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Abstract  Özet  

The development of electric vehicle (EV) technologies and 

the spread of EVs have made expanding charging 

infrastructure increasingly critical. However, unplanned 

sizing of EV charging stations will have adverse technical, 

economic, and environmental impacts, especially on grid 

reliability and energy costs. This study performs a techno-

economic evaluation of a solar PV-based hybrid power 

system considering variations in EV charging demand 

profiles and economic parameters. The results show that 

variations in demand profile and economic parameters 

significantly influence investment decisions. Higher 

inflation was most effective on peak evening demand 

profiles, increasing the levelized cost of energy by up to 2.2 

times. Self-sufficiency can increase to 57% under grid sales 

constraints in the midday peak scenario. Moreover, at 

maximum installed PV capacity, the self-consumption rate 

(SCR) is 12% higher than in the evening peak, and 

curtailment is reduced by up to 4.5%. The results will 

expand the use of renewable energy with less grid 

dependency and faster achievement of zero carbon 

emission targets. 

 Elektrikli araç (EA) teknolojilerinin gelişmesi ve EA’ların 

yaygınlaşması, şarj altyapısının genişletilmesini giderek daha 

kritik hale getirmiştir. Plansız EA şarj istasyonu 

boyutlandırması, özellikle şebeke güvenilirliği ve enerji 

maliyetleri üzerinde olumsuz teknik, ekonomik ve çevresel 

etkilere sahip olacaktır. Bu çalışmada, EA şarj talep profilleri 

ve ekonomik parametrelerdeki değişimleri göz önünde 

bulundurarak, güneş fotovoltaik tabanlı hibrit güç sisteminin 

tekno-ekonomik değerlendirmesi yapılmıştır. Sonuçlar, talep 

profilindeki ve ekonomik parametrelerdeki değişkenliklerin 

yatırım kararlarını önemli ölçüde etkilediğini göstermektedir. 

Yüksek enflasyon en çok pik gece şarj talebi profillerinde etkili 

olmuş ve seviyelendirilmiş enerji maliyetini 2,2 katına kadar 

artırmıştır. Şebeke satış kısıtlamaları altında öğlen zirve 

senaryosunda kendi kendine yeterlilik %57'ye kadar artabilir. 

Dahası, maksimum fotovoltaik kurulu gücünde öz tüketim 

oranı akşam zirve senaryosuna göre 12% daha yüksek olmayı 

başarmış ve faydalanılamayan enerji %4,5'e kadar azalmıştır. 

Sonuçlar, şebekeye daha az bağımlı yenilenebilir enerji 

kullanımını yaygınlaştıracak ve sıfır karbon emisyonu 

hedeflerine daha hızlı ulaşılmasını sağlayacaktır. 

Keywords: Electric vehicle, Electric vehicle charging 

station, Energy storage systems, Hybrid power system, 

Optimization, Renewable energy source. 

 Anahtar Kelimeler: Elektrikli araç, elektrikli araç şarj 

istasyonu, enerji depolama sistemleri, hibrit güç sistemi, 

optimizasyon, yenilenebilir enerji kaynağı 

1 Introduction 

As global temperatures reached alarming levels, 

countries had to turn to new energy alternatives. Moreover, 

it is necessary to reduce the negative impact of energy-

consumption vehicles, especially fossil fuel-dependent cars, 

on the environment. It promises that by 2050, the share of 

EVs in the automobile market will reach 81.5%, and the 

share of renewables in energy production will get 88% with 

net zero emission commitments set in global partnerships to 

which countries are a party. The widespread penetration of 

electric vehicles (EVs) could reduce the role of 

transportation in environmental pollution. However, the 

increased energy demand for EVs will increase the peak load 

capacity of the grid. Therefore, integrating renewable 

technologies is increasingly important to meet the growing 

demand for EV charging stations (EVCS) without grid 

dependency. Analyses of sensitivity and incorporating 

inflation rates (IR) and discount rates (DR) into financial 

models are required for optimal diesel generator (DG) 

allocation. This allows for a more comprehensive assessment 

of different allocation decisions' economic viability and 

potential risks. IR can affect the cost of materials and labor 

required to construct renewable energy facilities. Therefore, 

as IR increases, project costs may also increase. Higher 

project costs may affect optimal allocation decisions, making 

DGs less attractive. IR&DR are linked, and higher DR can 

affect the cost of borrowing for hybrid power system 

projects. Higher DR increases the cost of capital and 

potentially reduces financing options' attractiveness. 

