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Abstract

This study proposes the use of semiparametric log-normal shared frailty models to ana-
lyze time-to-event data for individuals with similar features referred to as clusters. Shared
frailty models are useful for modeling and estimating common risk in the lifetimes of indi-
viduals in these clusters. While various methods have been proposed for estimating shared
frailty models, few studies have explored the use of the pseudo-full-likelihood method. In
this study, the pseudo-full-likelihood and hierarchical likelihood approaches were used to
construct and estimate parameter estimates and check for asymptotic properties via sim-
ulations. Log-normal semiparametric frailty model was used to obtain cluster-specific
frailty based on the semiparametric log-normal shared frailty distribution. The results of
both methods were compared, and prediction intervals for a random effect were obtained.
To further investigate the existence of shared frailty in diabetes patients and a history
of acute coronary syndrome (STEMI and NSTEMI), data from UK Biobank was used.
The results suggest the presence of frailty within the clusters and indicate cluster time
dependence in the study population. Overall, this study highlights the potential benefits
of using the pseudo-full-likelihood method in shared frailty modeling and provides insights
into the impact of observed variabilities on hazards within clusters.

Mathematics Subject Classification (2020). 62N01, 62N02, 62Nxx

Keywords. Log-normal frailty model, pseudo-full-likelihood, shared frailty model,
acute coronary syndrome, diabetes mellitus

∗Corresponding Author.
Email addresses: adedayobright@gmail.com (K.A. Adeleke), harshaldeshmukh@gmail.com (H.

Deshmukh), asr1960@hotmail.com (A. Rigby), thozhukat.sathyapalan@nhs.net (T. Sathyapalan),
joseph.john@nhs.net (J. John)
Received: 03.07.2023; Accepted: 15.06.2024

https://orcid.org/0000-0002-3854-9678
https://orcid.org/0000-0002-3859-3118
https://orcid.org/0000-0001-8331-3907
https://orcid.org/0000-0003-3544-2231
https://orcid.org/0009-0008-3981-2627


Shared frailty models for cluster-specific risk estimation 1159

1. Introduction
The underline assumption or shape of the baseline hazard function dictates if a model

is semiparametric or parametric in a Cox regression model. Cox regression model is con-
sidered to be semiparametric if no assumption(s) is/are made about the nature of the
baseline hazard function. The celebrated Cox regression model has provided tremen-
dously successful tools for exploring the association of covariates with failure time and
survival distributions. It has also been used for studying the effect of a primary co-
variate while adjusting for other variables. Of course, In semiparametric frailty model,
hazard function is left unspecified, resulting in different estimation strategies when com-
pared with the parametric frailty models. In epidemiology or clinical data, one of the
main features is clustering or dependence on some unobserved covariate. This could be
due to geographical location, common genes, and so on [38]. The shared frailty model
requires careful consideration of various estimation techniques. This approach, initially
proposed as a means of modeling cluster-specific unobserved effects in prior studies [6, 7],
has since gained widespread use in the field [37]. However, the accurate estimation of
frailty parameters remains a critical challenge in the implementation of these models. The
study by some authors [6, 23, 28, 31] investigated the Expectation Maximization (EM) al-
gorithm approach for parameter estimation of the semiparametric Gamma Shared frailty
model. The problem with the EM algorithm is that variance estimates of the estimated
parameters are not readily available. Hanagal and Sharma [20] conducted research on
bivariate survival times using parametric shared frailty models, where the frailty term was
specified as an inverse Gaussian distribution and the baseline distribution was known to
be log-logistic. The use of the profile likelihood method in semiparametric models was
established to show that profile likelihood and ordinary likelihood are the same so long
as the nuisance parameter has been profiled [27]. The development of a new method to
handle any parametric frailty distribution with finite time was conducted and applied to
analyze correlated survival times and also investigated large sample properties [14]. In a
study to estimate the parameters of the Gamma semiparametric frailty model using the
pseudo-full-likelihood (PFL) method [41], the results showed consistency in variance esti-
mation. Several methods of estimation and diagnostics for model adequacy and inference
in frailty models have also been discussed in the literature [1–4, 12, 13, 15, 25, 34, 39, 40].
A result from simulating and fitting semiparametric shared frailty models through R-
package showed that parameter estimators are asymptotically normally distributed [26].
This paper is motivated by the work of [16], who constructed a prediction interval in the
log-normal semiparametric frailty model using the hierarchical likelihood (HL) method
and obtained a standard error of the random effects. Our aim is to construct and esti-
mate the parameter estimates and check for the asymptotic properties of the log-normal
semiparametric frailty model, using PFL approach and HL methods. An illustration was
carried out with survival times of related individuals such as twins or acute coronary syn-
drome (ACS) (STEMI and NSTEMI). Acute myocardial infarction is myocardial necrosis
resulting from obstruction of a coronary artery. Symptoms include chest discomfort with
or without dyspnea, nausea, and diaphoresis. Diagnosis is by ECG and the presence or
absence of serologic markers. For St-segment-elevation myocardial infraction, emergency
reperfusion is via fibrinolytic drugs, percutaneous intervention, or coronary artery bypass
graft surgery. For the nonST-segment-elevation myocardial infarction, reperfusion is via
percutaneous intervention or coronary artery bypass graft surgery.

