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CORRELOGRAM BASED FEATURE SELECTION FOR
SPEAKER IDENTIFICATION USING VOWELS

Figen ERTAS!

ABSTRACT: A correlogram approach to the selection of text-dependent features in
vowel sounds is investigated for speaker identification. In the approach, vowel sounds
as the identity carrying parls in spoken utterances are represented in the form of a
correlogram, in which the speaker dependent spectral and temporal information is
coded. Psycho-physiologically motivated spectro-temporal correlation with a search
algorithm is introduced to identify the regions where the relevant features are
embedded that are suited to discrimination. We identify the feature regions for a set of
individual vowel sounds, and present results on their effectiveness in identifying
speakers. Particular to the approach is that it makes no explicit use of any individual
speech features. ‘
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SESLI HARF KULLANARAK KONUSMACI BELIRLEME
ICIN KORELOGRAM TABANLI OZELLIK SECIMI

OZET: Konusmaci belirleme amact ile, iinlii seslerdeki metne bagl ozelliklerin secimi
icin bir korelogram yaklasim aragtrimustir. Bu yaklasimda, kimlik bilgisi tagiyan inli
sesler, konusmactya ait spektrum ve zamana bagli bilgilerin icinde kodlandig: bir
korelogram seklinde temsil edilmektedir. Ayrima elverigli ozelliklerin gosterim iginde
sakli oldugu bolgeleri tespit etmek icin ise, literatirdeki psikofizyolojik deney
sonuclarindan hareketle frekans-zaman ilintisi ve buna iligkin bir arama algoritmasi
tantimugtr. Ozellik bolgeleri bir grup dinki ses igin tespit edilmis ve bunlarin
konusmactyr belirlemede ne kadar etkili olduguna iligkin sonuglar verilmistir. Bu
makalede kullamlan yaklagimin  ézelligi  ise, highir ses ozelligini  dogrudan
kullanmamasidir. '
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Konusmact belirleme
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L INTRODUCTION

Speaker-identification (SI) is a multiple-choice identification task and has received a
great deal of attention in the last two decades [1] As the performance of a SI system
depends on the discriminatory quality of the chosen features [2], selection and
extraction of acoustic features that effectively characterize speakers is therefore of
crucial importance. Unfortunately, no feature set is known so far to allow perfect
discrimination. However, findings of speech research in the literature support that
temporal information within speech signals appear to have a good potential to contain
speaker-dependent (SD) cues [3], and is shown to be useful for SI [4]. The importance
of temporal information in speech signals is emphasized in [5]. Auditory modeling is
well known in the literature, and has been employed in various speech applications as a
front-end processor, mostly outperforming conventional techniques. But, the use of
auditory modeling for SI has not been much explored in the literature except a few
works some of which are [6][7][8], where success was reported over spectral based
conventional techniques. But, common to these is that the features and the way they are
used inherently neglect the SD temporal information contained in speech signal
However, for a template based classification, an auditory model may be used in
conjunction with autocorrelation analysis, resulting in a correlogram {5], to capture the
SD temporal as well as the spectral attributes of speech signals without making explicit

use of any speech features.

In this paper, we investigate a correlogram approach to feature selection for text-
dependent SI using vowels, in which the SD spectro-temporal features are embedded as
coded in the correlogram representation of spoken utterances. Selection of SD feature
regions is explained, and their effectiveness in SI are presented for a set of individual

vowel sounds.

I1. CORRELOGRAM REPRESENTATION

The first stage of the model of the auditory periphery used in this paper consists of a
bank of bandpass cochlear gammatone filters representing the frequency-selective
basilar membrane motion [9], which separates the acoustic signal into a number of

frequency bands. A nonlinear stage, as the second stage, follows the output of each



cochlear filter to simulate auditory nerve fibers, which transduce the mechanical motion
of basilar membrane to synchronous neural firing patterns. | A well-established
mechanical to neural transduction, or inner hair cell transduction, is given in [10]. These
firing patterns contain useful spectral and temporal information. An important step in a
SI process is to find a representation of speaker voices from which sufficient
information can be extracted that is suited to discrimination. Autocorrelation is a signal
processing technique and acts as a process of determining the relationships between the
contents of a signal within itself. Applying the autocorrelation to each auditory filter

output channel by channel, a correlogram for a neural response is computed as
v
R (z.f) =2 x(t, f)x(t - 7. 1) (1)
=0