Therefore, optimal sizing may be affected as projects with 

higher financing costs become less favorable. On the other 
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hand, IR can affect investment returns for DG projects. 

Therefore, it is important to consider inflation-adjusted 

returns when assessing the financial viability of DG projects. 

Higher IR can reduce real returns. IR can also affect 

electricity tariffs and revenues from DG systems. If 

electricity tariffs are not indexed to inflation, the purchasing 

power of income from DG projects may decline over time. 

So, IR&DR are critical inputs when conducting discounted 

cash flow analysis, which is widely used to assess the 

financial feasibility of DG projects. Higher IR can affect the 

present value of future cash flows by affecting the DR used 

in cash flow analysis. These rates can alter the financial 

attractiveness of DG projects and influence optimal 

allocation decisions.  

Various studies analyze the optimal sizing of HPS and its 

possible technical, economic, and environmental effects. The 

energy demand at EVCS, which is almost universal, can be 

supplied by PV. EVCS optimal installation points are 

determined by a four-stage analysis that works in harmony 

with the GIS-based approach to improve system 

performance [1]. The available PV capacity was determined 

as 3.1 MW for 100 EV charging points and 11.1 GW across 

the US [2]. Self-consumption data in five different Chinese 

cities were improved with a new methodology developed to 

avoid bicycle charging current limit at public transportation 

stations and to use PV effectively in different irradiances [3]. 

Thanks to the optimization approach developed, cumulative 

CO2 was reduced by up to 15%, while EV charging demand 

was met by over 93% [4]. The multi-objective optimization 

model reduced COE to 0.046 $/kWh and CO2 to 472.4 g [5]. 

In another study, where supply-demand uncertainties were 

removed with Monte Carlo and EV charging was determined 

with the Erlang B queuing model, the annual energy cost 

purchased from the grid was reduced by 74.2%. In 

comparison, the revenue from energy sales increased by 

19.86% [6]. The system's operating costs were reduced by 

42.8% using an economic linearized stochastic programming 

strategy that included the electricity tariff [7]. In building 

communities with EVCS, by removing biomass generators 

from the optimal configuration, COE was decreased by 

17.5%, while energy supply was increased by 8.33% [8]. In 

another study, optimizing using ABC&PSO improved RF by 

up to 87%, while COE and LPSP were reduced to 

$0.038/kWh and 0.19%, respectively [9]. 

Although the optimization methods focus on optimal 

sizing, the network needs strengthening due to increasing 

demand and capacity constraints. Time of Use (TOU) is a 

pricing structure used primarily in the energy and utility 

industries to charge customers based on the hours they use 

electricity or other utilities. TOU pricing aims to create a 

more efficient and sustainable electricity system by aligning 

consumer behavior with daily energy supply and demand 

fluctuations [10]. This encourages consumers to use 

electricity while it is cheaper, which can ultimately lead to 

cost savings and a more reliable grid. However, its success 

depends on consumer education and their ability to change 

their routines to take advantage of lower off-peak prices. 

TOU pricing can be complex for consumers to understand 

and manage. Consumers may face higher initial bills if they 

do not change their habits to take advantage of off-peak 

pricing [11]. Evidence shows that small to medium-sized 

commercial customers are willing to reduce their peak 

energy consumption due to TOU pricing [12]. The energy 

management strategy developed based on TOU considers the 

benefits of network operators and users, reduces costs, and 

shortens the payback period to 5.17 years [13]. In recent 

years, TOU and real-time pricing have received increasing 

attention, especially with the advent of the smart grid, which 

allows the implementation of TOU [14–16]. 

Grid operators must use each generating and consuming 

system for different grid services. By playing an active role 

in the energy market, power quality issues in the grid can be 

addressed, while the potential of the smart grid can be 

enhanced with more options for customers. The performance 

of the solar EVCS is evaluated using accurate load data and 

meteorological measurements, considering the seasonal 

effect of PV generation. The PV generation size and EV 

charging connection time were varied and analyzed under 

different scenarios, and it was observed that level-2 charging 

does not cause voltage instability. It was also emphasized 

that it could reduce the probability of under-voltage 

problems, transformer overload, and losses due to PV 

generation and EV charging demand [17]. It has been 

determined that the carbon footprint of solar EVCS with 

energy storage systems (ESS) can be reduced by up to 15% 

with an environmentally optimized design [4]. These studies 

mostly optimized system sizing by considering variables 

such as EV charging, PV capacity, and solar irradiance 

variations. However, the uncertainty associated with EV 

charging and the potential for economic parameters such as 

IR&DR to fluctuate has not been simultaneously analyzed. 

