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Abstract  Öz 

This paper investigates the lateral vibration of a cantilever Timoshenko 
beam with attachments. It is assumed that the beam carries a mass 
attached to the free end with a linear spring and there exists a 
rotational spring at the left end. Depending upon these assumptions, 
mode shapes and natural frequencies are obtained in terms of non-
dimensional parameters which describe the effects of additional mass, 
linear spring and rotational spring. The results are tabulated, and the 
comparison of Timoshenko and Euler-Bernoulli beam approaches are 
carried out for some parameters. Results reveal that natural 
frequencies decrease while the values of end mass increase. Large values 
of the rotational spring constant cause high natural frequencies.  

 Bu çalışmada ucunda eklemeler olan bir konsol Timoshenko kirişin 
titreşim analizi yapılmıştır. Kirişin, serbest ucunda lineer yay ile 
bağlanmış kütle taşıdığı ve sol ucunda dönme yayı bulunduğu 
varsayılmıştır. Bu kabullere göre doğal frekanslar ve mod şekilleri, 
kütlenin, serbest uca bağlı lineer yayın ve dönme yayının etkilerini 
tanımlayan boyutsuz parametreler cinsinden elde edilmiştir. Sonuçlar 
tablolaştırılmış ve bazı parametreler için Timoshenko ve Euler-
Bernoulli kiriş yaklaşımlarının karşılaştırılması yapılmıştır. Sonuçlar 
göstermiştir ki doğal frekanslar uç kütlesinin artması ile düşmektedir. 
Burulma yayı sabitinin büyük değerleri, yüksek doğal frekansları ortaya 
çıkartmaktadır.  

Keywords: Timoshenko beam, Vibration, Spring-mass system, 
Natural frequencies, Mode shapes. 

 Anahtar kelimeler: Timoshenko kiriş, Titreşim, kütle-yay sistemi, 
Doğal frekanslar, Mod şekilleri. 

1 Introduction 

Many authors have studied the free and forced vibration of 
Euler-Bernoulli beams under various boundary conditions. 
Low [1] studied the vibration of a beam carrying several masses 
on the beam at different locations, but he did not include spring 
attachment. However, for the cases where the rotary and shear 
effects must be considered, Timoshenko beam theory must be 
utilized. Several authors have investigated the free and forced 
vibration of Timoshenko beam with attachments under various 
boundary conditions. Majkut [2] proposed a method to obtain a 
single equation for both free and forced vibration of the 
Timoshenko beams. Several papers are also available on the 
free vibration of cantilever beams carrying a concentrated 
mass. Laura et al. [3], studied the free vibration of a clamped-
free beam which carries a finite mass at the free end and 
obtained the natural frequencies and modal shapes. Chang [4] 
investigated the vibration characteristics of a simply supported 
beam with a heavy concentrated mass at its centre. Banerjee [5] 
investigated the free vibration of a beam carrying a spring-mass 
system using the dynamic stiffness method. He obtained the 
natural frequencies and the first five mode shapes. Rossit and 
Laura investigated the lateral vibration of a beam with a mass 
attached to the end with a linear spring. Relatively simpler 
Bernoulli beam theory has been utilized in the analysis [6]. 
However, for a thick beam carrying a mass load such as an 
electric motor or engine, Timoshenko beam theory must be 
used [7]-[10]. 

                                                           
*Corresponding author/Yazışılan Yazar 

In addition, when the mass load is too heavy, the assumption of 
semi-rigid root must also be made due to the elastic nature of 
the end. Some researchers have focused on a cantilever 
Timoshenko beam. Rossit and Laura [11] studied a cantilever 
Timoshenko beam with a spring-mass system attached to the 
free end. A cantilever Timoshenko beam with a tip mass at the 
free end and having rotational and translational springs has 
been studied by Abramovich and Hamburger [12]. Salarieh and 
Ghorashi [13] analysed the free vibration of a cantilever 
Timoshenko beam with rigid mass and compared with other 
beam theories. In the work by Jafari-Talookolaei and Abedi 
[14], a new method was presented to obtain the exact solution 
for the free vibration of a Timoshenko beam with different 
boundary conditions. The vibration analysis of a cantilever 
beam with an eccentric three dimensional object has been 
investigated by Kati and Gökdag [15]. There are also several 
research works on the tapered Timoshenko beams. Lateral 
vibration analysis of a Timoshenko beam of variable cross-
section carrying several masses is carried out in [16]. In that 
study, differential quadrature element method (DQEM) is used 
and the changing of the frequencies of the beam is studied in 
terms of parameters of the mass. Cekus [17] studied the free 
vibration of a cantilever tapered Timoshenko beam by using 
Lagrange multiplier formalism. The governing equations for the 
Timoshenko beams with geometrical non-uniformity and 
material inhomogeneity along the beam axis have been 
simplified by a new method [18]. 
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In the present study, the vibration analysis of a cantilever beam 
carrying a tip mass using Timoshenko theory is investigated. 
The free end carries a mass attached to the beam by means of a 
linear spring while the left hand side is semi-rigid with a 
rotational spring. Natural frequencies and related mode shapes 
are determined in terms of non-dimensional parameters. 