where 7=iT in which T is the sampling period, f is the characteristic (center or channel)
frequency for the auditory filter (equally spaced in ERB-rate, spanning the 50-5000 Hz
frequency range), 7 is the autocorrelation delay whose smallest value is the sampling
interval 7, and x is the probability of a spike in the auditory nerve [10]. To be more
specific, x(7, /) is the neural activity as a function of time in response to the output of a
gammatone filter in the filterbank whose center frequency is /. In this way, by applying
autocorrelation to the output of each filter after the mechanical to neural transduction
process as in (1), SD information in one-dimensional speech signal about how and
where sounds manifest in time-frequency plane is coded into a two-dimensional visual
representation regarded as an auditory pattern (AP) in this paper, for which an example
is shown in Figure 1. Note that the vertical axis in the picture is the center frequencies
of the filterbank in [50-5000 Hz]. However, this representation does not explicitly
provide the acoustic differences directly related to individual speakers. Information is
rather embedded, and the differences can then be explored by further processing. Since
the identification of speakers by their voice translates in this way to an auditory pattern
recognition, now, the task is to find out how to extract or measure these features from

the AP representation.
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Figure 1. An example correlogram (AP).

1l. FEATURE SELECTION

Since the SD within- and across-channel cues are preserved in the AP representation as
spectro-temporally coded in the time-lag (7) and in the channel frequency ( f) variables,
respectively, one does not need to explicitly deal with the embedded individual features
themselves. Rather, as proposed in this paper, one can explore the regions where
adequate cues about the invariant attributes of its speaker’s voice for a given utterance is
embedded as coded in 7-f plane. Since the APs have unique configurations as produced
by individual speakers’ vocal system, by identifying these regions, the embedded SD
features can then be exploited through further processing to obtain the differences in

speaker voices such that they can be used for discrimination.

There is a good evidence that listeners sometimes make comparisons across auditory
filters (or across primary afferent fibers in an auditory nerve bundle), rather than
listening through a single filter (or a fiber) [11]. This psycho-physiological evidence has
motivated the exploration of the features of speaker identity in this paper by performing
across-{requency comparisons in time-delay between an input speech transformed into a
correlogram and the pre-stored correlogram templates, which are associated with
speaker identities (through their utterances of a code sentence in the training session).
This results in a spectro-temporal correlation (STC) of two correlograms, one for the

mnput, R, (z, f), and the other for a reference template, R, (z, f), as
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Note here that (2) is the correlation coefficient as a function of 7 for frequency slices
taken from two APs al the same time-lag 7, hence the name spectro-temporal. We
explore the features in two steps by performing global and local spectro-temporal
correlation (STC) on APs by using (2) and (3), between the one for the input and the
other for the reference. In the former one, it is performed on the whole AP as illustrated
in Figure 2, which exploits the similarity of global features, while it is performed locally
on a selected frequency band in the latter as shown in Figure 3, exploiting the similanty
of local features that reveal the temporal variations across different frequency ranges of

the speech signal.
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Figure 2. Spectro-temporal correlation on global features,

a snapshot over 50 ms.
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Figure 3. Correlation on local features.

The result of the STC is a spectral correlation trajectory. It is seen from Figure 2 and

Figure 3, the measure of the similarity of APs is the global score S, and the local score

S,, as the average of the global and the local correlation trajectories, respectively.
Specifically, as a measure of the perception of SD similarity in two APs on a global
scale, S, is obtained by averaging the global STC trajectory as shown in Figure 2 with

respect to a specific time-lag referred to as the best observation time. The best
observation time is determined by forming the time varying average of the trajectory
and returning the time-lag at which the average is maximum. This time-lag is also used

for averaging the local STC trajectory to yield the S,. The reason to look for a best

observation time is to eliminate the speaker independent features, which are text-
dependent. This is why the global and the local scores are taken as the average of STC
trajectories. As anticipated, a local feature region can have any frequency channel span
(Af), which can be anywhere on the AP. Therefore its position on the AP should be
identified, where a small intra-but a larger inter-speaker variations are observed.
Namely, determining a channel span (or a time slice as shown in Figure 3) on the AP as
a SD local feature region, one needs to search on the AP to find a slice that produce a
good correlation with the speakers’ own template but produce a weak correlation with

the other speakers’ templates by varying the width and the position of the slice. For an
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input utterance, a search flowchart for the determination of the local feature regions is

illustrated in Figure 4.

Select an utterance

—

Select a customer,
Compute local scores for
each of his correlograms from
training session and the customer
templates for the utterance, for a
channel span from 5 1o max channel
nrumber in any region and save it

Is it the last
customer ?