This study explores the potential for integrating renewable 

energy system (RES) into EVCS by considering EV 

charging demand periods and financial parameter variability. 

The original contributions of this paper are as follows: 

 Techno-economic evaluation of a grid-connected 

hybrid power system for electric vehicle charging 

stations has been performed. 

 Investment decisions are significantly influenced by 

variations in the demand profile and economic 

parameters. 

 The performance of the hybrid energy system is 

examined in detail through sensitivity analysis. 

 The potential for direct energy transfer from PV to load 

and the techno-economic impacts are analyzed 

according to the variation in the demand period. 

 The levelized energy cost increases by up to 55% in the 

evening peak, depending on the variation in economic 

parameters. 

 

This paper investigates the potential of retrofitting 

EVCSs with solar PV, considering variations in energy 

demand times for EVCS and economic parameters such as 

IR&DR.  
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2 Material and method 

2.1 Location and climatic data 

Antalya city in Türkiye is 36° 53.8’ latitude and 30° 42.8’ 

longitude. Figure 1 shows Antalya's average solar radiation, 

temperature, and clearness index data [18].  

 

 

 

 

Figure 1. Solar radiation, temperature, and clearness 

index (CI) data in Antalya. 

 

Average solar radiation data for each month is obtained 

from the National Aeronautics and Space Administration 

(NASA) using the software database. The data is Antalya's 

average daily radiation, average temperature, and average 

clearness index is 4.54 kWh/m2/day, 18.23°C, and 54.07%. 

2.2 Solar photovoltaic panel 

The solar photovoltaic panel is the main component of 

HPS. The PV array performance varies depending on solar 

radiation, panel temperature, derivative factor (DF), and 

panel efficiency. The amount of power produced by the PV 

array at time t 𝑃𝑃𝑉(𝑡) is given in Equation (1), the maximum 

efficiency formula of PV panels under normal conditions 

(STC) 𝜂𝑚𝑝,𝑆𝑇𝐶 is given in Equation (2), and cell temperature 

at time t 𝑇𝐶(𝑡) formula of PV array under operating condition 

is given in Equation (3) [19]. Where 𝑌𝑃𝑉 is PV array rated 

capacity in STC (kW), 𝑓𝑃𝑉 is PV derating factor (%), 𝐺𝑇(𝑡) 

is solar radiation at time t (kW/m2), 𝐺𝑇,𝑆𝑇𝐶  is measurement 

of incident radiation at STC (1 kW/m2), 𝛼𝑃 is temperature 

coefficient of power (0.1%/0C), 𝑇𝑎(𝑡) is ambient temperature 

at time t (0C), 𝑇𝑁𝑂𝐶𝑇  is normal operation cell temperature 

(0C), and 𝐴𝑃𝑉 is area of the PV panel (m2) [20]. 

 

𝑃𝑃𝑉(𝑡) =
𝑌𝑃𝑉 . 𝑓𝑃𝑉 . 𝐺𝑇(𝑡). [1 + 𝛼𝑃. (𝑇𝐶 − 𝑇𝐶,𝑆𝑇𝐶)]

𝐺𝑇,𝑆𝑇𝐶

 (1) 

 

𝜂𝑚𝑝,𝑆𝑇𝐶 =
𝑌𝑃𝑉

𝐴𝑃𝑉 . 𝐺𝑇,𝑆𝑇𝐶

 (2) 

 

𝑇𝐶(𝑡) = 𝑇𝑎(𝑡) +
𝐺𝑇(𝑡). (𝑇𝑁𝑂𝐶𝑇 − 20)

800
 (3) 

 

2.3 Converter (inverter and rectifier) 

Converters are required for energy flow between DC and 

AC systems in HPS. It consists of a converter, rectifiers, and 

an inverter. Proper sizing of the converter power is critical in 

correctly sizing the HPS model. A small converter can curtail 

a considerable amount of energy. The power output formula 

of the inverter at time t 𝑃𝑖𝑛𝑣(𝑡) is shown in Equation (4), and 

the power output formula of the rectifier at time t 𝑃𝑟𝑒𝑐(𝑡) is 

seen in Equation (5) [21]. Where 𝑃𝐷𝐶(𝑡) is DC power input 

at time t (kW), 𝑃𝐴𝐶(𝑡) is AC power input at time t (kW), 𝜂𝑖𝑛𝑣 

is inverter efficiency (%), and 𝜂𝑟𝑒𝑐 is rectifier efficiency (%). 

