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Estimate of the spectral radii of Bessel multipliers and
consequences
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ABSTRACT. Bessel multipliers are operators defined from two Bessel sequences of elements of a Hilbert space and
a complex sequence, and have frame multipliers as particular cases. In this paper, an estimate of the spectral radius of
a Bessel multiplier is provided involving the cross Gram operator of the two sequences. As an upshot, it is possible to
individuate some regions of the complex plane, where the spectrum of a multiplier of dual frames is contained.
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1. INTRODUCTION

Bessel multipliers, as introduced in [2], are operators in a Hilbert space which have been
extensively studied [5, 11, 24, 25], occur in various fields of applications [4, 14, 21] and include
the class of frame multipliers [9, 10, 12, 19, 22]. Recently, in [10], given a frame multiplier
some regions of the complex plane containing the spectrum have been identified. In order to
present the main contributions of this paper, which follows the line of [10], we need to give
some definitions and preliminary results.

A Bessel sequence of a separable Hilbert space H (with inner product ⟨·, ·⟩ and norm ∥ · ∥) is a
sequence φ = {φn}n∈N of elements of H such that∑

n∈N
|⟨f, φn⟩|2 ≤ Bφ∥f∥2, ∀f ∈ H

for some Bφ > 0 (called a Bessel bound of φ). A sequence φ = {φn}n∈N is a frame for H if there
exist Aφ, Bφ > 0 such that

(1.1) Aφ∥f∥2 ≤
∑
n∈N

|⟨f, φn⟩|2 ≤ Bφ∥f∥2, ∀f ∈ H.

Given two Bessel sequences φ = {φn}n∈N, ψ = {ψn}n∈N of H and m = {mn}n∈N a bounded
complex sequence (in short, m ∈ ℓ∞(N)) it is possible to define a bounded operator Mm,φ,ψ on
H in the following way

Mm,φ,ψf =
∑
n∈N

mn⟨f, ψn⟩φn, f ∈ H.
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This operator is said the Bessel multiplier of φ, ψ with symbol m. It thus consists of three pro-
cesses: analysis through the sequence ψ, multiplication of the analysis coefficients by m and
synthesis processes by φ. When φ and ψ are frames, Mm,φ,ψ is called a frame multiplier.

Since a Bessel multiplier is a bounded operator, its spectrum is contained in some disk and,
more precisely, the following bound has been given.

Proposition 1.1 ([10, Proposition 1]). The spectrum σ(Mm,φ,ψ) of any Bessel multiplier Mm,φ,ψ is
contained in the closed disk centered the origin with radius supn |mn|Bφ

1
2Bψ

1
2 , where Bφ and Bψ are

Bessel bounds of φ and ψ, respectively.

A special case occurs when φ and ψ are dual frames, i.e. two frames satisfying the condition1

(1.2) f =
∑
n∈N

⟨f, ψn⟩φn, ∀f ∈ H.

In this setting, it was possible to find more precise regions where the spectra are contained, as
stated in the following result.

Proposition 1.2 ([10, Propositions 2 and 3]). Let φ,ψ be dual frames for H with upper bounds
Bφ, Bψ , respectively, and let m ∈ ℓ∞(N).

(1) If m is contained in the disk of center µ with radius R, then σ(Mm,φ,ψ) is contained in the disk
of center µ with radius RBφ

1
2Bψ

1
2 .

(2) If m is a real sequence, then σ(Mm,φ,ψ) is contained in the disk of center

1

2
(sup
n
mn + inf

n
mm)

with radius
1

2
(sup
n
mn − inf

n
mm)Bφ

1
2Bψ

1
2 .

(3) If ψ is the canonical dual2 of φ, then σ(Mm,φ,ψ) is contained in the closed convex hull of m.

One of the two main results of this paper, which is right below, gives an estimate of the spec-
tral radius of a Bessel multiplier in terms of the cross Gram operator Gφ,ψ [3] of φ and ψ which
is recalled in Section 2. A direct consequence, contained in the statement, is an improvement
of Proposition 1.1.