2 Analysis 

2.1 Frequency Analysis 

Let us consider a Timoshenko beam with a semi-rigid root  
(Figure 1). The mass M is attached to the free end of the beam 
by means of a spring of coefficient 𝑘0. 𝐿 is the length of the 
beam, 𝑘𝑅  is the rotational rigidity. It is well known that the 
transversal motion of the beam is governed by the equations 
[19] as follows: 

𝜌𝐴
𝜕2𝑦

𝜕𝑡2
= 𝑘𝐴𝐺 (

𝜕2𝑦

𝜕𝑥2
−

𝜕𝜓

𝜕𝑥
) 1(a) 

𝜌𝐼
𝜕2𝜓

𝜕𝑡2 = 𝑘𝐴𝐺 (
𝜕𝑦

𝜕𝑥
− 𝜓) + 𝐸𝐼

𝜕2𝜓

𝜕𝑥2  1(b) 

Here, 𝐼 is the moment of inertia, 𝐸 is the modulus of elasticity, 
𝐺 is the shear modulus of elasticity, 𝐴 is the cross-sectional 
area, 𝜌 is the density of the beam, 𝑘 is the shape factor, 𝑦 is the 
vertical displacement, 𝜓 is the bending angle. 

 

Figure 1. Timoshenko beam with various end conditions. 

Eqs. 1(a), 1(b) must be solved together with the boundary 
conditions described. Assume that 

𝑦(𝑥, 𝑡) = 𝐿𝑌(𝑥)e𝑖𝜔𝑡 2(a) 

𝜓(𝑥, 𝑡) = 𝛹(𝑥)e𝑖𝜔𝑡 2(b) 

Where, 𝑡 is the time, 𝜔 is the angular frequency. Here, 𝐿 is 
substituted for brevity. Substituting Eqs. (2) into Eq. (1), we 
have 

𝑌″(𝜉) + 𝜆2𝑠2𝑌(𝜉) − 𝛹′(𝜉) = 0 3(a) 

𝑠2𝛹″(𝜉) − [1 − 𝜆2𝑟2𝑠2]𝛹(𝜉) + 𝑌′(𝜉) = 0 3(b) 

Where; 

𝑠2 =
𝐸𝐼

𝑘𝐴𝐺𝐿2    ,   𝜆2 =
𝜌𝐴𝜔2𝐿4

𝐸𝐼
   ,   𝜉 =

𝑥

𝐿
   ,   𝑟2 =

𝐼

𝐴𝐿2 (4) 

By eliminating 𝛹(𝜉) and its derivatives in Eqs. (3), it can be 
combined into a single equation as follows: 

𝑌𝚤𝑣(𝜉) + 𝑃𝑌″(𝜉) + 𝑄𝑌(𝜉) = 0 (5) 

Where; 

𝑃 =
𝜌𝜔2𝐿2

𝐸
(1 +

𝐸

𝑘𝐺
)    ,   𝑄 =

𝜌𝜔2𝐿2

𝐸
(

𝜌𝜔2𝐿2

𝑘𝐺
−

𝐴𝐿2

𝐼
) (6) 

In order to solve Eq. (5), we assume 𝑌(𝜉) = e𝛼𝜉 . The 
characteristic equation and its roots are obtained as 

𝛼4 + 𝑃𝛼2 + 𝑄 = 0 

𝛼1 = −𝑖𝛽1   ,   𝛼2 = 𝑖𝛽1,   𝛼3 = −𝛽2,   𝛼4 = 𝛽2 (7) 

