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Abstract: In this article, two novel methods called conformable q-Mohand 
homotopy analysis transform method (Cq-MHATM) and conformable Mohand 
Adomian decomposition method (CMADM) are utilized to examine the novel 
numerical solutions for nonlinear conformable time-fractional generalized Burgers 
equation with proportional delay. The first of the two new methods suggested, Cq-
MHATM, is a hybrid method that combines q-homotopy analysis transform method 
and Mohand transform in the sense of comformable derivative. The other method, 
CMADM is also a hybrid method that combines Adomian decomposition method and 
Mohand transform in the sense of comformable derivative. The computer 
simulations were worked out to prove that the suggested methods work and are 
trusted. 

Kesirli Mertebeden Kısmi Diferansiyel Denklemlerini Çözmek için Yeni Uyumlu 
Metotlar 

Anahtar Kelimeler 
Uyumlu zaman-kesirli 
mertebeden genelleştirilmiş 
Burgers denklemi, 
Uyumlu Mohand Adomian 
ayrıştırma metodu,  
Uyumlu Mohand dönüşümü 

Öz: Bu makalede, uyumlu q-Mohand homotopi analiz dönüşüm yöntemi (Uq-
MHADY) ve uyumlu Mohand Adomian ayrıştırma yöntemi (UMAAY) olarak 
adlandırılan iki yeni yöntem, oransal gecikmeli doğrusal olmayan uyumlu zaman-
kesirli mertebeden genelleştirilmiş Burgers denkleminin yeni sayısal çözümlerini 
incelemek için kullanılmaktadır. Önerilen iki yeni yöntemden ilki olan Uq-MHADY, 
q-homotopi analiz dönüşüm yöntemi ile uyumlu Mohand dönüşümünün
birleşiminden oluşan hibrit bir yöntemdir. Diğer yöntem olan CMADM ise Adomian
ayrıştırma yöntemi ile uyumlu Mohand dönüşümünün birleşiminden oluşan hibrit
bir yöntemdir. Önerilen yöntemlerin etkin çalıştığını ve güvenilir olduğunu
göstermek için bilgisayar simülasyonları yapılmaktadır. Kesin çözümler bulunan
çözümlerle karşılaştırıldığında, yeni tekniklerin her ikisinin de basit, güçlü ve
oransal gecikmeli doğrusal olmayan uyumlu zaman-kesirli mertebeden kısmi
diferansiyel denklemi çözmek için iyi çalıştığını görülmektedir.

1. Introduction

The arbitrary order of fractional calculus (FC) goes beyond the integer order of calculus. It was talked about when 
the famous scientists Leibniz and L'Hospital first talked to each other around 1695. In recent years, many authors 
have started to look into fractional calculus because it can be used to give accurate descriptions of many different 
kinds of nonlinear events. Fractional order differential equations are a type of differential equation that has effects 
on material properties that are not local and on genetic material. Fractional calculus was studied and described by 
a number of well-known mathematicians. Their work laid the groundwork for fractional calculus. Now, fractional 
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partial differential equations are often used to make nonlinear models and study systems that change over time. 
Fractional-order calculus theory has been linked to many things, such as chaos theory.  Fractional differential 
equations are used to describe the features of natural systems that don't behave in a straight line. We use a number 
of analytical and numerical methods to solve the time-fractional partial differential equations (TFDEs) that 
describe nonlinear processes [1-13]. 

Mohand and Mahgoub [14] created a new integral transform which is called Mohand transform. The mechanics 
and electrical circuit problems were resolved through the utilization of the Mohand transform. It is provided a 
method for solving second-order linear Volterra integral equations utilizing the Mohand transform. The utilization 
of Mohand transform was employed in order to address linear partial integro-differential equations. It is presented 
the utilization of Mohand transform in the resolution of linear Volterra integro-differential equations. The 
utilization of Laplace transform for addressing population growth and decay issues is demonstrated [14-19]. 
The research focuses on the numerical solution of conformable time-fractional partial differential equations with 
proportional delay defined by 

{
𝐷𝑡

𝛼𝑤(𝑥, 𝑡) = 𝜓(𝑥,𝑤(𝜌0𝑥, 𝜎0𝑡),
𝜕𝑤(𝜌1𝑥, 𝜎1𝑡)

𝜕𝑥
, … ,

𝜕𝑚𝑤(𝜌𝑚𝑥, 𝜎𝑚𝑡)

𝜕𝑥𝑚
) ,

𝑤(𝑘)(𝑥, 0) = 𝜑𝑘(𝑥),

(1) 

where 𝜌𝑖 , 𝜎𝑖 ∈ (0,1) for all 𝑖 ∈ 𝑁, 𝜑𝑘 is initial value, 𝜓 differential operator and 𝐷𝑡
𝛼  is conformable time-fractional

operator. 