2. Methods
Frailty refers to an unobserved random effect that accounts for the inherent variability

in the risk of an event occurring among individuals or groups with similar characteristics.
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This concept is analogous to the idea of random effects in mixed models, where frailty rep-
resents unmeasured factors that affect an individual’s susceptibility to the event of interest
[37]. Frailty models are random effect models for time-to-event data, where the random
effect has a multiplicative effect on the baseline hazard function [22]. It is an extension of
the most popular Cox proportional hazard model. Ignoring the existence of frailty term
in the analysis of survival time data, when heterogeneity is present will leads to under-
estimation of parameters with higher standard errors [29]. By incorporating frailty into
survival models, we can better account for heterogeneity and dependency within the data.
To establish notation, assume that given n q-dimensional vector of covariates X, the un-
derline conditional hazard rate for Cox regression model [9] is defined as:

λ(t | x) = 1
∆

Pr{t ≤ T < t+ ∆t | T ≥ t,X = x}. (2.1)

λ(t | x) = λ0(t)ψ(x) (2.2)
where,

ψ(x) = exp(Xβ)

Consider n clusters with cluster i containing ni observations i = 1, 2, . . . , ni. Let Tij ,
Cij , and Xij denote respectively the event time, censoring time for individual j in cluster
i and observed p-vector of covariates Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ ni and an associated
unobserved frailty Yi, (1 ≤ i ≤ n). The indicator variable δij = I(Tij ≤ Cij). Let Yi be
the frailty which induce independence among cluster members. If Yi could be measured
and included in the model, then θ → 0 and we obtain Cox marginal PH model. Suppose
individuals in the same clusters share the same value called frailty, then the conditional
hazard function at time Tij for the jth subject in the ith cluster is given as:

λij(tij , xij , y) = λ0(tij) exp(x⊤
ijβ + yi) (2.3)

Let ui = exp(yi) then,

λij(tij , xij , y) = λ0(tij)ui exp(x⊤
ijβ) (2.4)

(2.4) is a shared frailty model as it represents the model for jth subject in the ith

cluster that share the same frailty factor. In this paper, we choose to use log-normal
semiparametric frailty model as well as PFL method of estimation due to its efficiency,
computational simplicity as well as its approximation to the likelihood function.