 

𝑃𝑖𝑛𝑣(𝑡) = 𝜂𝑖𝑛𝑣 . 𝑃𝐷𝐶(𝑡) (4) 

 

𝑃𝑟𝑒𝑐(𝑡) = 𝜂𝑟𝑒𝑐 . 𝑃𝐴𝐶(𝑡) (5) 

 

2.4 EVCS and peak time ranges 

The time horizon for the charging of each j EV of type 𝑒 

(hour) (𝜏𝑒,𝑗) is given in Equation (6), the charge power of 

each 𝑗 EV of type 𝑒 at time 𝑡 (kW) (𝑃𝐸𝑉(𝑒,𝑗)(𝑡)) in Equation 

(7), and total EV power at time 𝑡 (kW) (𝑃𝐸𝑉
𝑡 ) are given in 

Equation (8) [22]. Where 𝑠𝑡𝑒,𝑗 is starting charge time of 𝑗 EV 

of type 𝑒 (hour), 𝐸𝑅𝑒 is average required energy for EV type 

𝑒 (kWh), 𝑃𝐸𝑉(𝑚𝑎𝑥) is maximum charging power in slow 

mode for EV type 𝑒 (kW), 𝑃𝐸𝑉(𝑗,𝑡) is charging power of 𝑗 EV 

of type 𝑒 at time 𝑡 (kW), 𝑁𝐸𝑉 is the number of EV, 𝑗 is EV 

user index, 𝑡 is time index (hour), and 𝑒 is EV type (𝑒 = 1 

cars).  

 

𝜏𝑒,𝑗 = [𝑠𝑡𝑒,𝑗 +
𝐸𝑅𝑒

𝑃𝐸𝑉(𝑚𝑎𝑥)

] (6) 

 

𝑃𝐸𝑉(𝑒,𝑗)(𝑡) = {
𝑃𝐸𝑉(𝑚𝑎𝑥) 𝑖𝑓 𝑡 ∈ 𝜏𝑒,𝑗

0 𝑖𝑓 𝑡 ∉ 𝜏𝑒,𝑗
 (7) 

 

𝑃𝐸𝑉
𝑡 = ∑ 𝑃𝐸𝑉(𝑒,𝑗)(𝑡)

𝑁𝐸𝑉

𝑗=1

 (8) 
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Table 1 shows the different EVCS peak times and daily 

energy demands. This study created EVCS load profiles 

considering three different peak time periods. The average 

daily demand of EVCSs is 2500 kWh/day. In addition, the 

peak charging demand times are between 07.00-09.00 in the 

morning in EVCS1, 11.00-13.00 in EVCS2, and 17.00-19.00 

in EVCS3. 

 

Table 1. EVCS peak times and daily energy demands 

 
EVCS Types 

EVCS1 EVCS2 EVCS3 

Peak Time 

Range 

07.00-09.00 

Morning Peak 

11.00-13.00 

Midday Peak 

17.00-19.00 

Evening 

Peak 

Energy 
Demand 

2479 kWh/day 2505 kWh/day 2496 kWh/day 

 

2.5 Energy storage system 

Energy storage system (ESS) stores the excess energy 

produced, supplies energy to the HPS that needs energy, and 

provides a constant voltage in case of incompatibility 

between power generation and consumption. Thus, they 

establish the balance between the energy produced and the 

load demand. The capacity value of the ESS (𝐶𝐸𝑆𝑆) is given 

in Equation (9). Where 𝐸𝑙𝑜𝑎𝑑  is average daily load energy 

(Ah), 𝐷𝐸𝑆𝑆 is number of days energized by ESS, 𝐷𝑂𝐷𝑚𝑎𝑥 is 

battery maximum discharge depth [%], 𝜂𝐸𝑆𝑆 is ESS 

efficiency [%], and 𝜂𝑖𝑛𝑣 is inverter efficiency [%] [23, 24]. 