Here, 

𝛽1 = √
𝑃 + √𝛥

2
   ,   𝛽2 = √

−𝑃 + √𝛥

2
,   𝛥 = 𝑃2 − 4𝑄 (8) 

The solution of Eq. (5) can be written as  

𝑌(𝜉) = 𝐶1sin𝛽1𝜉 + 𝐶2cos𝛽1𝜉 + 𝐶3sinh𝛽2𝜉 + 𝐶4cosh𝛽2𝜉 

We now utilize the first of Eqs.(3) to obtain Ψ(𝜉).  Inserting 𝑌(𝜉) 
into the first of Eqs.(3) yields 

𝛹′(𝜉) = �̅�1𝐶1sin𝛽1𝜉 + 𝐶2�̅�1cos𝛽1𝜉 + 𝐶3�̅�2sinh𝛽2𝜉
+ 𝐶4�̅�2cosh𝛽2𝜉 

(9) 

Where; 

�̅�1 = 𝜆2𝑠2 − 𝛽1
2   ,   �̅�2 = 𝜆2𝑠2 + 𝛽2

2 (10) 

Integrating Eq.(9) gives 

𝛹(𝜉) = −𝑚1𝐶1cos𝛽1𝜉 + 𝑚1𝐶2sin𝛽1𝜉 + 𝑚2𝐶3cosh𝛽2𝜉
+ 𝑚2𝐶4sinh𝛽2𝜉 

(11) 

Where; 

𝑚1 =
�̅�1

𝛽1
   ,   𝑚2 =

�̅�2

𝛽2
 (12) 

After Eq. (9) is integrated, a constant value would surely appear 
in Eq. (11). However, by substituting the solution forms 
obtained into Eqs. (1), it is quite simple to show that it is indeed 
zero. The coefficients 𝐶1, 𝐶2, 𝐶3, 𝐶4 must be determined by  using 
the boundary conditions at both ends of the beam. These 
boundary conditions can be written as follows: 

At 𝜉 = 0: 

𝑌(𝜉)|𝜉=0 = 0 13(a) 

𝐸𝐼

𝐿
𝛹′(𝜉)|

𝜉=0
= 𝑘𝑅𝛹(𝜉)|𝜉=0 13(b) 

At 𝜉 = 1: 

𝛹′(𝜉)|𝜉=1 = 0 13(c) 

𝑌′(𝜉)|𝜉=1 − 𝛹(𝜉)|𝜉=1 = −
𝐹

𝑘𝐴𝐺
e−𝑖𝜔𝑡 13(d) 

Here, 𝐹 is the force exerted on the beam by the spring at 𝜉 = 1. 
In order to find the force 𝐹, we write the equation of motion for 
the mass 𝑀: 

𝑀
𝑑2𝑢1

𝑑𝑡2 = 𝑘0(𝑢2(1, 𝑡) − 𝑢1(1, 𝑡)) (14) 

Here, 𝑢1 is the displacement of the mass, and 𝑢2 is the deflection 
of the end. Let us assume 𝑢2 − 𝑢1 = 𝑢. Inserting this form into 
Eq. (14) gives 
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𝑀
𝑑2𝑢2

𝑑𝑡2
= 𝑀

𝑑2𝑢

𝑑𝑡2
+ 𝑘0𝑢 (15) 

Let us now assume the following solution forms for 𝑢2 and 𝑢: 

𝑢2 = 𝐿𝑌(1)e𝑖𝜔𝑡 16(a) 

𝑢 = 𝐿𝑁e𝑖𝜔𝑡 16(b) 

Substituting these forms into Eq. (15), we obtain 

𝑁 =
𝑀𝑌(1)𝜔2

𝑀𝜔2 − 𝑘0
   ,   𝑢 =

𝑀𝑌(1)𝜔2𝐿

𝑀𝜔2 − 𝑘0
e𝑖𝜔𝑡 (17) 

The force 𝐹 acted upon by the spring now reads 

𝐹 = 𝑘0𝑢 = (
𝑀𝜔2𝐿

𝑀𝜔2

𝑘0
− 1

) 𝑌(1)e𝑖𝜔𝑡 (18) 