Theorem 1.1. Let φ,ψ be Bessel sequences of H with cross Gram operator Gφ,ψ and let m ∈ ℓ∞(N).
Let Mm be the multiplication operator by m on ℓ2(N). Then, Mm,φ,ψ and MmGφ,ψ have the same
spectral radius

(1.3) r(Mm,φ,ψ) = r(MmGφ,ψ).

In particular, the following bound holds

(1.4) r(Mm,φ,ψ) ≤ sup
n

|mn|∥Gφ,ψ∥.

Therefore, the spectrum of any Bessel multiplier Mm,φ,ψ is contained in the closed disk centered the
origin with radius supn |mn|∥Gφ,ψ∥.

1or, equivalently, the condition f =
∑
n∈N

⟨f, φn⟩ψn for every f ∈ H.

2among all the dual frames of φ there is a special one called the canonical dual; the definition is given in Section 2.
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The second main result, i.e. Theorem 3.2, concerns dual frames and is the counterpart of
Proposition 1.2 in which the cross Gram operator is involved again. Both in Theorems 1.1 and
3.2, the constant Bφ

1
2Bψ

1
2 appearing in Propositions 1.1 and 1.2 is substituted by the norm

∥Gφ,ψ∥ of Gφ,ψ . Since the inequality ∥Gφ,ψ∥ ≤ Bφ
1
2Bψ

1
2 always holds, Theorems 1.1 and 3.2

improve in fact Propositions 1.1 and 1.2. In connections to the main results, throughout the
paper we will discuss some remarks and examples.

2. PRELIMINARIES

We denote by ℓ2(N) (respectively, ℓ∞(N)) the usual spaces of square summable (respectively,
bounded) complex sequences indexed by N.
Given two Bessel sequences φ and ψ of H the following operators can be defined (see [3, 6]):

• Cφ : H → ℓ2(N), defined by Cφf = {⟨f, φn⟩}, is the analysis operator of φ.
• Dφ : ℓ2(N) → H, defined by Dφ{cn} =

∑
n∈N cnφn, is the synthesis operator of φ.

• Sφ : H → H, Sφ = DφCφ is called the frame operator of φ; the action of Sφ is

Sφf =
∑
n∈N

⟨f, φn⟩φn, f ∈ H.

• Gφ,ψ : ℓ2(N) → ℓ2(N), Gφ,ψ = CψDφ, is the cross Gram operator of φ and ψ which acts as
Gφ,ψ{cn} = {dk}, where dk =

∑
n∈N cn⟨φn, ψk⟩. In other words, Gφ,ψ can be associated

to the matrix (⟨φn, ψk⟩)n,k∈N.

Moreover, Cφ and Dφ are one the adjoint of the other one, Cφ = D∗
φ, and ∥Cφ∥ = ∥Dφ∥ ≤ Bφ

1
2 ,

where Bφ is a Bessel bound of φ. Consequently, Sφ is a positive self-adjoint operator and
it is also invertible with bounded inverse S−1

φ on H. We recall that in the introduction we
gave the definition of dual frames. A frame φ always has a dual frame, namely the sequence
{S−1

φ φn}n∈N, which is the so-called canonical dual of φ.
Finally, we note that, introducing the operators Dφ and Cψ , it is possible to write Mm,φ,ψ =

DφMmCψ , where Mm is the multiplication operator by m on ℓ2(N), defined by Mm{cn} =
{mncn} for {cn} ∈ ℓ2(N).

3. PROOFS OF THE MAIN RESULTS

Theorem 1.1 concerns the spectral radius of a Bessel multiplier. For a bounded operator T :
H → H, we write σ(T ) for the spectrum and r(T ) := sup{|λ| : λ ∈ σ(T )} for the spectral radius
(see, for instance, [7, 20, 23]). The spectral radius represents then the radius of the smallest disk
centered in the origin and containing the spectrum. Propositions 1.1 and 1.2 can be restated in
terms of spectral radius. For example, we can say that for any Bessel multiplier Mm,φ,ψ , we
have r(Mm,φ,ψ) ≤ supn |mn|Bφ

1
2Bψ

1
2 .