 

𝐶𝐸𝑆𝑆 =
𝐸𝑙𝑜𝑎𝑑  .  𝐷𝐸𝑆𝑆

1000 . 𝐷𝑂𝐷𝑚𝑎𝑥  .  𝜂𝐸𝑆𝑆 .  𝜂𝑖𝑛𝑣

  [𝑘𝑊ℎ] (9) 

 

2.6 HPS models and cost prices 

Hybrid energy systems are defined as systems that use 

multiple energy sources such as solar and wind, solar and 

diesel generators, wind and diesel generators, or solar, wind, 

and diesel generator systems to power the electrical load and 

can integrate with the electricity grid [25]. Figure 2 shows 

the HPS model. Capital, replacement, and operation & 

maintenance (O&M) costs of HPS components are given in 

Table 2 [26]. The project lifetime of the HPS is 20 years. 

 

Table 2. EVCS model component prices 

 
HPS Model Components 

PV ESS Converter 

Capital 
Cost 

1000 $/kW 300 $/kWh 300 $/kW 

Replacement 

Cost 
900 $/kW 250 $/kWh 300 $/kW 

O&M 

Cost 
10 $/kW/yr 2 $/kWh/yr 0.02 $/kW/yr 

 

 

Figure 2. HPS models. 
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2.7 Grid tariffs and prices 

The three-tariff system has been considered in energy 

purchase and sale, and the purchase-sale cost values of this 

three-tariff are given in Table 3 [27]. 

 

Table 3. Grid price tariffs 

Grid Properties Time Range 
Grid Price 

($/kWh) 

Grid 
Purchases 

(TOU) 

Flat Tariff 06.00-17.00 0.100 

Peak Tariff 17.00-22.00 0.160 

Valley Tariff 22.00-06.00 0.056 

Grid Sales 24 hours 0.051 

 

2.8 Economic parameters 

The net present cost (𝑁𝑃𝐶) of the system is obtained by 

subtracting the present value of all costs over the project's 

life from the present value of all income earned during the 

project's lifespan. It includes capital cost, replacement cost, 

O&M cost, grid purchases, and emission cost penalties. 

HOMER software calculates the NPC value by summing the 

discounted cash flows at the end of each year. The annual 

cost is multiplied by the NPC value by the capital recovery 

factor. NPC ($) at the end of the project lifespan is given in 

Equation (10), capital recovery factor (𝐶𝑅𝐹(𝑖, 𝑁)) in 

Equation (11), and annual real DR (%) (𝑖) in Equation (12) 

[28]. Where 𝐶𝑎𝑛𝑛,𝑡𝑜𝑡 is total annualized cost ($/yr), 𝑁 is 

project lifetime (year), 𝑛 is number of years, 𝑖′ is nominal 

DR (%), and 𝑓 is expected IR (%). 

 

𝑁𝑃𝐶 =
𝐶𝑎𝑛𝑛,𝑡𝑜𝑡

𝐶𝑅𝐹(𝑖, 𝑁)
  [$] (10) 

 

𝐶𝑅𝐹(𝑖, 𝑁) =
𝑖 .  (1 + 𝑖)𝑛

𝑖 .  (1 + 𝑖) − 1
 (11) 

 

𝑖 =
𝑖′ − 𝑓

1 + 𝑓
 (12) 

 

The average cost per kWh of useful energy produced by 

the HPS represents the levelized cost of energy ($/kWh). It 

is a suitable metric for comparing HPSs. Equation (13) 

shows the formula for the 𝐶𝑂𝐸 [29]. Where 𝐸𝑠𝑒𝑟𝑣𝑒𝑑  is total 

electrical load served (kWh/yr). 

 

𝐶𝑂𝐸 =
𝐶𝑎𝑛𝑛,𝑡𝑜𝑡

𝐸𝑠𝑒𝑟𝑣𝑒𝑑

      [$/𝑘𝑊ℎ] (13) 

 

Renewable fraction (RF) is a fraction display that shows 

the rate at which the total annual energy power generation 

from RES is transferred to the load. The ratio of RES to the 

loads in the system is managed in this fraction notation. 

Equation (14) represents the 𝑅𝐹 [30, 31]. 

 

𝑅𝐹 = 1 −
𝐸𝑛𝑜𝑛𝑟𝑒𝑛

𝐸𝑠𝑒𝑟𝑣𝑒𝑑

    [%] (14) 

The self-consumption rate (𝑆𝐶𝑅) is the ratio between the 

total PV energy directly transferred to the load (∑ 𝐸𝑃𝑉
𝑐𝑜𝑛𝑠), and 

the total PV energy (∑ 𝐸𝑃𝑉
𝑔𝑒𝑛

), shown in Equation (15) [32]. 