By combining Eq.(13d) and Eq. (18), the last form of the last 
condition in Eqs.(13) can be rewritten as 

𝑌′(𝜉)|𝜉=1 − 𝛹(𝜉)|𝜉=1 = 𝑎3𝑌(1) (19) 

Where; 

𝑎3=
−𝑀𝜔2𝐿

𝑘𝐴𝐺 (
𝑀𝜔2

𝑘0
− 1)

 (20) 

By utilizing the boundary conditions, the four equations are 
obtained in terms of the unknown coefficients as follows: 

𝐶2 + 𝐶4 = 0 21(a) 

�̅�1𝐶2 + �̅�2𝐶4 + 𝑚1𝑏1𝐶1 − 𝑚2𝑏1𝐶3 = 0 21(b) 

𝑑1𝐶1 + 𝑑2𝐶2 + 𝑑3𝐶3 + 𝑑4𝐶4 = 0 21(c) 

𝑒1𝐶1 + 𝑒2𝐶2 + 𝑒3𝐶3 + 𝑒4𝐶4 = 0 21(d) 

Where; 

𝑏1 =
𝑘𝑅𝐿

𝐸𝐼
𝑑1 = �̅�1sin𝛽1   ,   𝑑2 = �̅�1cos𝛽1

𝑑3 = �̅�2sinh𝛽2   ,   𝑑4 = �̅�2cosh𝛽2

𝑒1 = 𝛽1cos𝛽1 + 𝑚1cos𝛽1 − 𝑎3sin𝛽1

𝑒2 = −𝛽1sin𝛽1 − 𝑚1sin𝛽1 − 𝑎3cos𝛽1

𝑒3 = 𝛽2cosh𝛽2 − 𝑚2cosh𝛽2 − 𝑎3sinh𝛽2

𝑒4 = 𝛽2sinh𝛽2 − 𝑚2sinh𝛽2 − 𝑎3cosh𝛽2

 (22) 

Eqs. (21) can also be written in matrix form as 

[𝐴][𝐶] = [0] (23) 

Where; 

[𝐴] = [

0 1 0 1
𝑚1𝑏1 �̅�1 −𝑚2𝑏1 �̅�2

𝑑1 𝑑2 𝑑3 𝑑4

𝑒1 𝑒2 𝑒3 𝑒4

]  ,   [𝐶] = [

𝐶1

𝐶2

𝐶3

𝐶4

] (24) 

The frequency equation is obtained by taking det[𝐴] = 0. The 
explicit form of the frequency equation is as follows: 

−𝑚1𝑏1(𝑑3𝑒4 − 𝑑4𝑒3) − 𝑚2𝑏1(𝑑1𝑒4 − 𝑑4𝑒1)
− �̅�2(𝑑1𝑒3 − 𝑑3𝑒1)
− 𝑚1𝑏1(𝑑2𝑒3 − 𝑑3𝑒2)
+ �̅�1(𝑑1𝑒3 − 𝑑3𝑒1)
+ 𝑚2𝑏1(𝑑1𝑒2 − 𝑑2𝑒1) = 0 

(25) 

In the case of a rigid wall, by taking 𝑏1 = ∞, Eq.(25) can be 
simplified into the form  

−𝑚1(𝑑3𝑒4 − 𝑑4𝑒3) − 𝑚2(𝑑1𝑒4 − 𝑑4𝑒1)
− 𝑚1(𝑑2𝑒3 − 𝑑3𝑒2)
+ 𝑚2(𝑑1𝑒2 − 𝑑2𝑒1) = 0 

(26) 

2.2 Eigen-Function analysis 

Eigen-functions of the problem can be determined by writing 
the coefficients 𝐶2, 𝐶3, 𝐶4 in terms of 𝐶1: 

𝐶2 = −𝑠1𝐶1 27(a) 

𝐶3 = 𝑠2𝐶1 27(b) 

𝐶4 = 𝑠1𝐶1 27(c) 

Thus, 𝑌(𝜉) is obtained in the form of 

𝑌(𝜉) = 𝐶1[sin𝛽1𝜉 − 𝑠1cos𝛽1𝜉 + 𝑠2sinh𝛽2𝜉 + 𝑠1cosh𝛽2𝜉] (28) 

Where; 