There aren't many articles in the literature about TFPDEs with proportional delay. These include the Chebyshev 
pseudospectral method [20], the homotopy analysis method [21], the spectral collocation and waveform 
relaxation methods [22], and the iterated pseudospectral method [23]. RDTM was used by Abazari and Ganji [24] 
to find estimated solutions to PDEs. The proportional delay was used in these methods. Abazari and Kilicman [25] 
used DTM to get analytical solutions to nonlinear integro-differential equations with proportional delay. DTM was 
used to solve the equations and get these results. Tanthanuch [26] used a method called "group analysis" to solve 
the "nonhomogeneous inviscid Burgers equation with proportional delay." Sakar et al. [27], Biazar and Ghanbari 
[28] used the homotopy perturbation method to find analytical solutions to TFPDE with proportional delay. Chen
and Wang [29] solved a neutral functional-differential problem with proportional delays using the variational
iteration method. Singh and Kumar [30]found an alternative approximation solution to the initial valued
autonomous system of TFPDE with proportional delay by using an additional variational iteration method, or
AVIM for short. The main goal of this study is to come up with a new method: the conformable q-Mohand homotopy
analysis transform method (Cq-MHATM).

Here is a list of the rest of the study: The basic definitions and theorems used are given in the second part. In 
Section 3, the new conformable fractional numerical methods are presented. In section 4, the application of the 
suggested methos to the equations is presented. The result is given in section 5. 

2. Material and Method

Now let's give the definitions to be used in the study. 

Definition 2.1. [31-34] Let a function 𝑓: [0,∞) → ℝ. Then, the conformable fractional derivative of 𝑓 order 𝛼 is 
described by  

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥 + 𝜀𝑥1−𝛼) − 𝑓(𝑥)

𝜀
, (2) 

for all 𝑥 > 0, 𝛼 ∈ (0, 1]. 

Theorem 2.1. [31-32, 34] For 𝛼 ∈ (0, 1], 𝑚, 𝑛 be 𝛼 −differentiable at a point 𝑥 > 0. Then 

(𝑖) 𝑇𝛼(𝑎𝑚 + 𝑏𝑛) = 𝑎𝑇𝛼(𝑚) + 𝑏𝑇𝛼(𝑛), for all 𝑎, 𝑏 ∈  ℝ, (3) 

(𝑖𝑖)𝑇𝛼(𝑥𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ, (4)
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(𝑖𝑖𝑖)𝑇𝛼(𝜆) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠,𝑚(𝑡) = 𝜆, (5) 

(𝑖𝑣)𝑇𝛼(𝑚𝑛) = 𝑚𝑇𝛼(𝑛) + 𝑛𝑇𝛼(𝑚), (6) 

(𝑣)𝑇𝛼 (
𝑚

𝑛
) =

𝑛𝑇𝛼(𝑚) − 𝑚𝑇𝛼(𝑛)

𝑛2
. (7) 

Definition 2.2. For 0 <  𝛼 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. Then, the conformable fractional Mohand 
transform (CFMT) of order 𝛼 of 𝑓 is defined by 

𝑀𝛼𝑐 [𝑓(𝑡)] = 𝑅𝛼(𝑟) = 𝑟2 ∫ 𝑒𝑥𝑝 (
−𝑟𝑡𝛼

𝛼
) 𝑓(𝑡)𝑡𝛼−1𝑑𝑡.

∞

0

 (8) 

Definition 2.3. For 0 <  𝛼 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. The conformable Mohand transform for the 
conformable fractional-order derivative of the function 𝑓(𝑡) is described by  

𝑀𝛼𝑐 [𝑇𝛼𝑓(𝑡)](𝑣) = 𝑟𝑅𝛼(𝑟) − 𝑟2𝑓(0). (9) 

2.1. The New Conformable Fractional Numerical Methods 

This section introduces the conformable q-Mohand homotopy analysis transform method and conformable 
Mohand Adomian decomposition method. 