The ratio between the total RES generation directly 

transferred to the load and the annual total load demand 

(∑ 𝐸𝐿𝑂𝐴𝐷
 ) gives the self-supply rate (𝑆𝑆𝑅). For the SSR to 

increase, the share of PV should increase according to the 

load demand. Equation (16) shows the formula for the self-

supply ratio [33]. Equation (17) shows the objective function 

(𝑓) of HPS. The function aims to determine the HPS that 

minimizes the NPC value. 

 

𝑆𝐶𝑅 =
∑ 𝐸𝑃𝑉

𝑐𝑜𝑛𝑠

∑ 𝐸𝑃𝑉
𝑔𝑒𝑛    [%] (15) 

 

𝑆𝑆𝑅 =
∑ 𝐸𝑃𝑉

𝑐𝑜𝑛𝑠

∑ 𝐸𝐿𝑂𝐴𝐷
    [%] (16) 

 

𝑓 = min (∑ 𝑁𝑃𝐶

𝑁

𝑛=1

) (17) 

 

Table 4 shows HPS scenarios [34]. HPS scenarios have 

been created for three different IR&DR parameters. The grid 

energy sales constraint is considered in the analyses. Also, 

the maximum PV installed capacity is set at 900kW, 

considering the limited installed area in EVCSs [35]. The 

performance of each scenario is evaluated by considering the 

self-consumption rate, self-sufficiency rate, excess energy, 

and energy cost parameters. 

 

Table 4. HPS scenarios 

Parameters Case 1 Case 2 Case 3 

Inflation rate (IR) 1.30% 7.40% 14.0% 

Discount rate (DR) 4.30% 8.49% 23.3% 

Grid sale constraint with GSC, without GSC 

PV capacity 
0-120-240-300-360-420-480-540-600-660-

720-780-840-900 kW 

 

3 Optimization results 

Prosumers' investment decisions are significantly 

affected by IR&DR. This section determines the optimal PV 

capacities according to demand profiles with different peak 

times for IR&DR. Moreover, the impact of increased PV 

capacity on technical, economic, and environmental 

outcomes is assessed. Figure 3 shows that, regardless of the 

peak time of the load, the optimal PV capacity increases with 

the increase in IR&DR. It can also be said that SCR 

decreases and SSR and EE increase with increasing PV 

capacity in each profile. At optimum PV capacities and 

highest IR (Case 3), SCR and SSR decrease to 45% and 43%, 

while EE increases to 33.6% during the morning peak. 

Increasing PV capacity reduces SCR to 34%, 40%, and 28% 

in the morning, midday, and evening peak scenarios. So, 
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SCR is 12% lower in the evening peak than in the midday 

scenario. In addition, the curtailment energy due to load 

mismatch is 4.5% higher.  

On the other hand, SSR increased to 57% in the midday 

peak scenarios but could only increase to 48% and 40% in 

the morning and evening peak, depending on the PV capacity 

increases. The COE increases with each peak profile for most 

PV capacities, especially at the lowest inflation. High IR 

increased the levelized cost of energy by up to 19.2%, 28%, 

and 20.3% in the morning, midday, and evening peak 

optimal scenarios, respectively. PV capacities that minimize 

COE and keep SCR within limits were selected as optimum. 

Optimal PV capacity increased by 2.5 times during the 

highest IR compared to under lower IR optimal scenarios for 

the morning peak. This ratio increased PV capacity by up to 

1.8 times and 3 times, respectively, during the midday and 

evening peak periods in the optimal case for the same 

situation.

 

 

Figure 3. EVCS self-consumption and self-sufficiently change with GSC 
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Figure 4. EVCS self-consumption and self-sufficiently change without GSC 

 

Figure 4 shows that EE and COE have decreased with 

grid sales, and the optimal PV capacity has increased. The 

absence of over-generated electricity indicates that the sizing 

strategy is quite important. It can be noted that the revenue 

received from the sale of electricity to the grid affects the 

COE and the optimal PV capacity associated with the COE. 

In this context, SCR and SSR were not much affected by the 

economic rate and peak time. As IR increased (Case 3), 

optimal PV capacity increased by 53% for morning and 

midday peaks and 47% for evening. 

The optimal COE decreased by 55.3%, 32.3%, and 

28.2% at the morning peak for cases 1, 2, and 3, respectively. 
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In the case of high IR (Case 3), the SCR decreased by 19.3%, 

25%, and 21% in the morning, midday, and evening peak 

periods, respectively. It should be noted that the SSR 

increased by 8% in the same situation.  