𝑠1 =
ℎ1

ℎ2
   ,   s2 =

𝑚1

𝑚2
−

(�̅�1 − �̅�2)

𝑚2𝑏1
(

ℎ1

ℎ2
) 

ℎ1 = 𝑑1 +
𝑚1

𝑚2
𝑑3   ,   ℎ2 = 𝑑2 + 𝑑3

(�̅�1 − �̅�2)

𝑚2𝑏1
− 𝑑4 

(29) 

To find the value of 𝐶1, the condition of orthogonality can be 
utilized: 

∫(𝜌𝐴𝐿2𝑌𝑛(𝜉)𝑌𝑚(𝜉) + 𝜌𝐼𝛹𝑛(𝜉)𝛹𝑚(𝜉))𝑑𝜉

1

0

+
𝑀𝐿𝑘0

2

(𝑀𝜔𝑚
2 − 𝑘0)(𝑀𝜔𝑛

2 − 𝑘0)
𝑌𝑛(1)𝑌𝑚(1) = 𝛿𝑛𝑚 

(30) 

Here, 𝛿𝑛𝑚 is Kronecker delta. Inserting Eqs. (27) into Eq. (30) 
and evaluating the integral, the constant 𝐶1 can be obtained. 

3 Results and discussion 

In order to validate the present solution, a cantilever 
Timoshenko beam with carrying mass-spring system at the free 
end is considered by taking 𝑏1 = 1012, whose equation is given 
in Eqs. (22). The reason why 𝑏1 is taken high is that the 
rotational spring’s effect becomes inactive and therefore 
behaves as a fixed support. The results are compared with the 
study of Rossit and Laura [11] in Table 1, and it is seen that they 
are in good agreement. After validation study, numerical 
studies have been carried out for different combinations of 
dimensionless variables. They are tabulated in Tables 2-7. The 
beam properties used in the analysis are 𝐸 = 210 GPa,  
𝐺 = 80.76 GPa, 𝑘 = 5/6, 𝜌 = 7800 kg/m3, 𝐿 = 1 m, ℎ = 0.1 m, 
𝑏 = 0.05m.  

For ease of interpretation, dimensionless parameters 𝑎4 and 𝑎5 
are defined as follows: 

𝑎4 = 𝜌𝐴𝐿/𝑀   and     𝑎5 = 𝑘0𝐿3/𝐸𝐼 
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Here, 𝑎4 is the ratio of the beam mass to the added mass and 𝑎5 
is the ratio of the linear spring coefficient to the bending 
stiffness. 

The variation of natural frequencies with 𝑏1 are shown in 
Tables 2, 3. In Table 3, the mass is assumed to be zero. It can be 
seen from these tables that, for increasing values of 𝑏1, which is 
associated with the rotational spring coefficient (𝑘𝑅), all 

natural frequencies increase. The frequency values obtained for 
zero mass are higher than those found for the case of non-zero 
mass (Table 2). Thus, the mass attached decreases the values of 
frequencies. In addition, for the beam with a non-zero end mass, 
the rates of increase in each natural frequency are slightly 
higher than those for the case with no mass, except for the first 
mode. 

 

Table 1. Dimensionless frequencies (𝛺) of the beam with spring mass at its free end. ( 𝑟𝐺 = √𝐼/𝐴 and 𝛺 = √𝜔2𝐿4𝜌𝐴/𝐸𝐼 ). 

