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1. INTRODUCTION  
 

The Traffic Assignment Problem (TAP) is a fundamental 

topic in transportation analysis and applications. Its objective 

is to determine the equilibrium flow patterns in a given 

transportation network while considering the origin-destination 

demands. In recent years, this problem has received significant 

attention, leading to the development of various modeling and 

solution techniques based on Wardrop's two optimization 

principles: User Equilibrium (UE) and System Optimal (SO). 

These principles have been extensively researched and 

analyzed, resulting in a comprehensive body of literature and 

practical applications [9]. 

The pioneering research undertaken by Beckmann and 

colleagues (2) demonstrated the potential for determining 

traffic flow on a road network through the application of the 

UE principle. However, the estimation of cost and/ or time 

functions, selection of appropriate forms, and calibration of 

parameters present significant challenges in this context. UE 

solutions may often involve congested links exceeding their 

designated capacities, thus necessitating the imposition of 

capacity restrictions on link flows to enhance traffic 

distribution. While the Frank-Wolfe algorithm has proven 

effective in addressing the Traffic Assignment Problem (TAP), 

incorporating capacity constraints complicates the model and 

poses additional challenges. As such, solving the Capacity-

constrained Traffic Assignment Problem (CTAP) becomes a 

computationally demanding and time-consuming endeavor. To 

address this intricate problem, researchers have explored 

various methodologies, such as asymptotic link performance 

functions or penalty-based approaches, as extensively 

discussed in the literature by scholars [3-9]. 

Recent research has been exploring the application of neural 

networks for solving nonlinear optimization problems. 

Hopfield network, introduced by Tank and Hopfield [10], was 

proposed for linear optimization problems and since then, 

neural networks have been increasingly used in areas such as 

linear optimization and nonlinear optimization, with their 

results analyzed on various problems [11-19]. These neural 

networks are dynamic systems that utilize energy functions, 

which are a combination of the objective function and 

constraints of the original problem, similar to the Lagrange 

function. This particular method has not yet been applied to UE 

traffic assignment problems with capacity constraints. 

Therefore, this study aims to analyze a nonlinear network 

traffic assignment problem with capacity constraints, using the 

Lagrange neural network method. This will examine the effects 

of capacity limits on connection flows and the effects of traffic 

volume changes over time on the travel times of the network. 

The study begins by introducing the static CTAP model, which 
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is then transformed into a neural dynamic system using the 

Lagrange function of the static CTAP model to examine the 

effect of capacity on connection flows and the development of 

traffic over time. The points obtained from this system satisfy 

the Karush-Kuhn-Tucker conditions, which is the user 

optimality condition, and therefore an UE solution is obtained 

in the static CTAP model. 

This research involves utilizing the fourth-order Runge-

Kutta method to conduct numerical simulations to solve the 

neural network model with specific initial conditions. Through 

observing the changes over time in the system and Lagrange 

neurons shown on graphs, the impact of traffic formation in 

connection flows is observed, particularly the volume formed 

in the network, on user travel time. The findings are then 

compared to those in previous literature [20] to demonstrate the 

precision and validity of the proposed solution process in this 

study. The findings of this paper contribute to the 

understanding of network traffic behavior and provide a 

valuable framework for addressing CTAPs. The utilization of 

neural networks and dynamic modeling techniques offers new 

perspectives for analyzing and optimizing traffic flow in real-

world transportation systems. 

The paper's structure is organized as follows: Section 2 

details the optimization problem for CTAP. Section 3 outlines 

the Lagrange neural network utilized to optimize CTAP. 

Section 4 provides a numerical example, while Section 5 

features a discussion. Lastly, Section 6 concludes with remarks 

concerning the results. 

 

2. PROBLEM FORMULATION 

 

In transportation network analysis, the traffic network can be 

represented as ( , ),G N A  where N  represents the set of nodes 

and A  denotes the set of connections. The sources and 

destinations of the network are denoted as R  and ,S

respectively. To incorporate user equilibrium traffic 

assignment with link capacity constraints, a nonlinear 

programming problem can be formulated:  
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where z  represents the objective function; 
af  represents the 

total flow on link a ; 
ac  represents a separable, piecewise 

linear link cost function; 
rsq  represents the total traffic demand 

between r  and s ; rs

kh  represents the flow on chain(route) k  

between r  and s ; . rsK  represents the set of chains between 

r  and s ; 
,

rs

a k  represents the link-chain incidence matrix; and 

aC  represents the link capacity on link .a  

The problem at hand is non-linear and comprises of both 

equality and inequality constraints. However, it must be 

transformed into a problem that solely consists of equality 

constraints. 
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where 
a  represents the slack variables for capasited 

constraints. In order to maintain simplicity, 2

a  is chosen as 

the representation, although other differentiable positive 

functions of   a could be employed, provided they possess the 

necessary dynamic range.