2.1. Log-normal frailty distribution
The use of log-normal as a frailty distribution emanated from the properties of general-

ized models with the standard assumption that random effect Ui follows a zero mean and
variance σ2 [11]. The function is given as;

f(u) = 1
u

√
2πσ2

exp
(

log(u2)
2σ2

)
(2.5)

with mean E(u) = exp(σ2/2) and var(u) = exp(σ2)(exp(σ2)−1). Log-normal frailty
distribution has no explicit evaluation of Laplace transformation but allows a relatively
simple extension into the multivariate case. Figure 1 represents the plot of log-normal
distribution at various values of standard deviations (σ). Literature revealed that there are
some commonly used baseline hazard distribution viz: Exponential, Weibull, Gompertz,
Gamma, e.t.c., as for this work, where model is purely semiparametric, therefore, the
baseline distribution is unspecified.
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Figure 1. Log-normal distribution at various values of standard deviation.

2.2. Pseudo-full-likelihood estimation method
Here, a log-normal semiparametric frailty model was proposed using PFL method of

estimation for gamma frailty model [14, 26, 38]. We apply the model to a diabetes data
from UK Biobank. Given that the frailty ui is independent of Xij and has the density
function, f(ui; θ) where θ is unknown parameter. Then, the unconditional full likelihood
function of the data is given as

L(β, θ,Λ0) =
n∏

i=1

∫ mi∏
j=1

{λij(Tij |Xij , u)}δijSij(Tij |Xij , u)f(u)du (2.6)

L(β, θ,Λ0) =
n∏

i=1

mi∏
j=1

{
λ0(Tij) exp(X ′β)

}δij

n∏
i=1

∫
u

Ni·(t)
i exp {−uHi·(t)} f(u)du (2.7)

2.3. Pseudo-full-likelihood estimation method
Here, a log-normal semiparametric frailty model was proposed using PFL method of

estimation for gamma frailty model [14, 26, 38]. We apply the model to a diabetes data
from UK Biobank. Given that the frailty ui is independent of Xij and has the density
function, f(ui; θ) where θ is unknown parameter. Then, the unconditional full likelihood
function of the data is given as

L(β, θ,Λ0) =
n∏

i=1

∫ mi∏
j=1

{λij(Tij |Xij , u)}δijSij(Tij |Xij , u)f(u)du (2.8)

L(β, θ,Λ0) =
n∏

i=1

mi∏
j=1

{
λ0(Tij) exp(X ′β)

}δij

n∏
i=1

∫
u

Ni·(t)
i exp {−uHi·(t)} f(u)du (2.9)

2.4. Hierarchical likelihood approach
The HL uses the Laplace approximation when the numerical integration is intractable,

giving a statistically efficient estimation in frailty models [4,18,19,24]. Estimation method
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using the HL for the inference of frailty models was proposed to solve the semiparametric
models in frailty models together with the corresponding estimation procedure. This
method helps semiparametric models in resolving the problem especially once it involves
clustered survival data. The approach follows that of [5,16–18] for model with competing
risk data. Below is the H likelihood for the log-normal frailty model given in (2.4);

l = l(β, λ0, θ) =
∑
ij

l1ij +
∑

i

l2i (2.10)

where ∑
ij

l1ij =
∑
ij

δij {log λ0(yij) + κij} −
∑
ij

Λ0(yij) exp(κij)

and

l2i = l2i(θ; vi) = 1
2

log(2πθ) − 1
2
v2

i

is the log of density function for vi with variance θ, λ0 = (λ01, λ02, . . . , λ0τ )T ,
κij = xT

ijβ + vi.

From equation 2.1 we estimate the parameters (β, v) with v = (v1, . . . , vq)T . In [18,19],
we noticed that the dimension of λ0 increases with sample size n, hence, the proposition
of Profile HL l∗ with λ0 eliminated.

l∗ = l|λ0=λ̂0
=
∑
ij

δijκij −
∑

k

dk log

 ∑
(ij∈R(k))

exp(κij)

+
∑

i

l2i

Here in log-normal frailty model, l∗ becomes the kernel of the penalized partial likelihood
as used in [33]. From (2.4), we estimate the parameters (β, θ), and random effect v.

