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Abstract 

Numerical solutions of Newell-Whitehead equation are investigated by collocation method in this 

study. Since higher order functions produce better approximations, septic B-spline basis functions is 

used for analysis and approximation. Error norms are calculated for the adequacy and effectiveness of 

the current method. Unconditional stability is proved using Von-Neumann theory. The numerical results 

are obtained and the comparisons are presented in the tables. Additionally, simulations of all numerical 

results are plotted to show the numerical behavior of the solution. Numerical results make the method 

more convenient and systematically handle the nonlinear solution process. The numerical solutions 

found make the method attractive and reliable for the solution of Fitzhugh-Nagumo type equations. 

 

Newell-Whitehead Denkleminin Çözümü için Yeni Bir Sayısal Yaklaşım 

Anahtar kelimeler 

Fitzhugh-Nagumo 

denklemi; Newell-

Whitehead denklemi; 

kollokasyon; sonlu 

elemanlar yöntemi; 

septik B-spline. 

Öz 

Bu çalışmada Newell-Whitehead denkleminin sayısal çözümleri kollokasyon yöntemi ile elde edilmiştir. 

Daha yüksek dereceli fonksiyonlar daha iyi yaklaşımlar ürettiğinden, analiz ve yaklaşım için septik B-

spline baz fonksiyonları kullanılmıştır. Mevcut yöntemin yeterliliği ve etkinliği için hata normları 

hesaplanmıştır. Koşulsuz kararlılık, Von-Neumann teorisi kullanılarak kanıtlanmıştır. Sayısal sonuçlar 

elde edilmiş ve yapılan karşılaştırmalar tablolar halinde sunulmuştur. Ek olarak, çözümün sayısal 

davranışını göstermek için tüm sayısal sonuçların grafikleri çizilmiştir. Sayısal sonuçlar, yöntemi daha 

uygun hale getirir ve doğrusal olmayan çözüm sürecini sistematik olarak ele alır. Bulunan sayısal 

çözümler, kollokasyon yöntemini Fitzhugh-Nagumo tipi denklemlerin çözümü için oldukça ilgi çekici ve 

güvenilir kılmaktadır. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

The study of nonlinear evolution equations (NLEEs) 

is of great importance in many areas of 

mathematical physics and fluid dynamics. Recently, 

many scientists have paid great attention to the 

nonlinear parabolic partial differential equation 

(NPPDE), namely Fitzhugh-Nagumo (F-N) because 

of its importance in mathematical physics. In 1952, 

this nonlinear mathematical model was first 

proposed by Huxley and Hodgkin (Hodgkin and 

Huxley 1952). This model was an important model 

of biological systems to explain phenomena such as 

transmission of nerve impulses, flame propagation, 

population genetics, branching Brownian motion 

process, ionic current flows for axonal membranes, 

nuclear reactor theory (Abbasbandy 2008, Nagumo 

et al. 1962, Li and Guo 2006, Shih et al. 2005). But 

it was very difficult to analyze this model 

analytically. Later, in 1961, Fitzhugh and Nagumo 

developed a simplified version of this model, which 

they called F-N equation. The F-N equation given as 

below 

 

= ( )(1 ),t xxu u u u u        (1) 
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is a nonlinear reaction-diffusion equation that 

describes nerve-impulse propagation (FitzHugh 

1961). In the literature, the F-N equation is solved 

using various numerical and exact methods 

(Hariharan and Kannan 2010, Nucci and Clarkson 

1992, Chen et al. 2003, Teodoro 2012, Ali et al. 

2020, Devi and Yadav 2022). By taking 1   , 

Equation (1) transforms to the following Newell-

Whitehead (N-W) equation: 

 

 
3= ,t xxu u u u      (2) 

 

 

The N-W equation is one of NLEEs and solved 

several researchers (Ezzati and Shakibi 2011). Kheiri 

obtained analytical solutions of the N-W equation 

by Homotopy Analysis Method (HAM) and 

Homotopy Pade Method (HPadeM) (Kheiri et al. 

2011). Hariharan introduced a Legendre wavelet-

based approximation method to solve the N-W 

equation (Hariharan 2014). Inan et al. found some 

analytical solutions of the F-N and N-W equations 

using the extended tanh extension method (İnan et 

al. 2021). 

 

In order to find the numerical solution of actual life 

problems and in various fields of science, it is very 

important to choose an appropriate numerical 

approach. The Finite Element Method (FEM), which 

is the most competent method in solving 

boundary-value problems in approximation theory, 

is remarkable (Karakoç et al 2023 and Kutluay et al 

2022). In this method, B-spline-based sequencing 

method has been chosen as interpolation functions 

in terms of its programmable computational 

approach and easy applicability (Karakoç et al. 

2022). In this study, collocation finite element 

method is applied to obtain the numerical solution 

of the N-W equation. 

 

One of the important goals of this article is to 

develop different numerical solutions of the 

Newell-Whitehead equation. For these aims, we 

begin in Section 2 introducing B-spline functions 

and applying the method to the equation. Section 3 

includes stability analysis of the numerical 

technique. In Section 4, test problems taken from 

the literature have been solved and the obtained 

results are given in the tabular form as well as 

plotted graphically. The article ends with a brief 

conclusion. 