For the proof of Theorem 1.1 below, we are going to use some classical results about the
spectral radius (see e.g. [7, Proposition 3.8]): for every bounded operator T : H → H, we have

(3.5) r(T ) = lim
N→+∞

∥TN∥ 1
N

and

(3.6) r(T ) ≤ ∥T∥.

Proof of Theorem 1.1. If Bφ = 0, Bψ = 0 or m ≡ 0, then (1.4) trivially holds, because both the
operators Mm,φ,ψ and MmGφ,ψ are null. So we can assume that Bφ, Bψ > 0 and that m is not
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identically null.
Since Mm,φ,ψ = DφMmCψ and Gφ,ψ = CψDφ, then for N ≥ 2 we have

MN
m,φ,ψ = (DφMmCψ)

N = Dφ(MmCψDφ)
N−1MmCψ = Dφ(MmGφ,ψ)

N−1MmCψ.

Therefore,
∥MN

m,φ,ψ∥ ≤ ∥(MmGφ,ψ)
N−1∥∥Mm∥∥Cψ∥∥Dφ∥.

Thus, by (3.5),

r(Mm,φ,ψ) = lim
N→+∞

∥MN
m,φ,ψ∥

1
N ≤ lim

N→+∞
(∥(MmGφ,ψ)

N−1∥∥Mm∥∥Cψ∥∥Dφ∥)
1
N

= lim
N→+∞

∥(MmGφ,ψ)
N−1∥ 1

N lim
N→+∞

(∥Mm∥∥Cψ∥∥Dφ∥)
1
N = r(MmGφ,ψ).

For the reverse inequality, we observe that

(MmGφ,ψ)
N+1 =MmCψDφ(MmGφ,ψ)

N−1MmCψDφ =MmCψM
N
m,φ,ψDφ.

Hence, with an analog calculation as before, we find that r(MmGφ,ψ) ≤ r(Mm,φ,ψ), so in con-
clusion (1.3) is proved. Lastly, (1.4) holds because by (1.3) and (3.6), we have

r(Mm,φ,ψ) = r(MmGφ,ψ) ≤ ∥MmGφ,ψ∥ ≤ ∥Mm∥∥Gφ,ψ∥ = sup
n

|mn|∥Gφ,ψ∥. □

Remark 3.1. (i) Inequality (1.4) may be strict. In fact, let {en} be an orthonormal basis of H,
φ = {en}, ψ = { 1

2e1, 2e2,
1
2e3, 2e4, . . . } and m = {2, 12 , 2,

1
2 , . . . }. A trivial calculation

shows that Mm,φ,ψ is the identity operator, so r(Mm,φ,ψ) = 1, while supn |mn|∥Gφ,ψ∥ = 4.
(ii) A Riesz basis φ for H is the image of an orthonormal basis {en} of H through an bounded

operator with bounded inverse defined on H [6]. A Riesz basis φ is, in particular, a frame for H
and it has a unique dual ψ (the canonical one) which is a Riesz basis too. Moreover,

⟨φn, ψk⟩ = δn,k =

{
1 n = k

0 n ̸= k.

Therefore, if φ is a Riesz basis for H and ψ is its canonical dual, then Gφ,ψ is the identity
operator on ℓ2(N) and so ∥Gφ,ψ∥ = 1. Anyway, for this choice of φ,ψ, (1.4) is an immediate
consequence of the fact that σ(Mm,φ,ψ) is the closure of {mn : n ∈ N} (see [9, Proposition 4]).

(iii) Since Gφ,ψ = CψDφ, we always have

(3.7) ∥Gφ,ψ∥ ≤ ∥Cψ∥∥Dφ∥ ≤ Bφ
1
2Bψ

1
2 .

Therefore, Theorem 1.1 is finer than Proposition 1.1. Moreover, ifφ = ψ, thenGφ,φ = CφDφ =
D∗
φDφ is a positive self-adjoint operator, so ∥Gφ,φ∥ = ∥Dφ∥2.