, , , ,rs rs
a rsk a k

r s k

f h a A k K r R s S      is the 

predefined link flows. 

The Lagrange function for this problem can be expressed as 

follows: 
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where L  represents the Lagrange function. Additionally, h  

refers to the chain flow variables, while   represents the slack 

variables for capasited constraints. The Lagrange multiplier 

associated with the capacity and flow conservation constraints 

are denoted by   and  , respectively. The Lagrange function 

includes the objective function, flow conservation constraints, 

flow-variable definition constraints, and capacity constraints, 

which allows us to determine the best solution by minimizing 

this function. 

 

Definition 1:  A Kuhn-Tucker point is defined as a point 

 * * * *, , ,h    that meets specific conditions. 

 

   

 

*

* 2
*

*

* * * * *

*

,

, , ,

0

rs

rs

rs

rs

rs rs k

r R s S k K

rs rs rs

k k k

rs

a a k a k

a r R s S k K

a

rs

k

q h
L h z h

h h h

C h

h


 







  

  

 
   

 
 

 
 

  

  


  

 
  

 
    

 


  






 

  

             (5) 

 

Primal Feasibility: 
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Dual Feasibility: 
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Complementary Slackness: 
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The presence of certain conditions signifies the activation of 

the corresponding constraint, which is denoted by positive 

values of rs  and a . The gradient of the Lagrange function 

with respect to variables 
rs

kh , a , rs , and a  can be 

expressed as follows: 
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From equation (9), a generalized route travel cost is obtained 

as: 
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where ,( ) rs

a a a kc f  denotes  the cost on link .a   

A capacitated user equilibrium flow can be determined the 

following conditions: 
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predefined link flows.  

We can also observe from the complementary slackness 

conditions (8) that  
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The positive values of Lagrange multipliers, denoted by a , 

are reasonably associated with delays caused by capacity 

limitations when link flows become saturated. Empirical 

observations indicate that the total travel time on a road 

segment typically comprises two distinct components: the 

travel time itself and the waiting time at the exit point when it 

reaches capacity. Lagrange multipliers can be interpreted as the 

waiting times experienced by a vehicle on the link during 

equilibrium conditions, reflecting the delay experienced by a 

vehicle during the equilibrium state.  

 

3. LAGRANGE NEURAL NETWORKS FOR CTAPS 
 

The primary aim of this research is to develop and educate a 

neural network with the ability to attain a state of equilibrium. 

This state of equilibrium is indicative of a fixed point of the 

Lagrange function (4), which implies that the dynamic 

behavior of the neural network is governed by the gradient of 

this function. By computing the gradient of the Lagrange 

function, we can construct the following neural network model 

to resolve problem (1): 
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If the network is physically stable, the equilibrium point 

* * * *( , , , )h     described by 0,
h
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 at * * * *( , , , )h     obviously meets (9) and (12) and 

thus provides a Lagrange solution to traffic assignment 

problem (1). In component form, we can express as follows: 
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where h  and p acquire a physical interpretation as 

representations of neuronal activity. 

The aim is to identify the lowest value of problem (1), 

thereby giving rise to the creation of the Lagrange dual of 

problem (4). The objective is to optimize the Lagrange 

multipliers while concurrently minimizing the decision 

variables h  and p . This indicates a decrease in the system 

variables as time progresses alongside a corresponding increase 

in the Lagrange multipliers. 

Theorem 1: Consider the stationary point  * * * *, , ,h     of 

problem (4). Assuming that 2 ( , , , ) 0hL h      and  * *,h   

is a regular point of problem (2), it follows that  * * * *, , ,h     

serves as an asymptotically stable point within the neural 

network. 

Proof:  Applying the principles of nonlinear dynamic system 

theory, we proceed by linearizing equation (18) around the 

equilibrium point  * * * *, , , .h     

The local properties of the equilibrium are determined by 

analyzing the behavior of the linearized system. 

To establish the local asymptotic stability of the system, we 

linearize equation (18) by performing a Taylor series expansion 

around the equilibrium point  * * * *, , ,h    . The linearized 

system represents the behavior of the equilibrium point in the 

vicinity of  * * * *, , , .h     

The linearized system takes the following form: 
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The local asymptotic stability of the equilibrium point is 

determined by analyzing eigenvalues of the linearized system 

in the vicinity of point  * * * *, , ,h    . Specifically, if all 

eigenvalues of the linearized system have negative real parts, it 

indicates that the equilibrium point exhibits local asymptotic 

stability. 