With sales to the grid, SCR was more affected by the 

evening peak and SSR more by the midday peak. These 

values will decrease with decreasing inflation. Regardless of 

the peak time, at high and medium IR (Case 2 and 3), the 

optimal PV capacity and, thus, the probability of load 

coverage by the PV is maximized. On the other hand, SSR 

does not improve the optimal selection of PV capacity at 

evening peaks and low IR. 

 

4 Conclusion 

This paper investigates the potential of retrofitting 

EVCSs with solar PV, considering variations in energy 

demand times for EVCS and economic parameters such as 

IR&DR. Optimization results show that inflation increases 

COE by up to 28%, depending on different peak charging 

periods. The increased PV capacity further reduced the SCR 

by up to 12% for the evening peak. Optimal SSR was 30%, 

41%, and 17% for morning, midday, and evening peak, 

respectively, in the low inflation scenarios. Higher inflation 

was most affected in the evening peak, increasing the 

levelized cost of energy by up to 2.2 times. In the optimal 

scenario with morning peak demand, the SCR increases up 

to 79% at low inflation but decreases to 45% as inflation 

increases. In contrast, for the same economic conditions in 

the evening peaks, the SCR decreases by 32%. The results 

demonstrate the benefits of EVCS optimization to clean 

energy management from multiple perspectives, which can 

support the development of EVCS policies. Future studies 

should improve the optimal hybrid system sizing 

methodology considering solar radiation potential, hybrid 

system installation costs, carbon tax, and incentives. 
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Appendix 

COE (1): 14.0% IR, 23.31% DR, COE (2): 7.4% IR, 8.49% DR, COE (3): 1.3% IR, 4.3% DR. 

(*) Optimal HPS 
 

Table A.1. Morning Peak (With GSC) 

PV (kW) SCR (%) SSR (%) EE (%) 
COE ($/kWh) 

COE (1) COE (2) COE (3) 

0 100.0 0.00 0.00 0.106 0.106 0.106 

120 97.0 18.0 0.54 0.092 0.097 0.099 

240 (*) 79.0 30.0 7.10 0.084 0.094 0.098 

300 71.0 33.0 11.9 0.082 0.095 0.098 

360 64.0 36.0 16.8 0.081 0.096 0.100 

420 58.0 38.0 21.5 0.079 0.097 0.103 

480 53.0 40.0 25.9 0.079 0.099 0.105 

540 49.0 42.0 29.9 0.079 0.102 0.108 

600 (*) 45.0 43.0 33.6 0.080 0.104 0.111 

660 43.0 44.0 37.0 0.080 0.107 0.115 

720 40.0 45.0 40.2 0.081 0.109 0.118 

780 38.0 46.0 45.9 0.082 0.112 0.122 

840 36.0 47.0 46.7 0.083 0.115 0.125 

900 34.0 48.0 47.5 0.084 0.118 0.129 

 
Table A.2. Midday Peak (With GSC) 

PV (kW) SCR (%) SSR (%) EE (%) 
COE ($/kWh) 

COE (1) COE (2) COE (3) 

0 100.0 0.0 0.00 0.106 0.106 0.106 

120 100.0 19.0 0.04 0.092 0.096 0.097 

240 94.0 36.0 2.13 0.084 0.088 0.092 

300 (*) 87.0 41.0 5.67 0.082 0.087 0.091 

360 79.0 45.0 10.40 0.081 0.087 0.092 

420 58.0 38.0 15.40 0.080 0.088 0.094 

480 53.0 40.0 20.40 0.080 0.090 0.096 

540 (*) 49.0 42.0 25.00 0.080 0.092 0.099 

600 45.0 43.0 29.30 0.080 0.095 0.102 

660 43.0 44.0 33.20 0.080 0.097 0.105 

720 40.0 45.0 36.70 0.081 0.100 0.109 

780 45.0 55.0 39.90 0.082 0.103 0.112 

840 42.0 56.0 42.90 0.083 0.106 0.116 

900 40.0 57.0 45.60 0.084 0.109 0.120 

 
Table A.3. Evening Peak (With GSC) 

PV (kW) SCR (%) SSR (%) EE (%) 
COE ($/kWh) 

COE (1) COE (2) COE (3) 