Besides with (3.7) it is possible to estimate the norm of Gφ,ψ with some other considerations
which we discuss below.

Remark 3.2. (i) An estimate of ∥Gφ,ψ∥ can be given if

(3.8) sup
k∈N

∑
n∈N

|⟨φn, ψk⟩| ≤ Γ1 and sup
n∈N

∑
k∈N

|⟨φn, ψk⟩| ≤ Γ2.

Indeed, by Schur test (see for instance [15, Lemma 6.2.1]), we have ∥Gφ,ψ∥ ≤ Γ
1
2
1 Γ

1
2
2 .

(ii) Let φ,ψ be Bessel sequences of H such that ⟨φn, ψk⟩ = 0 for n, k ∈ N with |n − k| > d. As

particular case of the previous remark, if
d∑

i=−d

sup
n

|⟨φn, ψn+i⟩| ≤ Γ (where, with an abuse of

notation, we mean ψ−d+1, . . . , ψ−1, ψ0 = 0), then ∥Gφ,ψ∥ ≤ Γ.
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(iii) Another use of conditions (3.8) can be made in the context of localized frames [1, 8, 16, 17].

In what follows, we give another example where in particular it is possible to exactly calcu-
late the norm of the cross Gram operator.

Example 3.1. Let G be a countable locally compact abelian group equipped with the discrete topology.
We write the group operation of G in the additive notation and we denote by Ĝ the dual group of G
(i.e. the multiplicative group of the characters on G). Since G is discrete, then Ĝ is compact (see [13,
Proposition 4.4]). Moreover, we will choose the Haar measure on G to be the counting measure; hence
by [13, Proposition 4.24], |Ĝ| = 1.

Let τ be a unitary representation of G on H. In particular, let us assume that τ is dual integrable
[18], i.e. there exist a Haar measure dξ and a function [·, ·] : H×H → L1(Ĝ, dξ) such that

(3.9) ⟨χ, τgη⟩ =
∫
Ĝ
[χ, η](ξ)e−g(ξ)dξ, ∀g ∈ G, χ, η ∈ H,

where e−g(x) is the character induced by −g, namely e−g(ξ) = e−2πi(g,ξ), and (·, ·) is the duality
between G and Ĝ. The function [·, ·] is called the bracket function. Classical examples (treated for
instance in [6, 15]) of this framework are

• G = Zd, Ĝ = Tn, H = L2(R), (τkf)(x) = (Tkf)(x) = f(x− k) for k ∈ Zd and

[χ, η](ξ) =
∑
k∈Zd

χ̂(ξ + k)η̂(ξ + k), ξ ∈ Rd, χ, η ∈ L2(Rd),

where χ̂ and η̂ are the Fourier transforms of χ and η, respectively;
• G = Zd × Zd, Ĝ = Tn, H = L2(R), (τ(k,l)f)(x) = (TkMlf)(x) = e2πil·xf(x − k) for
(k, l) ∈ Zd × Zd and

[χ, η](x, ξ) = Zχ(x, ξ)Zη(x, ξ), x, ξ ∈ Rd, χ, η ∈ L2(Rd),
where Zχ(x, ξ) =

∑
k∈Zd e−2πik·ξχ(x− k) is the Zak transform of χ ∈ L2(Rd).

After introducing this setting, we now consider two special sequences3. More precisely, let χ, η ∈ H
be such that φ = {Tgχ}g∈G and ψ = {Tgη}g∈G are Bessel sequences4 of H. As we are going to
see, the norm ∥Gφ,ψ∥ can be exactly calculated in terms of [χ, η]. Indeed, for any complex sequences
{cg}g∈G , {dg}g∈G ∈ ℓ2(G), we have

(3.10)

⟨Gφ,ψ{cg}, {dg}⟩ = ⟨CψDφ{cg}, {dg}⟩ = ⟨Dφ{cg}, Dψ{dg}⟩

=

〈∑
g∈G

cgTgχ,
∑
g∈G

dgTgη

〉
=

∑
g,h∈G

cgdh⟨Tgχ, Thη⟩

=
∑
g,h∈G

cgdh⟨χ, Th−gη⟩ =
∑
g,h∈G

cgdh

∫
Ĝ
[χ, η](ξ)eg−h(ξ)dξ

=

∫
Ĝ
[χ, η](ξ)

∑
g,h∈G

cgdheg−h(ξ)dξ

=

∫
Ĝ
[χ, η](ξ)

∑
g∈G

cgeg(ξ)
∑
h∈G

dheh(ξ)dξ.