 

2. Septic B-Splines 

Septic B-spline functions ( ), 3(3)m x m N   , at the 

nodes mx  are defined over the solution interval 

[ , ]a b : 
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(      )
     (      )

     (      )
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(      )
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 ,  h (      )
  (Prenter 

1975). Among the others, collocation is well-known 

technique to improve numerical methods because 

of its various intended feature (Baker 1976). In 

collocation method, ( , )numericu x t  corresponding to 

the ( , )exactu x t  is written as a linear combination of 

septic B-splines as shown below: 

 

 

3

3

( , ) ( ) ( ).
N

numeric m m

m

u x t x t 




       (4) 

 

When ,0 1mh x x   l l  transformation is 

made in the finite region  1,m mx x 
 the region 

turns to an interval of [0,1]. Thus the septic B-

spline functions in the new region [0,1] are 

obtained as follows: 
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Using the equalities given by (4) and (5), the 

following expressions are obtained: 
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2.1 Analysis of the Method on Newell-Whitehead 

Equation 

In this section, putting (4) and (6) in Equation (2) 

and making some simplifications, the next system 

of ordinary differential equations (ODEs) are 

reached: 
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in which d
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Replacing i
g

 by forward difference approximation 
1n n

i i
i

t
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and i by Crank-Nicolson formulation  
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then the system of ODEs (7) reduces to a system of 

nonlinear equations 
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and 

 

2

21 1
, , 0,1,..., 1.

2
A t B t m N

h
        (10) 

 

To assure a unique solution, it is necessary to 
eliminate unknown parameters 

3 2 1, , ,    
 

1 2,N N  
and 

3N 
from the resulting system (8). 

This procedure can be easily applied using the 
values of u  and boundary conditions, and then 
 

1n nPd Qd       (11) 

 
is obtained where 

0 1( , ,..., ) .n T

Nd     

 
 
3. Stability of the Method  

For the stability analysis, Von Neumann technique 

has been used. Amplification factor   of a typical 

Fourier mode of amplitude is determined as: 

.n n imkh

m e       (12) 



 A Novel Numerical Approach for Solving the Newell-Whitehead Equation, SUCU et al. 

 

 

1431 

 

Using Equation (12) in the (8), 
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so that 1  , which proves unconditional stability 

of the linearized numerical scheme for the N-W 

equation. 

 

4. Numerical Experiments and Discussions 

In this section, the proposed scheme is applied for 

solution of N-W equation for various values of the 

time and space division and we approximate them 

using the described scheme. Firstly, the F-N 

equation has an exact solution of the form 

 

1 1 1 2 1
( , ) tanh[ ( ) ].

2 2 2 2 2
u x t x t
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F-N equation is considered the following boundary-

initial conditions 
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where 0u  as .x  m   

The F-N equation is reduced to the N-W equation 
by taking 1   . To demonstrate the validity of our 
numerical scheme, the interval of the problem is 

chosen as [ 1,1]x   and various time steps 

considering the studies in the literature. 
We will use the error norms, widely used in the 

literature, namely 2L  and L  in order to check the 

efficiency and accuracy of our method: 

 

 

2 2

2

1

( ) ( ) ,

max ( ) ( ) , 1, 2,..., .

exact numeric

N

exact j numeric j

j

exact numeric

exact j numeric j

j

L u u

h u u

L u u

u u j N



 

 



 

 

;

;

             (16) 

 

 

In simulation calculations in order to comply with 

the literature, as typical values 0.1, 0.01t t     

with 0.1h   and 0.01h   were chosen. In Table 1 

and Table 2, the values of the error norms 
2L  and 

L
 calculated over these values for time levels and 

step sizes are presented. When the tables are 

examined, the calculated error norms 
2L  and L

are found to be satisfactorily small. We can say 

that the increase in the number of time divisions 

has positive effects on the numerical results. In 

those tables, it is clearly seen that the collocation 

method combined with the division methods is 

better, faster and more reliable than the other 

methods.  

 

Table 1. The error norms for 0.1, 0.01h h   and 

0.01t  . 

 
Table 2. The error norms for 0.1, 0.01h h   and 

0.1t  . 

 

t 0.01,h 0.1 t 0.01,h 0.01

t L2 L L2 L

10 0.8828106 1.4451106 9.778107 1.4940106

20 1.3890106 2.0655106 7.220107 0.9835106

30 1.3894106 2.0656106 8.452107 1.4006106

40 1.3915106 2.0658106 9.976107 1.4608106

50 1.3890106 2.0660106 8.790107 1.5913106

t 0.1,h 0.1 t 0.1,h 0.01

t L2 L L2 L

10 7.082107 3.240107 2.8680105 1.5624105

20 6.172107 2.538107 2.6989105 1.4440105

30 6.031107 1.765107 2.5485105 1.3300105

40 6.176107 1.893107 2.4081105 1.2296105

50 6.027107 1.962107 2.2819105 1.1391105
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If we analyze Figure 1, we can clearly see the two-

dimensional case of the upper half bell-shaped 

wave solutions generated at times 1, 5t t   and 

10t  . We see the three-dimensional shape and 

contour graph of the wave solutions in the selected 

time intervals in Figure 2. 

 
Figure 1. Numerical behaviours (2D) of N-W equation for 

1, 5t t   and 10.t   

 
Figure 2. Numerical behaviours (3D) of N-W equation for 

0.01t   and 0.1.h   

 

     
Figure 3. Contour graph of N-W equation for 0.01t   

and 0.1.h   

4. Conclusion 

We derived the formulation of the collocation 

finite element method for the N-W equation in the 

article. We consider the equation with the 

approximate solution which converges faster to the 

exact solution. The method has been successfully 

used to discover the approximate solution of the N-

W equation. The obtained numerical results are 

quite satisfactory for large time steps as well as for 

space steps, and the absolute error map provides 

very few errors that can be neglected. It is obvious 

that numerical algorithm is unconditionally stable. 

From both the numerical and graphical 

presentation it can be concluded that the method 

is quite efficient for solving the wide variety of 

NLEEs that arise in various disciplines. 
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