 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6  
𝑎5 = 0.1
𝑎4 = 5

𝑟𝐺 𝐿⁄ = 0.01
 0.695154 3.571296 21.89797 60.74417 117.5177 191.1809 Present 

 0.695153 3.5713 21.898 60.7442 117.518 191.181 [11] 
𝑎5 = 1
𝑎4 = 2

𝑟𝐺 𝐿⁄ = 0.01
 1.205223 4.101427 21.98027 60.77323 117.5324 191.1898 Present 

 1.20522 4.10143 21.9803 60.7732 117.532 191.19 [11] 
𝑎5 = 10
𝑎4 = 1

𝑟𝐺 𝐿⁄ = 0.01
 1.418757 7.440483 22.85213 61.06872 117.6808 191.2786 Present 

 1.41875 7.44048 22.8521 61.0687 117.681 191.279 [11] 
𝑎5 = ∞

𝑎4 = 0.5

𝑟𝐺 𝐿⁄ = 0.01
 1.157604 15.78384 49.79175 102.1493 171.7104 257.062 Present 

 1.15760 15.7838 49.7918 102.149 171.710 257.062 [11] 
𝑎5 = 0.1
𝑎4 = 5

𝑟𝐺 𝐿⁄ = 0.05
 0.694873 3.493776 19.11237 46.60619 78.90373 113.7507 Present 

 0.694873 3.49378 19.1124 46.6062 78.9037 113.751 [11] 
𝑎5 = 1
𝑎4 = 2

𝑟𝐺 𝐿⁄ = 0.05
 1.200783 4.02287 19.19198 46.6337 78.9174 113.7587 Present 

 1.20078 4.02287 19.192 46.6337 78.9174 113.759 [11] 
𝑎5 = 10
𝑎4 = 1

𝑟𝐺 𝐿⁄ = 0.05
 1.403972 7.291428 20.05012 46.91589 79.05583 113.8392 Present 

 1.40397 7.29143 20.0501 46.9159 79.0558 113.839 [11] 
𝑎5 = ∞

𝑎4 = 0.5

𝑟𝐺 𝐿⁄ = 0.05
 1.143655 14.23311 39.46071 70.84078 105.3227 141.3791 Present 

 1.14365 14.2331 39.4607 70.8408 105.323 141.379 [11] 

Table 2. The variation of frequencies with 𝑏1 for 𝑎4 = 0.1, 𝑎5 = 1. 

𝑏1 𝜔1  (rad/s) 𝜔2  (rad/s) 𝜔3  (rad/s) 𝜔4  (rad/s) 𝜔5  (rad/s) 
0.1 13.88 273.72 2283.63 6948.23 13504.55 
0.4 23.97 306.44 2320.06 6983.90 13534.9 
0.8 29.28 340.31 2364.28 7028.73 13573.58 
1 30.84 354.28 2384.72 7050.06 13592.19 

10 39.48 526.79 2799.79 7585.85 14114.64 
100 40.8 591.87 3092.27 8125.24 14778.07 

Table 3. The variation of frequencies with 𝑏1 for 𝑎4 = 1010 ( 𝑀 ≅ 0), 𝑎5 = 1. 

𝑏1 𝜔1 (rad/s) 𝜔2 (rad/s) 𝜔3 (rad/s) 𝜔4 (rad/s) 𝜔5 (rad/s) 
0.1 80.98 2264.48 6942.44 13501.84 21336.22 
0.4 156.55 2301.38 6978.16 13532.19 21361.5 
0.8 212.27 2346.12 7023.05 13570.89 21393.92 
1 232.66 2366.79 7044.4 13589.51 21409.61 

10 441.86 2785.06 7580.75 14112.12 21874.97 
100 512.47 3078.68 8120.5 14775.7 22555.41 
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In Table 4, the values of 𝑎5, which equals to 𝑘0𝐿3/𝐸𝐼, is 
increased and natural frequencies are tabulated. It is observed 
that natural frequencies increase with increasing values of 𝑎5. 
This is valid for all frequencies. However, at frequencies with 
high modes, the values are not appreciably affected by the 
varying values of 𝑎5. It can also be concluded from Table 4 that 
the frequencies do not change too much for large values of 𝑎5. 
This means that the spring becomes ineffective and behaves 
like a massless rigid body. 

Table 4. The variation of frequencies with 𝑎5 for 
𝑎4 = 0.5 , 𝑏1 = 0.1. 

𝑎5 
𝜔1  

(rad/s) 
𝜔2  

(rad/s) 
𝜔3  

(rad/s) 
𝜔4  

(rad/s) 
𝜔5  

(rad/s) 
0.01 10.08 85.11 2264.67 6942.49 13501.87 
0.05 19.04 100.67 2265.43 6942.72 13501.97 
0.1 22.98 117.9 2266.38 6943.01 13502.11 
0.5 28.52 211.66 2274.03 6945.33 13503.19 
1 29.48 288.18 2283.67 6948.23 13504.55 

10 30.41 808.53 2467.5 7001.6 13529.22 
100 30.51 1408.2 3953.76 7632.74 13799.03 

1000 30.52 1521.75 5447.79 10900.82 16906.39 
20000 30.52 1533.89 5625.76 11741.15 19243.49 
25000 30.52 1534.01 5627.55 11748.61 19262.59 

The variation of frequencies with 𝑎4 involving mass 𝑀 is shown 
in Table 5. As expected, the frequencies increase with 
increasing 𝑎4. However, unlike the frequencies with low modes, 
the frequencies with high modes are not influenced by the 
change of 𝑎4.  