2.5. Prediction intervals for random effects
Following series of research works in literature [18,19] the asymptotic covariance matrix

of β̂ and v̂ − v is the inverse, i.e. the Hessian matrix H without nuisance parameter given
by

H(β̂, v) = −
(

∂2l∗

∂β2
∂2l∗

∂β∂v
∂2l∗

∂v∂β
∂2l∗

∂v2

)

H(β̂, v) = −
(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z +R

)
with Xnxp matrix whose ith row vector is XT

ij , Znxq group indicator matrix, Wnxn sym-
metric matrix given in [19] and R = diag

[
∂2l2i
∂v2

]
q×q

diagonal matrix with

Var(β̂) = (XTV −1X) with V = Wn−1 + ZR−1ZT (2.11)
From the bottom left-hand corner of H−1, from above the variance of v̂ − v is:

Var(v̂ − v) =
[
(ZTW ∗Z +R) − (ZTW ∗X)(XTW ∗X)−1(XTW ∗Z)

]
(2.12)

Also, from the bottom right-hand corner of H−1,the 95% prediction interval for random
effect is given by

v̂i ± 1.96 × SE(v̂i) (2.13)
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where, SE(v̂i) =
√

Var(v̂ − v) is the estimated standard error obtained from the H−1

matrix [10,16,36].

3. Simulation study
3.1. Simulation study application

To study the numerical implementation and performance of the proposed model through
PFL method, we conduct a simulation study based on semiparametric log-normal frailty
distribution and obtain prediction intervals for the random effects [26]. We begin by gen-
erating data for semiparametric frailty model (2.4) with varied clusters of sizes k = (2,3,4,
and 5) and for sample size N = (50, 100, 200, 300). We made use of Type IV Pareto dis-
tribution baseline hazard, h = dca(dt)c−1[1+(dt)c]−1, where a, c and d are location, shape
and scale parameters. The regression parameters β1 = 5, β2 = log(3) and variance = θ =
γ2 = 2. We sample two time-independent covariates X1j ∼ N(0, 1) and X2j ∼ U(1, 3)
from normal and uniform distributions respectively. A right censoring rate is fixed at
approximately 35%. Our simulation is based on 1000 replications and the mean(β̂), stan-
dard deviation SE(β̂), the mean square error MSE(β̂) are also obtained. Likewise, for
random frailty parameter, θ or σ2, the mean(θ), SE(θ), mean square error, MSE(θ) and
prediction intervals are obtained. For model fitting simulation and computations, we used
frailtysurv in R programming.

3.2. Results of the simulations
An important issue is the choice between different estimation methods, yet on the same

frailty model. The choice between PFL and HL estimation methods. In our simulation
study, both methods converge and show no problem. It only takes PFL little time than
it takes HL to converge. Our results show the effect of varying clusters and sample sizes
on both methods. Also knowing that we are using log-normal shared frailty model, the
observed difference shows that one method is more efficient, less bias and provides mini-
mum MSE when compared to the other. In the simulation, we maintain the same levels
of heterogeneity and censoring, and obtained the mean, absolute bias, standard deviation
SE(β̂), and the mean square error MSE(β̂), likewise, for random frailty parameter, θ
the mean, absolute bias, SE(θ), mean square error MSE(θ). All approaches (PFL and
HL) produced on average similar estimates of the parameter β and θ. Tables 1,2, and 3
reported the mean, absolute bias, and the mean square error MSE(β̂). Obviously, Table
1 shows the empirical means of the parameter estimates, which are bias and as well as
shows some variability from the actual value. The degree of the variability becomes more
stable as sample size increases, see Figures 2 and 3 respectively. More differences are seen
in the estimates produced by PFL and HL methods, Figure 3. The parameters become
more stable as sample size increases within clusters sizes. Table 2 and 3 highlight the
effect of clusters (k) and sample sizes (n) on absolute bias and the MSE of the param-
eters respectively. It is shown that for a comparable setting, the absolute bias increases
greatly, as cluster and sample size increases see Figure 6. In the presence of moderate
censored data (35%), the MSE Figure 4 and 5 decreases greatly and continues further. In
addition, juxtaposing the two methods under the same conditions as shown in Figure 4
which displays the effect of cluster sizes, the MSE values decrease as cluster size increases
irrespective of sample size. This implies that Hl model provides the best estimates in
terms of MSE than the PFL estimates of the log-normal shared frailty model. In addition,
all used approaches are semi-parametric estimation methods that consider the baseline
hazard as unknown. More importantly, the overview average simulation (convergence)
time increases as sample and cluster sizes increase, Table 4. Generally, it takes less time
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to converge when using PFL method to the HL estimation method. Thereby showing that
the PFL method is less time-consuming.