2.1.1. Conformable q-Mohand homotopy analysis transform method 

We will introduce a new method. Consider the conformable time-fractional order nonlinear partial differential 
equation (CTFNPDE) with proportional delay to explain the fundamental idea of Cq-MHATM: 

𝑇𝛼𝑤(𝑥, 𝑡) +𝑡 𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, (10) 

where 𝑀 is a linear operator, 𝑁 is a nonlinear operator, 𝑓(𝑥, 𝑡) is a source term, 𝜌𝑖 , 𝜎𝑖 ∈ (0,1) and 𝑇𝛼𝑡  is a 
conformable fractional derivative of order 𝛼. 

Applying the conformable fractional Mohand transform to Eq. (10) and utilizing the initial condition, then we have 

𝑟𝑅𝛼(𝑟) − 𝑟2𝑤(𝑥, 0) + 𝑀𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] = 𝑀𝛼𝑐 [𝑓(𝑥, 𝑡)]. (11) 

Rearranging the last equation, then we get  

𝑀𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑟𝑤(𝑥, 0) +
1

𝑟
𝑀𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] −

1

𝑟
𝑀𝛼𝑐 [𝑓(𝑥, 𝑡)] = 0. (12) 

With the help of HAM, we can describe the nonlinear operator for real function 𝜑(𝑥, 𝑡; 𝑞)  as follows: 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = 𝑀𝛼𝑐 [𝜑(𝑥, 𝑡; 𝑞) ] − 𝑟𝜑(𝑥, 𝑡; 𝑞) (0+) +
1

𝑟
( 𝑀𝛼𝑐 [𝐴𝜑(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)] 

+ 𝑀𝛼𝑐 [𝐻𝜑(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)] −
1

𝑟
𝑀𝛼𝑐 [𝑓(𝑥, 𝑡)]), (13) 

where 𝑞𝜖 [0,
1

𝑛
].

We construct a homotopy as follows: 

(1 − 𝑛𝑞) 𝑀𝛼𝑐 [𝜑(𝑥, 𝑡; 𝑞) − 𝑤0(𝑥, 𝑡)] = ℎ𝑞𝐻∗(𝑥, 𝑡)𝐻[𝜑(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)], (14)
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where, ℎ ≠ 0 is an auxiliary parameter and 𝑀𝛼𝑐  demonstrates conformable Mohand transform. For 𝑞 = 0 and 𝑞 =
1

𝑛
, the results of Eq. (14) are as follows: 

𝜑(𝑥, 𝑡; 0) = 𝑤0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝑤(𝑥, 𝑡). (15) 

Thus, by amplifying 𝑞 from 0 to 1
𝑛
, then the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑤0(𝑥, 𝑡) to the solution 𝑤(𝑥, 𝑡).

Using the Taylor theorem around 𝑞 and then expanding 𝜑(𝑥, 𝑡; 𝑞), we get 

𝜑(𝑥, 𝑡; 𝑞) = 𝑤0(𝑥, 𝑡) + ∑𝑤𝑚(𝑥, 𝑡)𝑞𝑚

∞

𝑖=1

, (16) 

where 

𝑤𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0. (17) 

Eq. (16) converges at 𝑞 =
1

𝑛
  for the appropriate 𝑤0(𝑥, 𝑡), 𝑛 and ℎ. Then, we have

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (18) 

If we differentiate the zeroth order deformation Eq. (14) m-times with respect to 𝑞 and we divide by 𝑚!, 
respectively, then for 𝑞 = 0, we acquire 

𝑀𝛼𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎ𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1), (19) 

where the vectors are described by 

�⃗⃗� 𝑚 = {𝑤0(𝑥, 𝑡), 𝑤1(𝑥, 𝑡), … , 𝑤𝑚(𝑥, 𝑡)}. (20) 

Applying the inverse conformable fractional Mohand transform to Eq. (20), we get 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑀𝛼𝑐 )
−1

[𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1)], (21) 

where 

ℛ𝑚(�⃗⃗� 𝑚−1) = 𝑀𝛼𝑐 [𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
) r𝑤0(𝑥, 𝑡) +

1

𝑟
𝑀𝛼𝑐 [𝐴𝑤𝑚−1(𝜌𝑖𝑥, 𝜎𝑖𝑡) 

+𝐻𝑚−1(𝑥, 𝑡)−𝑓(𝑥, 𝑡)], (22) 

and 

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

(23) 

Here, 𝐻𝑚
∗  is homotopy polynomial and presented by 

𝐻𝑚
∗ =

1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚 |𝑞=0  and 𝜑(𝑥, 𝑡; 𝑞) = 𝜑0 + 𝑞𝜑1 + 𝑞2𝜑2 + ⋯. (24) 

Using Eqs. (21) - (22), we get 

𝑤𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑤𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚

𝑛
) 𝑟𝑤0(𝑥, 𝑡) + h( 𝑀𝛼𝑐 )

−1
[(

1

𝑟
𝑀𝛼𝑐 [𝐴𝑤𝑚−1(𝜌𝑖𝑥, 𝜎𝑖𝑡) 
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+𝐻𝑚−1(𝑥, 𝑡) − 𝑓(𝑥, 𝑡))]. (25) 

When Cq-MHATM is used, the series solution is given by 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

(
1

𝑛
)
𝑚

. (26) 

2.1.2. Conformable Mohand Adomian decomposition method 

We analyze the CTFNPDE with proportional delay in Eq. (10): 

Applying the conformable fractional Mohand transform to Eq. (10) and using the initial condition, then we have 

𝑟𝑅𝛼(𝑟) − 𝑟2𝑤(𝑥, 0) + 𝑀𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] = 𝑀𝛼𝑐 [𝑓(𝑥, 𝑡)]. (27)

When Eq. (27) is rearranged, it is obtained as  

𝑟 𝑀𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑟𝑤(𝑥, 0) +
1

𝑟
𝑀𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] −

1

𝑟
𝑀𝛼𝑐 [𝑓(𝑥, 𝑡)] = 0. (28) 

When the inverse conformable fractional Mohand transform is implemented to both sides of Eq. (28), we have 

𝑤(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) − ( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)]}. (29) 

where the term 𝐴(𝑥, 𝑡) emerges from the in-homogeneous term and initial conditions. 
Now, assume that the infinite series solution is of the form: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡).

∞

𝑛=0

 (30) 

Now, by using Eqs. (29)-(30), we get 

∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝐴(𝑥, 𝑡) − ( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [𝐴 ∑ 𝑤𝑛

∞

𝑛=0

(𝜌𝑖𝑥, 𝜎𝑖𝑡) + ∑ 𝐵𝑛(𝑤𝑛(𝜌𝑖𝑥, 𝜎𝑖𝑡))

∞

𝑛=0

]}, (31) 

where 𝐵𝑛(𝑤𝑛) is Adomian polynomial and that denotes the nonlinear term 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡). By comparing both of 
sides of Eq. (31), we have  

𝑤0(𝑥, 𝑡) = 𝐴(𝑥, 𝑡), (32) 

𝑤1(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [𝑤0(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵0]}, (33) 

𝑤2(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [𝑤1(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵1]}, (34) 

⋮

Similarly, we obtain the general recursive relation by 

𝑤𝑛+1(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [𝑤𝑛(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵𝑛]} ,𝑚 ≥ 1. (35) 

Finally, the approximate solution 𝑤(𝑥, 𝑡) is given by 
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𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡).

∞

𝑛=0

 (36) 

3. Results

This section will provide illustrations of the conformable time-fractional generalized Burgers equation with 
proportional delay. 

Example 3.1. [27, 30] Consider the conformable time-fractional generalized Burgers equation with proportional 
delay  

𝜕𝛼𝑤(𝑥, 𝑡)

𝜕𝑡𝛼
=

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤 (

𝑥

2
,
𝑡

2
)
𝜕𝑤 (𝑥,

𝑡

2
)

𝜕𝑥
+

1

2
𝑤(𝑥, 𝑡), (37) 

where 𝑥, 𝑡 ∈ [0,1], 0 < 𝛼 ≤ 1, subject to initial condition 

𝑤(𝑥, 0) = 𝑥. (38) 

Case (i) Cq-MHATM solution 

Implementing the conformable fractional Mohand transform to Eq. (37) and using Eq. (38), then we get 

𝑀𝛼𝑐 [𝑤(𝑥, 𝑡)] = 𝑟𝑤(𝑥, 0) +
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤 (

𝑥

2
,
𝑡

2
)
𝜕𝑤 (𝑥,

𝑡

2
)

𝜕𝑥
+

1

2
𝑤(𝑥, 𝑡)]. (39) 

We define the nonlinear operators by using Eq. (39), as 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = 𝑀𝛼𝑐 [𝜑(𝑥, 𝑡; 𝑞) ] − 𝑟𝑥 −
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ 𝜑(

𝑥

2
,
𝑡

2
; 𝑞)

𝜕𝜑(𝑥,
𝑡

2
; 𝑞)

𝜕𝑥

+
1

2
𝜑(

𝑥

2
,
𝑡

2
; 𝑞)].

