spring coefficients to bending stiffness, respectively.
a, (a4 = pAL/M) is also the ratio of the beam mass to the
added mass. The results have been tabulated in order to see the
effects non-dimensional parameters on the frequencies. Mode
shapes have also been obtained in terms of various values of
parameters. In the general case, it has been seen that the
increase in the end mass decreases the natural frequencies.
Large values of as (or ky) increase the values of natural
frequencies, except for the frequencies with high modes. Also,
the natural frequency increases with increasing b, value. The
frequency equation for extremely large values of b; has also
been obtained. In order to see the effects of the parameters on
the mode shapes, Figures 2-11 have been plotted. Except for the
shape of the first mode, the other mode shapes are affected by
the increment of as. Changing the value of b, also affects the
mode shapes. Location of peak points and the shape of the
initial parts are slightly influenced by b;.
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