4. Application
4.1. Study population

The UK Biobank recruited approximately 502,000 men and women aged 37 - 73 years
from the general population during the period of 2006 - 2010 [8]. Participants attended
one of 22 assessment centers across England, Wales, and Scotland [30, 35]. At the assess-
ment centers, participants completed an electronically signed consent form, a touchscreen
questionnaire and physical measurements, as previously described by [21, 30, 32, 35]. Our
study looks into the cohort of Participant with Diabetes Melitus and have complicated
acute coronary syndrome ACS (STEMI and NSTEMI). The cohort study comprises in
total 855 participants from UK Biobank who were diabetes with complications. From
these, 366 participants had reported cases of MI and each were accessed for both STEMI
and NSTEMI. Time (in months) from diagnosis of patients till death or end of study were
obtained for each participant at both levels (STEMI and NSTEMI). To understand the
concept of frailty among participant with ACS, we used Baseline characteristics factors
which includes Age (years), and Sex, Glycated hemoglobin (HbA1c X mmol/mol) val-
ues, Date of first diabetes diagnosis, Date of MI, Date of death, Date of STEMI, Date of
NSTEMI and censoring status taking value one (status = 1) if the participant is dead or
observe STEMI and or NSTEMI and zero (status = 0) otherwise.

4.2. Result
Table 5 displays the estimated coefficients, standard errors, and p-values for various

covariates obtained by applying the shared frailty model presented in equation (2.4) using
both the PFL and HL methods. The covariates included in the table are HbA1c (a measure
of blood sugar control), Age, Sex (with Male as the reference group), ACSSTEMI (a type
of heart attack), and theta (frailty parameter in the model). The covariate HbA1c has
a significant positive effect on the hazard of death, with estimated coefficients of 0.0259
and 0.0050 in the PFL and HL methods, respectively. This suggests that higher HbA1c
levels are associated with an increased risk of death, although the effect is stronger in
the PFL method. Age is not significantly associated with the hazard of death, with
estimated coefficients of -0.0278 and 0.1218 in the PFL and HL methods, respectively, and
p-values greater than 0.05. Being male is significantly associated with an increased hazard
of death, with estimated coefficients of 0.3995 and 0.7142 in the PFL and HL methods,
respectively, and p-values less than 0.001. The covariate ACSSTEMI is also significantly
associated with an increased hazard of death, with estimated coefficients of 0.0493 and
0.0014 in the PFL and HL methods, respectively, and p-values less than 0.05. Finally, for
the frailty parameter theta, in both methods (PFL and HL) are significantly associated
with the hazard of death, that is (positive dependence between event times in the clusters
of participants) with estimated coefficients of 6.7410 and 14.6100 in the PFL and HL
methods, respectively, and p-values less than 0.001. These results suggest that there is
significant variability among study participants that cannot be explained by the observed
covariates.
Comparing the two Cumulative Baseline Hazard plots from PL and HL, both display
the cumulative hazard over a 60-month period and beyond, signifying the total risk of
an event occurring up to each point in time. The first plot (PFL-Figure 8a) features a
stepwise increase but highlights a more pronounced escalation in risk as time progresses,
particularly towards the later stages of the 60-month period. While second plot (HL-Figure
8b) shows a consistent increase in risk, with a stepwise pattern reflecting the occurrence of
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events and steady increments initially, followed by varying increments, indicating periods
of fluctuating risk intensity. Both plots use rug plots at the bottom to mark individual
event times. While the first plot (PFL) focuses on the gradual growth of hazard that
becomes more significant over time, suggesting notable periods of higher risk later in the
timeline, second plot (HL) emphasizes a consistent risk with periods of varying intensity.
Table 6 provides prediction intervals for the estimates of the covariates using the PFL and