3In this example, the sequences are indexed by the countable set G in contrast to the setting of the rest of the
paper. However, this does not change the validity of Theorems 1.1 and 3.2 since the series defining a multiplier is
unconditionally convergent so the ordering of a Bessel sequence is not relevant (see [6, 15]).

4This happen if and only if [χ, χ] and [η, η] are bounded above a.e. in Ĝ, see [18, Section 5].
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By the Pontrjagin duality theorem and by [13, Corollary 4.26], {eg}g∈G is an orthonormal basis of
L2(Ĝ, dξ). This fact, together with (3.10), implies that the Gram operator Gφ,ψ can be reduced to the
multiplication operator by [χ, η] on L2(Ĝ, dξ). Hence, we conclude that

∥Gφ,ψ∥ = sup
{cg},{dg}̸=0

|⟨Gφ,ψ{cg}, {dg}⟩|
∥{cg}∥∥{dg}∥

= sup
ξ∈Ĝ

|[χ, η](ξ)|,

i.e. the essential supremum of [χ, η] (see [20, Example 2.11 - Ch. III]). Thus, by Theorem 1.1, given a
bounded complex sequence m = {mg}g∈G we have

r(Mm,φ,ψ) ≤ sup
g∈G

|mg| sup
ξ∈Ĝ

|[χ, η](ξ)|.

We now move to prove the result for dual frames. In particular, it provides regions contain-
ing the spectrum which are smaller than the disk of Theorem 1.1.

Theorem 3.2. Let φ,ψ be dual frames for H and let m ∈ ℓ∞(N).
(1) If m is contained in the disk of center µ with radius R, then σ(Mm,φ,ψ) is contained in the disk

of center µ with radius R∥Gφ,ψ∥.
(2) If m is real, then σ(Mm,φ,ψ) is contained in the disk of center

1

2
(sup
n
mn + inf

n
mm)

with radius
1

2
(sup
n
mn − inf

n
mm)∥Gφ,ψ∥.

(3) If ψ is the canonical dual of φ, then σ(Mm,φ,ψ) is contained in the closed convex hull of m.

Proof. To prove statement (i), let us consider a disk of center µ with radius R containing the
sequence m. By (1.2), we have

Mm,φ,ψ − µI =
∑
n∈N

(mn − µ)⟨f, ψn⟩φn =Mm−µ,φ,ψ,

where with m− µ we mean the sequence {mn − µ}. Therefore applying (1.4) to Mm−µ,φ,ψ , we
obtain

r(Mm,φ,ψ − µI) ≤ sup
n

|mn − µ|∥Gφ,ψ∥ ≤ R∥Gφ,ψ∥,

which means that σ(Mm,φ,ψ) is contained in the disk of center µ with radius R∥Gφ,ψ∥, because
σ(Mm,φ,ψ) = {λ+ µ : λ ∈ σ(Mm−µ,φ,ψ)}.

Statement (ii) is a consequence of (i) taking µ = 1
2 (supnmn+infnmm) andR = 1

2 (supnmn−
infnmm). Finally, statement (iii) was proved in [10, Proposition 2]. □

By (3.7), we can make a similar observation of Remark 3.1(iii), that is Theorem 3.2 is stronger
than Proposition 1.2. We conclude with a comment for the case of a frame and its canonical
dual.