Table 5. The variation of frequencies with 𝑎4 for  
𝑎5 = 0.1 , 𝑏1 = 0.1. 

𝑎4 
𝜔1  

(rad/s) 
𝜔2  

(rad/s) 
𝜔3  

(rad/s) 
𝜔4  

(rad/s) 
𝜔5  

(rad/s) 
0.01 3.32 115.41 2266.38 6943.01 13502.11 
0.05 7.41 115.61 2266.38 6943.01 13502.11 
0.1 10.46 115.86 2266.38 6943.01 13502.11 
0.5 22.98 117.9 2266.38 6943.01 13502.11 
1 31.78 120.57 2266.38 6943.01 13502.11 

10 68.87 175.95 2266.39 6943.01 13502.11 
10000 80.96 2263.92 4737.62 6943.52 13502.15 

In Table 6, in the case of nearly rigid wall (𝑘𝑅 ≫ 0), frequencies 
are obtained for varying values of 𝑎5. The increase in 𝑘0 (or 𝑎5) 
values has a higher effect on the frequencies with low modes 
than the higher ones. 

Table 6. The variation of frequencies with 𝑎5 for 
𝑎4 = 0.5 , 𝑏1 = 1010 (𝑘𝑅 ≅ ∞). 

𝑎5 
𝜔1  

(rad
/s) 

𝜔2  
(rad/s) 

𝜔3  
(rad/s) 

𝜔4  
(rad/s) 

𝜔5  
(rad/s) 

0.01 10.57 523.36 3131.69 8236.47 14940.56 
0.05 23.49 526.75 3132.22 8236.66 14940.66 
0.1 32.94 530.97 3132.89 8236.9 14940.77 
0.5 69.21 563.93 3138.26 8238.77 14941.71 
1 91.29 603.12 3145.01 8241.12 14942.88 

10 154.93 1071.19 3273.06 8284.15 14964.17 
      

Tables 7(a), 7(b) show the difference between Timoshenko and 
Euler-Bernoulli beam approaches. In the case of rigid wall, the 
results for Euler-Bernoulli beam are taken from the literature 
[6]. The difference between these results becomes smaller at 
lower modes. In Table 7(b), the constant 𝑏1 has been taken as 
𝑏1 = 1012, while it is 𝑏1 = 1010 in the Table 7(a). It is shown 
that 𝑏1 = 1010 is the value that can be considered as a rigid wall 
since the changes of frequencies become negligible. From the 

comparison of both tables, it can be concluded that the 
difference between the results of both models is not due to the 
rotational spring’s coefficient (𝑘𝑅), but due to the shear and 
rotary effects of the beam.  

Table 7(a). Comparison of Timoshenko and Euler-Bernoulli 
beams for 𝑎4 = 1 , 𝑎5 = 1 , 𝑏1 = 1010 (𝑘𝑅 ≅ ∞), ℎ/𝐿 = 0.1 

(𝛽4 =
𝜌𝐴

𝐸𝐼
𝜔2𝐿4). 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 
Timoshenko 

Beam 
0.92653 2.0106 4.5822 7.4175 9.9881 

Euler Beam 0.92705 2.0177 4.7038 7.8568 10.996 

Difference 0.056% 
0.353

% 
2.619

% 
5.752

% 
9.606

% 

Table 7(b). Comparison of Timoshenko and Euler-Bernoulli 
beams for 𝑎4 = 1 , 𝑎5 = 1 , 𝑏1 = 1012 (𝑘𝑅 ≅ ∞), ℎ/𝐿 = 0.1 

(𝛽4 =
𝜌𝐴

𝐸𝐼
𝜔2𝐿4). 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 
Timoshenko 

Beam 
0.92653 2.0106 4.5822 7.4175 9.9881 

Euler Beam 0.92705 2.0177 4.7038 7.8568 10.996 

Difference 0.056% 
0.353

% 
2.619

% 
5.752

% 
9.606

% 

Mode shapes are demonstrated in Figures 2-11. The first four 
ones are associated with the changing values of 𝑏1 in the case 
that end mass exists. On the contrary of these mode shapes, end 
mass has been considered not existing by taking 𝑎4 = 1010 in 
Figures 6, 7. Figures 8-11 show how 𝑎5 affects the mode shapes. 