HL estimation methods. The prediction intervals give a range of values within which we
can expect the true value of the estimate to fall with a certain level of confidence. For the
covariate HbA1c, the prediction interval for the PFL method is (0.0147, 0.0372), while
for the HL method, it is (-0.0065, 0.0165). This indicates that the estimates of the effect
of HbA1c on the hazard of death are relatively precise in the PFL method, while there
is more uncertainty in the HL method. For the covariate Age, the prediction interval for
the PFL method is (-0.0550, -0.0006), while for the HL method, it is (0.0937, 0.1501).
This suggests that the estimates of the effect of Age on the hazard of death are more
uncertain in the PFL method than in the HL method. For the covariate Sex-Male, the
prediction interval for the PFL method is (0.1941, 0.6048), while for the HL method, it
is (0.3886, 1.0398). This indicates that the estimates of the effect of being male on the
hazard of death are relatively precise in both methods, with a larger effect size in the
HL method. For the covariate ACSSTEMI, the prediction interval for the PFL method
is (-0.0029, 0.0957), while for the HL method, it is (-0.1623, 0.1651). This suggests that
the estimates of the effect of ACSSTEMI on the hazard of death are more uncertain in
the HL method than in the PFL method. For the frailty parameter, theta, the prediction
interval for the PFL method is (5.8436, 7.6390), while for the HL method, it is (10.5241,
18.6958). This indicates that the estimates of the frailty parameter are relatively precise
in the PFL method, while there is more uncertainty in the HL method. The PFL and HL
intervals for Age differ significantly, with the PFL interval ranging from -0.0550 to -0.0006
and the HL interval ranging from 0.0937 to 0.1501. For Sex-Male, the PFL interval ranges
from 0.1941 to 0.6048, while the HL interval is much wider, ranging from 0.3886 to 1.0398.
This suggests that there is greater uncertainty in the estimate of the effect of sex on the
outcome variable when using the HL method. The PFL interval for the variable ACS-
STEMI ranges from -0.0957 to -0.0029, indicating a high level of uncertainty, while the
HL interval ranges from -0.1623 to 0.1651. Finally, for the frailty parameter (theta), the
PFL interval ranges from 5.8436 to 7.6390, while the HL interval is wider and ranges from
10.5241 to 18.6958. This suggests that the PFL method provides a more precise estimate
of the true value of θ.

5. Discussion
When we fixed the cluster and vary the sample sizes, to see the impact of sample size

on the parameters, estimates obtained by HL using the log-normal shared frailty model
are very high and increased as sample size increased compared to the cases of PFL which
remains almost the same as sample size increases. Figure 3 clearly shows the effect of
sample size on the parameter estimates and MSE (Figure 4) at fixed cluster size. It is
obvious that the MSE (Figure 5) of the estimates obtained asymptotically reduces as
sample size increases with HL showing the best method. On the other hand, one can
remark that as sample size increases and at the highest given cluster (k=5) the MSE(β̂1)
of the PFL and HL are asymptotically the same but for the MSE of variance of frailty,
MSE(θ) of PFL provides the minimum MSE compared to HL method, meaning that
PFL provided the best estimates in terms of variance of frailty. It can also be remarked
that in the presence of heterogeneity, and under normal censoring (35%) settings, the
estimates of shared frailty models using the PFL model exhibit less MSE than the HL
method. The average simulation time increases as sample and cluster sizes increase Table
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3. Generally, it takes less time to run when using PFL methods than the HL estimation
method. Thereby showing that the PFL method is less time-consuming. In Table 6, the
prediction intervals for the HL method are wider than those for the PFL method for all
covariates, except for HbA1c. This suggests that the HL method is associated with greater
uncertainty in the estimates compared to the PFL method. However, it’s important to
note that the precision of the estimates should also be considered in addition to the width
of the prediction intervals when evaluating the quality of the statistical analysis.