Remark 3.3. Let φ and ψ be dual frames. Making use of inequality (1.4) (taking mn = 1 for every
n ∈ N), we find that ∥Gφ,ψ∥ ≥ 1.
If, in particular, ψ is the canonical dual of φ, then

⟨φn, ψk⟩ = ⟨φn, S−1
φ φk⟩ = ⟨S− 1

2
φ φn, S

− 1
2

φ φk⟩.

In other words, Gφ,ψ is equals to the Gram operator of the canonical tight frame χ := S
− 1

2
φ φ of φ, which

is a Parseval frame (i.e. it satisfies condition (1.1) with Aχ = Bχ = 1, see [6, Theorem 6.1.1]). Thus,
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for the initial observation and for Remark 3.1 (iii), if φ is a frame, ψ is its canonical dual and χ = S
− 1

2
φ φ,

then we have 1 ≤ ∥Gφ,ψ∥ = ∥Dχ∥2 ≤ Bχ = 1, so ∥Gφ,ψ∥ = 1.

ACKNOWLEDGMENTS

This work was partially supported by the European Union through the Italian Ministry of
University and Research (FSE - REACT EU, PON Ricerca e Innovazione 2014-2020) and by the
“Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni” (INdAM).
This work has been done within the activities of the “Gruppo UMI - Teoria dell’Approssimazione
e Applicazioni”.

REFERENCES

[1] R. Balan, P.G. Casazza, C. Heil and Z. Landau: Density, overcompleteness, and localization of frames I. Theory, J. Fourier
Anal. Appl., 12 (2006), 105–143.

[2] P. Balazs: Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl., 325 (1) (2007), 571–585.
[3] P. Balazs: Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J.

Wavelets Multiresolut. Inf. Process., 6 (2) (2008), 315–330.
[4] P. Balazs, B. Laback, G. Eckel and W.A. Deutsch: Time-frequency sparsity by removing perceptually irrelevant compo-

nents using a simple model of simultaneous masking, IEEE Transactions on Audio, Speech, and Language Processing,
18 (1) (2010), 34–49.

[5] P. Balazs, D. T. Stoeva: Representation of the inverse of a frame multiplier, J. Math. Anal. Appl., 422 (2) (2015), 981–994.
[6] O. Christensen: An Introduction to Frames and Riesz Bases, second expanded edition, Birkhäuser, Boston, (2016).
[7] J. Conway: A Course in Functional Analysis, Graduate Texts in Mathematics. 96 (2nd ed.), New York: Springer-

Verlag, (1990).
[8] E. Cordero, K. Gröchenig: Localization of frames II, Appl. Comput. Harmon. Anal., 17 (2004), 29–47.
[9] R. Corso: On some dual frames multipliers with at most countable spectra, Ann. Mat. Pura Appl., 201 (4) (2022), 1705–

1716.
[10] R. Corso: Localization of the spectra of dual frames multipliers, Constr. Math. Anal., 5 (4) (2022), 238–245.
[11] R. Corso, F. Tschinke: Some notes about distribution frame multipliers, in: Landscapes of Time-Frequency Analysis,

vol. 2, P. Boggiatto, T. Bruno, E. Cordero, H.G. Feichtinger, F. Nicola, A. Oliaro, A. Tabacco, M. Vallarino (Ed.),
Applied and Numerical Harmonic Analysis Series, Springer, (2020).

[12] H. G. Feichtinger, K. Nowak: A first survey of Gabor multipliers, in: Advances in Gabor analysis, H. G. Feichtinger
and T. Strohmer (Ed.), Boston Birkhäuser, Applied and Numerical Harmonic Analysis, (2003).

[13] G. B. Folland: A Course in Abstract Harmonic Analysis, CRC Press, Boca, Raton, (1995).
[14] J.-P. Gazeau: Coherent States in Quantum Physics, Weinheim: Wiley, (2009).
[15] K. Gröchenig: Foundations of Time-Frequency Analysis, Birkhäauser, Boston, (2000).
[16] K. Gröchenig: Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl.,

10 (2004), 105–132.
[17] K. Gröchenig, M. Fornasier: Intrinsic localization of frames, Constr. Approx., 22 (2005), 395–415.
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