When using neural networks for optimization, our main focus 

is on achieving global stability. It is essential that the network 

remains globally stable, meaning it avoids oscillations or chaos 

regardless of the starting point. This ensures that an optimal 

solution can always be obtained by initializing the network 

with any value. Lyapunov’s method is a highly effective 

approach for stability analysis, as it involves finding a suitable 

Lyapunov function. 

Definition 2: Let’s define the Lyapunov function using the 

Euclidean norm of absolute values as follows: 
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where  ( , , , )L h     represents the Lagrange function of the 

system. 

Proof: To prove the stability of the system, we need to show 

that Lyapunov function ( , , , )E h     satisfies the stability 

conditions. 

1. Positive definiteness: 

First, let's prove that ( , , , )E h     is positive definite. This 

means that the function is always greater than zero for any non-

zero input. Since ( , , , )E h     is defined as the sum of the 

squares of the absolute values of each term, it is clear  that each 

term is positive or zero. Therefore, ( , , , )E h     is a positive 

definite function. 

2. Negativity of the derivative: 

To demonstrate the negativity of the derivative, the Lyapunov 

function ( , , , )E h     is the time derivative along the 

trajectories of the system (within the system of differential 

equations). We need to show that this time derivative is always 

negative or zero, and can only be zero at equilibrium points. 

Let's take the time derivative of ( , , , )E h    : 
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system of equations (18), we obtain: 
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The negative sign in front of each term ensures that the time 

derivative of ( , , , )E h     is always negative or zero, 

indicating stability. The derivative can only be zero at 

equilibrium points. 

Therefore, since the Lyapunov function ( , , , )E h     

satisfies the necessary conditions for stability, the system is 

stable. 

 

  

4. A NUMERICAL EXAMPLE  
 

Let's examine a traffic system that comprises of three 

central nodes and ten connections, as described in [20]. Figure 

1 represents the travel demands between Origin-Destination 

(O-D) points. The link costs in the problem are given by 

piecewise polynomials, as follows:  

 For 0 5af  , the cost of link a  is 
1

5 af
, 

where a ranges from 1 to 5. - For 6 10af  , 

the cost of link a  is 0,  where a  ranges from 6 to 

10.  

It's important to note that only the first five links in the network 

have flow, while the remaining five links have no flow.  

Since link costs are rational expressions, each link capacity 

must be less than five, and a natural capacity has been added to 

the problem. The O-D pairs are numbered as follows: 
(12) (12)O D  represents trips from node 1 to node 2, 
(2) (2)O D  represents trips from node 1 to node 3, 
(3) (3)O D  represents trips from node 3 to node 1, and 
(4) (4)O D  represents trips from node 3 to node 2. Therefore, 

our notation for O D  travel demand is 

12 13 31 323; 6; 2; 5.q q q q      

There are four commodities with seven chains, and the chain 

flows are displayed as matrix form in Figure 2. Each row 

represents a chain flow from left to right, where the first column 

indicates the starting point of the chain and the last column 

indicates the destination point. 

 

Figure 1. A traffic assignment network with the travel demands between 

different O-D points. 

 

The conservation equations impose a requirement on the 

flows within chains, ensuring their adherence. 

 

(12) (12) (13) (13)

1 2 1 2

(31) (32) (32)

1 1 2

( )

3, 6,

2, 5,

0k

rs

h h h h

h h h

h

   

  

…

 (22) 

 

Additionally, as seen in Figure 2, the link-to-chain flow 

equations for links 1 to 5 can be expressed by utilizing the link-

to-chain flow matrix provided therein. 

 

  

Figure 2. Chain Flow Matrix and Link-Chain Matrix  

       

These equations can be obtained by summing flows of 

chains that connect relevant nodes, with each column 

representing the flow of a chain and each row representing the 

flow of a link between two nodes. 

 

(12) (13) (32)

1 1 1 1

(13)

1 2

(12) (13)

2 2 3

(31) (32)

1 1 4

(12) (32)

2 2 5

,

,

,

,

.

h h h f

h f

h h f

h h f

h h f

  



 

 

 

    (23) 

 

Thus, the equivalent problem to problem (1) can be written 

as follows: 

 

 
0

1
min , 1,2,...,5

5

af

a

z h dx a
x

 


    (24) 
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(12) (12) (13) (13)

1 2 1 2

(31) (32) (32)

1 1 2

(12) (12) (13) (13) (31) (32) (32)

21 1 2 1 1 2

 

3, 6,

2, 5,

. .

Chain Flows Constraints:
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h h h h
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h h h

h h h h h h

t

h






   








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 (25) 

 

(12) (13) (32)

1 1 1

(13)

1

(12) (13)

2 2

(31) (32)

1 1

(12) (32)

2 2

C

4.999,

4.999,

4.99

 apacity Constrai

.

nts

9,

4.999,

4 999.