6. Summary
Despite its wide applications, which researchers have not fully appreciated its usefulness,

this estimation method provides contemporary alternative method of estimating parame-
ters of shared frailty model. Our approach of PFL estimation method which is almost the
same as ordinary likelihood method has proved to be a useful method of computation in
shared frailty model if some conditions are met. Using a UK Biobank data, we demon-
strated herein, with strong evidence, a reasonably survival of participant from diabetes
diagnose till either acute coronary syndrome (ACS), death or loss to follow up. There
exists a high dependent within the clusters of participants with STEMI and NSTEMI
and independent across the participant given an estimated value of θ > 0. HbA1c are
contributing significantly to the mortality rate from diagnose to STEMI or NSTEMI. This
translated to higher risk among those taking Glucose. There is also a strong correlation
between observed variable and unobserved variable as shown by the estimated correlation
coefficients. Stability of our estimate is strongly supported by the prediction interval ob-
tained in Table 6 as well as the trace plot (Figure 7) using PFL estimation method for
semiparametric log-normal shared frailty model.
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Table 1. Effects of cluster size (k) on parameters estimates for HL and PFL
methods.

mean n=300 n=200 n=100 n=50
HL PFL HL PFL HL PFL HL PFL

k=2 β̂1 -4.219 -4.912 9.166 -4.574 -4.054 -4.719 2.864 -4.412
β̂2 -0.948 -1.103 2.043 -1.060 -0.909 -1.058 1.110 -0.916
θ 3.519 4.097 1.408 3.797 3.104 3.614 1.856 3.001

k=3 β̂1 -4.091 -4.762 9.080 -4.750 -4.038 -4.701 -3.943 -4.591
β̂2 -0.935 -1.088 2.034 -1.089 -0.922 -1.073 -0.863 -1.005
θ 3.480 4.051 1.441 4.006 3.352 3.902 3.036 3.534

k=4 β̂1 -4.567 -4.762 9.386 -4.762 -4.381 -4.568 -3.913 -4.555
β̂2 -1.043 -1.088 2.115 -1.088 -1.013 -1.056 -0.865 -1.007
θ 3.885 4.051 1.641 4.051 3.633 3.789 3.136 3.651

k=5 β̂1 7.967 -3.829 9.274 -4.457 -4.256 -4.438 -4.261 -4.444
β̂2 1.803 -0.897 2.100 -1.044 -1.001 -1.044 -0.978 -1.020
θ 1.318 3.166 1.535 3.686 3.489 3.638 3.332 3.474

Table 2. Absolute bias of the parameter estimates for different values of n and
k.

Absolute Bias n=300 n=200 n=100 n=50
HL PFL HL PFL HL PFL HL PFL

k=2 β̂1 9.912 9.219 9.850 9.166 9.719 9.054 9.412 2.136
β̂2 2.202 2.046 2.198 2.043 2.156 2.007 2.014 0.012
θ 2.097 1.519 1.967 1.408 1.614 1.104 1.001 0.144

k=3 β̂1 9.762 9.091 9.750 9.080 9.701 9.038 9.591 8.943
β̂2 2.187 2.033 2.187 2.034 2.172 2.021 2.104 1.962
θ 2.051 1.480 2.006 1.441 1.902 1.352 1.534 1.036

k=4 β̂1 9.762 9.567 9.574 9.386 9.568 9.381 9.555 8.913
β̂2 2.187 2.142 2.159 2.115 2.154 2.111 2.106 1.964
θ 2.051 1.885 1.797 1.641 1.789 1.633 1.651 1.136

k=5 β̂1 2.967 8.829 9.457 9.274 9.438 9.256 9.444 9.261
β̂2 0.705 1.995 2.142 2.100 2.143 2.100 2.118 2.076
θ 0.682 1.166 1.686 1.535 1.638 1.489 1.474 1.332
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Table 3. MSE of parameter estimates in terms of sample and cluster sizes.