0 100.0 0.0 0.00 0.106 0.106 0.106 

120 (*) 90.0 17.0 1.87 0.098 0.103 0.105 

240 68.0 26.0 10.50 0.092 0.092 0.106 

300 60.0 29.0 15.60 0.091 0.087 0.108 

360 54.0 31.0 20.40 0.090 0.081 0.110 

420 (*) 58.0 38.0 25.00 0.090 0.077 0.113 

480 53.0 40.0 29.10 0.090 0.074 0.115 

540 49.0 42.0 32.90 0.090 0.072 0.119 

600 45.0 43.0 36.50 0.091 0.071 0.122 

660 43.0 44.0 39.70 0.092 0.071 0.125 

720 40.0 45.0 42.60 0.092 0.071 0.129 

780 32.0 39.0 45.30 0.093 0.071 0.133 

840 30.0 40.0 47.80 0.094 0.072 0.136 

900 28.0 40.0 50.10 0.095 0.073 0.140 

 

Table A.4. Morning Peak (Without GSC) 

PV (kW) SCR (%) SSR (%) EE (%) 
COE ($/kWh) 

COE (1) COE (2) COE (3) 

0 100.0 0.0 0.00 0.106 0.106 0.106 

120 97.0 18.0 0.00 0.091 0.097 0.099 

240 79.0 30.0 0.00 0.075 0.086 0.089 

300 71.0 33.0 0.00 0.067 0.080 0.084 

360 64.0 36.0 0.00 0.060 0.075 0.079 

420 57.0 38.0 0.00 0.053 0.070 0.075 

480 (*) 53.0 40.0 0.00 0.047 0.065 0.071 
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540 48.0 42.0 0.00 0.042 0.061 0.067 

600 43.0 44.0 0.00 0.038 0.058 0.064 

660 42.5 44.0 0.00 0.034 0.054 0.061 

720 39.8 45.0 0.00 0.030 0.051 0.058 

780 37.5 46.0 0.00 0.027 0.049 0.055 

840 35.5 47.0 0.00 0.024 0.046 0.053 

900 (*) 33.7 48.0 0.00 0.021 0.044 0.051 

 
Table A.5. Midday Peak (Without GSC) 

PV (kW) SCR (%) SSR (%) EE (%) 
COE ($/kWh) 

COE (1) COE (2) COE (3) 

0 100.0 0.0 0.0 0.106 0.106 0.106 

120 100.0 19.0 0.0 0.090 0.096 0.097 

240 94.0 36.0 0.0 0.074 0.086 0.089 

300 87.0 41.0 0.0 0.067 0.081 0.085 

360 79.0 45.0 0.0 0.059 0.075 0.080 

420 71.0 47.0 0.0 0.052 0.070 0.075 

480 (*) 65.0 49.0 0.0 0.046 0.065 0.071 

540 60.0 51.0 0.0 0.041 0.061 0.067 

600 55.0 52.0 0.0 0.036 0.057 0.065 

660 51.0 53.0 0.0 0.032 0.054 0.063 

720 48.0 54.0 0.0 0.028 0.051 0.062 

780 45.0 55.0 0.0 0.025 0.048 0.062 

840 42.0 56.0 0.0 0.022 0.045 0.062 

900 (*) 40.0 57.0 0.0 0.019 0.043 0.062 

 
Table A.6. Evening Peak (Without GSC) 

PV (kW)  SCR (%) SSR (%) EE (%) 
COE ($/kWh) 

COE (1) COE (2) COE (3) 

0 100.0 0.0 0.00 0.106 0.106 0.106 

120 90.0 17.0 0.02 0.095 0.101 0.103 

240 68.0 26.0 0.07 0.078 0.089 0.092 

300 60.0 29.0 0.11 0.070 0.083 0.087 

360 54.0 31.0 0.36 0.063 0.077 0.081 

420 (*) 49.0 32.0 1.04 0.056 0.072 0.077 

480 45.0 34.0 2.55 0.051 0.068 0.073 

540 41.0 35.0 4.60 0.046 0.064 0.069 

600 38.0 36.0 6.97 0.041 0.060 0.066 

660 36.0 37.0 9.63 0.037 0.057 0.063 

720 34.0 38.0 12.3 0.033 0.054 0.060 

780 32.0 39.0 15.0 0.030 0.051 0.058 

840 30.0 40.0 17.5 0.027 0.049 0.055 

900 (*) 28.0 40.0 20.1 0.024 0.047 0.053 
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