:

h h h

h

h h

h h

h h










  















  (26) 

 

By introducing additional variables , 1,2,...,5a a   for the 

capacity constraints, an equivalent formulation for problems 

(2) and (3) can be obtained as: 

0

1
min ( ) , 1,2,...,5

5

. .

af

a

z h dx a
x

s t

 


  

(12) (12) (13) (13)

1 2 1 2

(31) (32) (32)

1 1 2

(12) (12) (13) (13) (31) (32) (32)

2 1 2 1 1 21

Chain Flows Constrain s

3,

t :

, , ,

6

, , ,

, 5

0

,

2 ,

h h h h

h h h

h h h h h h h






   



 




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2(31) (32)
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As capacity constraints cannot be exact in optimization 

problems and the capacity constraints in this case are less than 

5, they are taken as 4.999. After constructing an equivalent 

Lagrange function for this problem, the problem reduces to a 

set of ordinary differential equations, similar to (18), which 

describe the transient behavior of the neural network. These 

equations can be solved using the classical fourth-order Runge-

Kutta method. All computation and modeling steps were 

performed using Python 3.11.1 on Jupyter Notebook, executed 

on a personal computer with the following specifications: CPU: 

AMD PRO A10-8700B R6, 10 Compute Cores 4C+6G, 1.80 

GHz, RAM: 8 GB. 

The research findings illustrated in Figures 3 and 4 were 

obtained through the use of specified initial conditions: 

(1,1,1,1,1,1,1,0.1,0.1,0.1,0.1,

0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)  for variable 

12

1h , 
12

2h , 
13

1h , 
13

2h , 
31

1h , 
32

1h , 
12

2h , 1 , 2 , 3 , 4 , 1 , 

2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 .  

Figure 3 portrays the temporal variations of neurons in the 

neural network and the corresponding link flows when 

calculated values are applied to the optimization problem. 

Additionally, Table I presents the outcomes garnered from 

solving the neural network. Meanwhile, Figure 4 displays the 

relationship between link flows and traffic congestion. It is 

evident that, as traffic congestion increases, there is a 

noticeable decline in link flows. These outcomes represent the 

user equilibrium results for the network traffic assignment 

problem utilizing the Lagrange neural network. 

 
TABLE 1: 

 
USER EQUILIBRIUM RESULTS FOR NETWORK TRAFFIC ASSIGNMENT PROBLEM 

USING LAGRANGE NEURAL NETWORK. 

System 

Neurons 

Lagrange 

Neurons 

Link 

Flows 

Objective 

Function 

12

1

12

2

13

1

13

2

31

1

32

1

12

2

1

2

3

4

5

3.009537,
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0.0,
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0.6330851,

1.9181470,

0.6127112,

1.6400531,

0.6061630

h

h

h

h

h

h

h
































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Figure 3. The change in system and Lagrange neurons over 

time, as well as the variation of link flows over time 

 

 
Figure 4. The relationship between link flow and traffic 
congestion, and tracks the changes in the objective function 
over time. 
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5. DISCISSION  
 

The presence of asymptotic stability in a given system 

indicates that any existing oscillations or disturbances will 

gradually diminish and converge towards the equilibrium 

point. This behavior holds true regardless of the initial 

conditions or perturbations introduced into the system, as they 

will eventually fade away over an infinite duration, leading to 

a permanent settlement at the equilibrium point. The 

convergence of all neurons towards the equilibrium point over 

time, as demonstrated in Figures 3 and 4, ensures the 

fulfillment of capacity constraints in the link flows while 

minimizing the objective function. Furthermore, the accuracy 

of the obtained results, as presented in Table I, can be validated 

by comparing them with the outcomes of a previous study 

employing classical methods, as denoted in literature [20]. 

 

6. CONCLUSION  
 
The present study concerns the optimization model of static 

CTAP and its transformation into a dynamic system to analyze 

the effects of capacity constraints on connection flows and 

temporal variations of traffic in the network. Specifically, the 

gradient of the Lagrange function of the static CTAP 

optimization problem was transformed into a Lagrangian 

neural network, which allowed for the derivation of a set of 

differential equations that capture the dynamic behavior of the 

network. The numerical solution of the neural network was 

obtained using the fourth-order Runge-Kutta method, taking 

into account the initial conditions. By examining the temporal 

evolution of the system and the Lagrange neurons within the 

dynamic system, we were able to visualize the changes in 

traffic volume occurring in the connection flows over time and 

the traffic occurring on the connections with these changes. We 

also compared our results with an existing numerical example 

from the literature and confirmed the accuracy of our proposed 

Lagrange neural network method. 
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