PFL HL
Sample size 50 100 200 300 50 100 200 300

k=2 MSE(β̂1) 1.961 1.408 0.966 0.791 1.684 1.350 0.927 0.759
MSE(β̂2) 1.011 0.720 0.502 0.407 0.869 0.690 0.482 0.390
MSE(θ) 3.465 2.634 1.858 1.533 2.976 2.526 1.782 1.470

k=3 MSE(β̂1) 1.119 0.767 0.535 0.435 0.961 0.736 0.513 0.417
MSE(β̂2) 0.681 0.470 0.328 0.266 0.585 0.451 0.314 0.255
MSE(θ) 2.096 1.510 1.052 0.854 1.800 1.448 1.009 0.819

k=4 MSE(β̂1) 0.934 0.572 0.390 0.435 0.803 0.549 0.374 0.417
MSE(β̂2) 0.581 0.372 0.255 0.266 0.499 0.357 0.245 0.255
MSE(θ) 1.938 1.143 0.782 0.854 1.665 1.096 0.750 0.819

k=5 MSE(β̂1) 0.698 0.464 0.320 0.009 0.669 0.445 0.306 0.008
MSE(β̂2) 0.452 0.313 0.216 0.401 0.433 0.300 0.207 0.385
MSE(θ) 1.478 0.962 0.665 0.019 1.417 0.922 0.637 0.118

Table 4. Simulation runtime for the methods.

300 200 100 50
PFL

k2 (227.54ś52.12) (96.42ś20.76) (24.62ś5.67) (6.10ś1.64)
k3 (332.03ś63.4) (146.93ś30.09) (36.20ś8.66) (10.28ś3.28)
k4 (332.74ś63.40) (192.57ś41.38) (50.15ś10.34) (14.59ś3.88)
k5 (333.43ś54.98) (290.00ś139.65) (58.17ś11.54) (17.41ś4.77)

HL (HL)
k2 (421.46ś96.68) (178.46ś37.18) (44.61ś9.29) (11.34ś3.05)
k3 (617.18ś18.77) (271.41ś28.77) (66.92ś14.87) (19.11ś6.09)
k4 (618.93ś39.21) (356.93ś16.21) (92.95ś18.59) (27.12ś7.22)
k5 (619.05ś46.39) (539.12ś20.71) (107.82ś20.44) (31.60ś7.44)

Table 5. Estimates of PFL and HL estimation methods.

Covariate PFL HL
Estimate Std. Error p-value Estimate Std. Error p-value

HbA1c 0.0259 0.0117 0.0269 0.0050 0.0058 < 0.001
Age -0.0278 0.0283 0.3260 0.1218 0.0144 < 0.001
Sex-Male 0.3995 0.2139 0.0618 0.7142 0.1661 < 0.001
ACSSTEMI 0.0493 0.0483 0.0080 0.0014 0.0835 < 0.001
θ 6.7410 0.9351 < 0.001 14.6100 2.0846 < 0.001

Table 6. Prediction interval of the estimates.

Covariate PFL HL
Lower Upper Lower Upper

HbA1c 0.0147 0.0372 -0.0065 0.0165
Age -0.0550 -0.0006 0.0937 0.1501
Sex-Male 0.1941 0.6048 0.3886 1.0398
ACSSTEMI -0.0029 0.0957 -0.1623 0.1651
θ 5.8436 7.6390 10.5241 18.6958
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Figure 2. Effect of cluster size on parameter estimates.
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Figure 3. Effect of sample size on parameter estimates.
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Figure 4. MSE and cluster size.
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Figure 5. MSE and sample sizes.
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Figure 6. Absolute bias of estimates based on sample sizes and clusters.
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Figure 7. Parameter estimate trace and parameter log-likelihood trace using
PFL (A) and HL (B).
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Figure 8b:  

 

Figure 8. Cummulative Baseline Hazards plot for PFL (a) and for HL (b).