For the utterance,
determine the channel span and the
region valid for every customer,
where the local score, is better and
consistent with the speaker's own
but smaller for the other templates

Is it the Jast
utterance ?

Figure 4. Flowchart for the search for local feature regions.

The experimental results on the recognition performance of vowels have revealed that
the global similarity score is relatively sensitive to intra-speaker variance but can be

compensated for by using local similarity score. The investigation has shown that
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neither global nor local similarity on its own is consistently discriminatory, but rather
they complement each other. For the discrimination of speakers, we measure the
spectro-temporal acoustic differences in the utterances by using the local similarity

score in combination with the global score as § =SS, . This corresponds to AND Iogic,

which imposes that the similarity must be satisfied in both global and local scale at the

same time. If the similarity score is taken as the sum of the two scores as S=5, +5,, a

misidentification may result since the sum of one lower and a larger incoherent score
may well exceed a decision threshold, but their multiplication may be below the
threshold leading to a correct identification. The sum logic has been tested and is found

to produce poor results. Therefore, we use §=35,5, as the final similarity score for

discrimination.

IV. EXPERIMENTAL RESULTS

As reported to be the most effective speech sound that carry SD information [12], a
closed-set SI experiment has been conducted with a speaker population of 10 customers
(5 male and 5 female) by using only the vowel sounds extracted from their uttered

sentences. The vowel sounds that are used in the identification experiment are /d / in
FATHER, /e/ in HATE, /i/ in EVE, /w/ in BOOT, /2/ in BIRD, /&/ in AT, and /9/ in

ALL. A set of correlogram templates with =50 ms was constructed for customers, and
then local feature regions were determined for each vowel as illustrated in Figure 4,
whose results are shown in Table 1 for a 32-channel auditory model. In the table, the
frequency span of the regions are given in terms of auditory channel numbers (CHN-N)
as well as center frequencies (CFs) of the channels. Then, a test was carried out to find
the effectiveness of each of vowel in SI, by using a set of data collected also 4 months

and 2 years after the training session, totaling 700 vowels (7x100).
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Table 1. Local feature regions for a 32-channel system

| Local Feature Regions
VOWELS
fal | tel | ol | N fed | e fof

CHN-N | 24-32| 24-32| 23-30| 21-27| 22-28| 20-26| 20-26

2225- | 2225- ] 2004- | 1619- | 1802- | 1452- | 1452-
5000 | 5000 § 4099 | 3030 | 3353 | 2736 | 2736

CF (Hz)

The result of the identification test using STC on global and local feature regions is
shown in Table 2 for 16, 32, and 64-channel systems, in which N-CHN stands for
number of channels (used in the auditory model). As an important aspect of the
approach investigated, the sampling frequency for the recorded data was chosen 22050

Hz in order to exploit the temporal information in the fine structure of APs.

Table 2. Identification results

Identification Results

VOWELS
N-CHN| fa/ | Je/ | 1if | W | Fet | 1/ | [of

16 80% | B6% | 90% | 86% | 93% | 83% | 63%

32 84% | 93% | 90% | 93% | 97% | 83% | 65%

64 BG% | 90% | 90% | 90% | 93% | 80% | 70%

V. CONCLUSION

A correlogram approach to the selection of features is proposed for SI, in which no
specific feature is in fact explicitly selected. The SD features are rather embedded in the
APs on a local and global scale, and a procedure is given to identify relevant local
feature regions suited to discrimination, where a small intra- but a larger inter-speaker
variations are observed, by employing psycho-physiologically motivated spectro-
temporal correlation to jointly exploit the embedded spectral and temporal information.
Local feature regions for some individual vowel sounds are determined, and results on
their effectiveness in speaker identification are also presented. It is seen from the results

that for SI, /ev in BIRD is found to be the best vowel among the others, which agrees
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with the result obtained in [13] by using the formant frequencies as features. It is
observed from the results in Table 2 that increasing the number of channels from 16 to
32 improves the performance but further doubling it to 64 causes a loss in identification
rate. This suggests that a further research should be performed to optimize the number
of channels used in the filterbank that is suitable for SI. However, it is clear that
increasing the number of channels does not always lead to a better performance. The
reason for this is perhaps the inclusion of more speaker independent information in the

AP and somewhat smearing out the speaker-dependent information.

In this paper, identification results are presented only for individual vowels. Later, we
will present an identification strategy using a set of vowels, which explores the

differences in APs by using a robust decision mechanism.
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