(40) 

When the suggested algorithm is applied, the 𝑚 − 𝑡ℎ order deformation equations are described by 

𝑀𝛼𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ𝑚[�⃗⃗� 𝑚−1], (41) 

where 

ℛ𝑚[�⃗⃗� 𝑚−1] = 𝑀𝛼𝑐 [�⃗⃗� 𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
) r𝑥 −

1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ ∑ 𝑤𝑟 (

𝑥

2
,
𝑡

2
)

𝑚−1

𝑟=0

×
𝜕𝑤1−𝑟 (𝑥,

𝑡

2
)

𝜕𝑥
+

1

2
𝑤𝑚−1 (

𝑥

2
,
𝑡

2
)].

(42) 

On applying inverse conformable Mohand transform to Eq. (41), then we have 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑀𝛼𝑐 )
−1

{ℛ𝑚[�⃗⃗� 𝑚−1]}. (43) 

By the use of initial condition, then we get 

𝑤0(𝑥, 𝑡) = 𝑥. (44) 

To find the value of 𝑤1(𝑥, 𝑡), putting 𝑚 = 1 in Eq. (43), then we obtain 
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𝑤1(𝑥, 𝑡) = −𝑥ℎ
𝑡𝛼

𝛼
. (45) 

In the same way, if we put 𝑚 = 2 in Eq. (43), we can obtain the value of 𝑤2(𝑥, 𝑡) 

𝑤2(𝑥, 𝑡) = −(𝑛 + ℎ) (ℎ𝑥
𝑡𝛼

𝛼
) + (

5𝑥ℎ2𝑡2𝛼

82𝛼𝛼2
). (46) 

In this way, the other terms can be found. So, the Cq-MHATM solution of the equation is given by 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (47) 

If we put 𝛼 = 1, 𝑛 = 1, ℎ = −1 in Eq. (46), then the obtained results ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1 converges to the exact 

solution 𝑤(𝑥, 𝑡) = 𝑥𝑒𝑡  of the equation when 𝑀 → ∞.  

Case (ii) CMADM solution 

Applying the conformable fractional Mohand transform to Eq. (37) and using Eq. (38), then we get 

𝑀𝛼𝑐 [𝑤(𝑥, 𝑡)] = 𝑟𝑤(𝑥, 0) +
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤 (

𝑥

2
,
𝑡

2
)
𝜕𝑤 (𝑥,

𝑡

2
)

𝜕𝑥
+

1

2
𝑤(𝑥, 𝑡)]. (48) 

Applying the inverse fractional Mohand transform to Eq (48), then we obtain 

𝑤(𝑥, 𝑡) = 𝑥 + ( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤 (

𝑥

2
,
𝑡

2
)
𝜕𝑤 (𝑥,

𝑡

2
)

𝜕𝑥
+

1

2
𝑤(𝑥, 𝑡)]}. (49) 

Now, assume that the infinite series solution is of the form: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡).

∞

𝑛=0

 (50) 

Using the ADM procedure, then we obtain 

𝑤0(𝑥, 𝑡) = 𝑥, (51) 

𝑤𝑠+1(𝑥, 𝑡) = ( 𝑀𝛼𝑐 )
−1

[
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤𝑠(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤𝑠 (

𝑥

2
,
𝑡

2
)
𝜕𝑤𝑠 (𝑥,

𝑡

2
)

𝜕𝑥

+
1

2
𝑤𝑠(𝑥, 𝑡)] , 𝑠 = 0,1,2, … (52) 

For 𝑠 = 0 in Eq. (52), we obtain 

𝑤1(𝑥, 𝑡) = ( 𝑀𝛼𝑐 )
−1

[
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤0 (

𝑥

2
,
𝑡

2
)
𝜕𝑤0 (𝑥,

𝑡

2
)

𝜕𝑥
+

1

2
𝑤0(𝑥, 𝑡)]] 

= 𝑥
𝑡𝛼

𝛼
, (53) 

 For 𝑠 = 1 in Eq. (52), we obtain 
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𝑤2(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

[
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑥2
+ 𝑤0 (

𝑥

2
,
𝑡

2
)
𝜕𝑤1 (𝑥,

𝑡

2
)

𝜕𝑥
+ 𝑤1 (

𝑥

2
,
𝑡

2
)
𝜕𝑤0 (𝑥,

𝑡

2
)

𝜕𝑥

+
1

2
𝑤1(𝑥, 𝑡)]] =

5𝑥ℎ2𝑡2𝛼

82𝛼𝛼2
. (54) 

As a result, we obtain 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ = 𝑥 + 𝑥
𝑡𝛼

𝛼

+
5𝑥ℎ2𝑡2𝛼

82𝛼𝛼2
+ ⋯ (55) 

Subsituting 𝛼 = 1 in Eq. (55), then CMADM solution is reduced as 

𝑤(𝑥, 𝑡) = 𝑥 [1 + 𝑡 +
5𝑡2

8.2!
+ ⋯ ]. (57) 

This result converges to the exact solution in a closed form: 

𝑤(𝑥, 𝑡) = 𝑥𝑒𝑡 . (58) 

Figure 1 shows the graphs of Cq-MHATM, exact solution and absolute error. 