The first four Figures show that the increasing value of 𝑏1  
changes the linearity of the beginning part of the mode shapes, 
and peak points slightly move to the free end. 

 

Figure 2. Mode shapes for  𝑏1 = 0.1, 𝑎5 = 1, 𝑎4 = 0.1. 

 

Figure 3. Mode shapes for  𝑏1 = 1, 𝑎5 = 1, 𝑎4 = 0.1. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 29(3), 274-280, 2023 
Y. Pala, Ç. Kahya 

 

279 
 

 

Figure 4. Mode shapes for  𝑏1 = 10, 𝑎5 = 1, 𝑎4 = 0.1. 

 

Figure 5. Mode shapes for 𝑏1 = 100, 𝑎5 = 1, 𝑎4 = 0.1. 

 

Figure 6. Mode shapes for 𝑏1 = 0.1, 𝑎5 = 1, 𝑎4 = 1010 (𝑀 ≅ 0). 

 

Figure 7. Mode shapes for 𝑏1 = 100, 𝑎5 = 1,   

𝑎4 = 1010 (𝑀 ≅ 0). 

 

Figure 8. Mode shapes for  𝑏1 = 0.1, 𝑎5 = 0.01, 𝑎4 = 0.5. 

 

Figure 9. Mode shapes for 𝑏1 = 0.1, 𝑎5 = 10, 𝑎4 = 0.5. 

 

Figure 10. Mode shapes for  𝑏1 = 0.1, 𝑎5 = 100, 𝑎4 = 0.5. 

 

Figure 11. Mode shapes for  𝑏1 = 0.1, 𝑎5 = 1000, 𝑎4 = 0.5. 
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It can be seen from Figures 6, 7 that if the end mass is assumed 
to be zero, the linearity of the initial part of the mode shapes is 
changed as in the case where the end mass exists. On the whole, 
it can be mentioned that mode shapes are slightly affected by 
the change of 𝑏1 in this case. Moreover, Figures 2, 6 and Figures 
5,7 show that the first mode shape is not observed in the case 
where the end mass does not exist. Namely, the 𝑛th mode shape 
in the case where there is no mass shows resemblance with the 
(𝑛 + 1)th mode shape in the case where the end mass exists. 

Figures 8-11 show that although mode shapes are more 
affected as the value of 𝑎5 increases in terms of changing 
amplitudes and shapes, they are less affected in the first mode 
after the value of 𝑎5 = 10. 

4 Conclusion 

In this study, mode shapes and natural frequencies were 
analysed in terms of some parameters such as 𝑎4, 𝑎5, 𝑏1 for the 
elastically restrained cantilever Timoshenko beam carrying a 
spring mass system at its free end. Here, 𝑎5 (𝑎5 = 𝑘0𝐿3 𝐸𝐼⁄ ) and 
𝑏1 (𝑏1 = 𝑘𝑅𝐿/𝐸𝐼) contain the ratios of linear spring and 
rotational spring coefficients to bending stiffness, respectively. 
𝑎4 (𝑎4 = 𝜌𝐴𝐿/𝑀) is also the ratio of the beam mass to the 
added mass. The results have been tabulated in order to see the 
effects non-dimensional parameters on the frequencies. Mode 
shapes have also been obtained in terms of various values of 
parameters. In the general case, it has been seen that the 
increase in the end mass decreases the natural frequencies. 
Large values of 𝑎5 (or 𝑘0) increase the values of natural 
frequencies, except for the frequencies with high modes. Also,  
the natural frequency increases with increasing 𝑏1 value. The 
frequency equation for extremely large values of 𝑏1 has also 
been obtained. In order to see the effects of the parameters on 
the mode shapes, Figures 2-11 have been plotted. Except for the 
shape of the first mode, the other mode shapes are affected by 
the increment of 𝑎5. Changing the value of 𝑏1 also affects the 
mode shapes. Location of peak points and the shape of the 
initial parts are slightly influenced by 𝑏1.  
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