Figure 1. (a) Nature of Cq-MHATM solution (b) Nature of exact solution (c) Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑞−𝑀𝐻𝐴𝑇𝑀| 
at ℎ = −1, 𝑛 = 1, 𝛼 = 1. 

The 3D graphs of CMADM, exact solution, and absolute error are depicted in Figure 2. 
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Figure 2. (a) Nature of CMADM solution (b) Nature of exact solution (c) Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑀𝐴𝐷𝑀| at 𝛼 =
1. 

Figure 3 depicts comparison plots of Cq-MHATM, CMADM, and exact solutions for distinct 𝛼 values. 

Figure 3. The comparison of the Cq-MHATM solutions and exact solution (b) The comparison of the CMADM solutions and 
exact solution at ℎ = −1, 𝑛 = 1, 𝑡 = 0.5 with different 𝛼. 

A comparison of the absolute error between Cq-MHATM, CMADM and HPM [27] for Eq. (37) with 𝛼 = 1 is 
presented in Table 1. 

Table 1. Comparison of absolute error between Cq-MHATM, CMADM, and HPM [27] for Eq. (37) with 𝛼 = 1. 
𝒙 𝒕 

𝟎. 𝟎𝟐𝟓 𝟎. 𝟎𝟓𝟎 𝟎. 𝟎𝟕𝟓 𝟎. 𝟏 

Cq-MHATM 𝟎. 𝟐𝟓 1.0 × 10−9 1.6 × 10−8 8.1 × 10−8 2.5 × 10−7 
CMADM 1.0 × 10−9 1.6 × 10−8 8.1 × 10−8 2.5 × 10−7 
HPM 1.0 × 10−9 1.6 × 10−8 8.1 × 10−8 2.5 × 10−7 
Cq-MHATM 𝟎. 𝟓𝟎 4.0 × 10−9 6.4 × 10−6 3.2 × 10−7 1.0 × 10−6 
CMADM 4.0 × 10−9 6.4 × 10−6 3.2 × 10−7 1.0 × 10−6 
HPM 4.0 × 10−9 6.4 × 10−6 3.2 × 10−7 1.0 × 10−6 
Cq-MHATM 𝟎. 𝟕𝟓 9.1 × 10−9 1.4 × 10−7 7.3 × 10−7 2.2 × 10−6 
CMADM 9.1 × 10−9 1.4 × 10−7 7.3 × 10−7 2.2 × 10−6 
HPM 9.1 × 10−9 1.4 × 10−7 7.3 × 10−7 2.2 × 10−6 

Example 3.2. [27, 30]  Consider the conformable time-fractional generalized Burgers equation with proportional 
delay  

𝜕𝛼𝑤(𝑥, 𝑡)

𝜕𝑡𝛼
=

𝜕2𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡), (59) 

where 𝑥, 𝑡 ∈ [0,1], 0 < 𝛼 ≤ 1, subject to initial condition 
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𝑤(𝑥, 0) = 𝑥2. (60) 

Case (i) Cq-MHATM solution 

Implementing the conformable fractional Mohand transform to Eq. (59) and using Eq. (60), then we get 

𝑀𝛼𝑐 [𝑤(𝑥, 𝑡)] = 𝑟𝑤(𝑥, 0) −
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)]. (61) 

We define the nonlinear operators by using Eq. (61), as 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = 𝑀𝛼𝑐 [𝜑(𝑥, 𝑡; 𝑞) ] − 𝑟𝑥2 −
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥

−𝑤(𝑥, 𝑡)]. (62) 

By applying the suggested algorithm, the 𝑚 − 𝑡ℎ order deformation equations are described by 

𝑀𝛼𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ𝑚[�⃗⃗� 𝑚−1], (63) 

where 

ℛ𝑚[�⃗⃗� 𝑚−1] = 𝑀𝛼𝑐 [�⃗⃗� 𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
) r𝑥2 −

1

𝑟
𝑀𝛼𝑐 [∑

𝜕2𝑤𝑟 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝑚−1

𝑟=0

𝜕𝑤1−𝑟 (
𝑥

2
,
𝑡

2
)

𝜕𝑥

−
1

8

𝜕𝑤𝑚−1(𝑥, 𝑡)

𝜕𝑥
− 𝑤𝑚−1(𝑥, 𝑡)]. (64) 

On applying inverse conformable fractional Mohand transform to Eq. (63), then we have 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑀𝛼𝑐 )
−1

{ℛ𝑚[�⃗⃗� 𝑚−1]}. (65) 

By the use of initial condition, then we get 

𝑤0(𝑥, 𝑡) = 𝑥2.  (66) 

To find the value of 𝑤1(𝑥, 𝑡), putting 𝑚 = 1 in Eq. (65), then we obtain 

𝑤1(𝑥, 𝑡) = ℎ𝑥2
𝑡𝛼

𝛼
. (67) 

In the same way, if we put 𝑚 = 2 in Eq. (65), we can obtain the value of 𝑤2(𝑥, 𝑡) 

𝑤2(𝑥, 𝑡) = (𝑛 + ℎ) (ℎ𝑥2
𝑡𝛼

𝛼
) − ℎ2 (

𝑥

2𝛼+1
−

𝑥

4
− 𝑥2)

𝑡2𝛼

2𝛼2
. (68) 

In this way, the other terms can be found. So, the Cq-MHATM solution of the equation is given by 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (69) 

If we put 𝛼 = 1, 𝑛 = 1, ℎ = −1 in Eq. (68), then the obtained results ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1 converges to the exact 

solution 𝑤(𝑥, 𝑡) = 𝑥2𝑒−𝑡  of the equation when 𝑀 → ∞. 
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Case (ii) CMADM solution 

Applying the conformable fractional Mohand transform to Eq. (59) and using Eq. (60), then we get 

𝑀𝛼𝑐 [𝑤(𝑥, 𝑡)] = 𝑟𝑤(𝑥, 0) −
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)]. (70) 

Applying the inverse fractional Mohand transform to Eq (70), then we obtain 

𝑤(𝑥, 𝑡) = 𝑥2 − ( 𝑀𝛼𝑐 )
−1

{
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
− 𝑤(𝑥, 𝑡)]}. (71) 

Now, assume that the infinite series solution is of the form: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡).

∞

𝑛=0

 (72) 

Using the ADM procedure, then we obtain 

𝑤0(𝑥, 𝑡) = 𝑥2, (73) 

𝑤𝑠+1(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

[
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤𝑠 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤𝑠 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤𝑠(𝑥, 𝑡)

𝜕𝑥
−𝑤𝑠(𝑥, 𝑡)]], 𝑠 = 0,1,2, … (74) 

For 𝑠 = 0 in Eq. (74), we obtain 

𝑤1(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

[
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤0(
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤0(
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
− 𝑤0(𝑥, 𝑡)]]

= −𝑥2
𝑡𝛼

𝛼
. (75) 

For 𝑠 = 1 in Eq. (74), we obtain 

𝑤2(𝑥, 𝑡) = −( 𝑀𝛼𝑐 )
−1

[
1

𝑟
𝑀𝛼𝑐 [

𝜕2𝑤1 (
𝑥

2
,
𝑡

2
)

𝜕𝑥2

𝜕𝑤1 (
𝑥

2
,
𝑡

2
)

𝜕𝑥
−

1

8

𝜕𝑤1(𝑥, 𝑡)

𝜕𝑥
− 𝑤1(𝑥, 𝑡)]]

= − (
𝑥

2𝛼+1
−

𝑥

4
− 𝑥2)

𝑡2𝛼

2𝛼2
. (76) 

As a result, we obtain 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ 

= 𝑥2 − 𝑥2
𝑡𝛼

𝛼
− (

𝑥

2.2𝛼
−

𝑥

4
− 𝑥2)

𝑡2𝛼

2𝛼2
+ ⋯ (77) 

Subsituting 𝛼 = 1 in Eq. (78), then CMADM solution is reduced as 
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𝑤(𝑥, 𝑡) = 𝑥2 [1 − 𝑡 +
𝑡2

2!
− ⋯ ]. (78) 

This result converges to the exact solution in a closed form: 

𝑤(𝑥, 𝑡) = 𝑥2𝑒−𝑡 . (79) 

Figure 4 shows the graphs of Cq-MHATM, exact solution and absolute error. 

Figure 4. (a) Nature of Cq-MHATM solution (b) Nature of exact solution (c) Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑞−𝑀𝐻𝐴𝑇𝑀| 
at ℎ = −1, 𝑛 = 1, 𝛼 = 1. 

The graphs of CMADM, exact solution, and absolute error are depicted in Figure 5. 

Figure 5. (a) Nature of CMADM solution (b) Nature of exact solution (c) Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑀𝐴𝐷𝑀| at 𝛼 = 1. 

Figure 6 depicts comparison plots of Cq-MHATM, CMADM, and exact solutions for distinct α values. 
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Figure 6. The comparison of the Cq-MHATM solutions and exact solution (b) The comparison of the CMADM solutions and 
exact solution at ℎ = −1, 𝑛 = 1, 𝑡 = 0.5 with different 𝛼. 

Table 2 presents a comparison of the absolute error for Eq. (59) with 𝛼 = 1 between Cq-MHATM, CMADM, and 
HPM [27]. 

Table 2. Comparison of absolute error between Cq-MHATM, CMADM, and HPM [27] for Eq. (59) with 𝛼 = 1. 
𝒙 𝒕 

𝟎. 𝟎𝟐𝟓 𝟎. 𝟎𝟓𝟎 𝟎. 𝟎𝟕𝟓 𝟎. 𝟏 

Cq-MHATM 𝟎. 𝟐𝟓 1.6 × 10−7 1.2 × 10−6 4.3 × 10−6 1.0 × 10−5 
CMADM 1.6 × 10−7 1.2 × 10−6 4.3 × 10−6 1.0 × 10−5 
HPM 1.6 × 10−7 1.2 × 10−6 4.3 × 10−6 1.0 × 10−5 
Cq-MHATM 𝟎. 𝟓𝟎 6.4 × 10−7 5.1 × 10−6 1.7 × 10−5 4.0 × 10−5 
CMADM 6.4 × 10−7 5.1 × 10−6 1.7 × 10−5 4.0 × 10−5 
HPM 6.4 × 10−7 5.1 × 10−6 1.7 × 10−5 4.0 × 10−5 
Cq-MHATM 𝟎. 𝟕𝟓 1.4 × 10−6 1.1 × 10−5 3.8 × 10−5 9.1 × 10−5 
CMADM 1.4 × 10−6 1.1 × 10−5 3.8 × 10−5 9.1 × 10−5 
HPM 1.4 × 10−6 1.1 × 10−5 3.8 × 10−5 9.1 × 10−5 

4. Discussion and Conclusion

Table 1 evaluates the absolute error comparison between Cq-HATM, CSHPM, and HPM for Eq. (37) with 𝛼 = 1 for 
the nonlinear conformable time-fractional generalized Burgers equation (CTFGBE) with proportional delay. The 
3D graphs of Cq-MHATM, exact solution, and absolute error are depicted in Figure 1. Figure 2 depicts 3D graphs 
of CMADM, exact solution, and absolute error. Figure 3 depicts a comparison of Cq-MHATM, CMADM, and exact 
solutions in 2D plots for various 𝛼 values. Table 2 presents an assessment of the absolute error comparison among 
Cq-HATM, CSHPM, and HPM methods for Eq. (59) with 𝛼 = 1, applied to the nonlinear conformable time-fractional 
generalized Burgers equation (CTFGBE) with proportional delay.  Figure 4 illustrates the three-dimensional plots 
of Cq-MHATM, the exact solution, and the absolute error. The graphical representation in Figure 5 illustrates three-
dimensional graphs of the CMADM, the exact solution, and the absolute error. The 2D plots in Figure 6 present a 
comparison of the solutions for Cq-MHATM, CMADM, and exact solution with respect to various 𝛼 values. . The 
study found that the techniques presented in Tables 1-2 produced equivalent results to those obtained through 
the use of HPM. The results indicate that the techniques presented in Table 6 produced equivalent results to those 
obtained through the use of HPM. 

This study investigates the behavior of CTFGBE with proportional delay using Cq-MHATM and CMADM. 
Furthermore, the MAPLE software has been utilized to produce 2D and 3D graphs that depict the solutions to Eqs. 
(37)-(59) for diverse values of 𝛼. Variations in the construction of the surface graphs for Eqs. (37)-(59) have been 
observed. Variations in the construction of the surface for Eqs. (37)-(59) have been noted. The research revealed 
that the methodologies illustrated in Tables 1-2 yielded outcomes that were comparable to those achieved by 
employing HPM, with t as the independent variable and x held constant.   

The efficacy and benefits of the newly developed approach for addressing nonlinear conformable TFPDEs with 
proportional delay have been noted.  
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