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Machine Learning-Based Prediction of NPSH, Noise, and Vibration Levels in Radial 

Pumps Under Cavitation Conditions 

Radyal Pompalarda Kavitasyon Koşulları Altında ENPY, Gürültü ve Titreşim Düzeylerinin 

Makine Öğrenimine Dayalı Tahmini 

 

Nuri ORHAN1*, Mehmet KURT2, Hasan KIRILMAZ3, Murat ERTUĞRUL4 

Abstract 

Cavitation, a physical phenomenon that detrimentally affects pump performance and reduces pump life, can cause 

wear on pump elements. Various engineering methods have been developed to identify the initiation and full 

development of the cavitation process. One such method is the determination of the net positive suction head 

(NPSH) through a 3% decrease in total head (Hm) at a constant flow rate. In radial pumps, commonly used in 

agricultural irrigation and industry, cavitation conditions result in a sudden drop in the Hm-Q curve, making it 

challenging to detect the 3% Hm value drop. This study differs from others in the literature by modelling NPSH, 

noise, and vibration levels using three machine learning models, specifically artificial neural networks (ANN), 

support vector machines (SVM), and decision tree regression (DTR). The best-performing model predicts NPSH, 

noise, and vibration levels corresponding to a 3% decrease in Hm level. The present study determined the NPSH 

values of a horizontal shaft centrifugal pump at different flow rates and constant operating speed, and the vibration 

and noise levels were measured for these NPSH values. For each of the NPSH, noise, and vibration levels, ANN, 

SVM and DTR models were created. The performances of these models were evaluated using criteria such as root 

mean squared error (RMSE), Mean Absolute Error (MAE) and mean absolute percentage error (MAPE). In 

addition, Taylor and error box diagrams were created. The ANN model and DTR yielded high accuracy predictions 

for NPSH values (R2 = 0.86 and R2 = 0.8, respectively). The ANN model provided the best prediction performance 

for noise and vibration levels. By entering the level of 3% drop in the Hm value of the pump as external data input 

to the ANN model, NPSH3, noise, and vibration levels were determined. The ANN models can be effectively 

employed to determine NPSH3, noise, and vibration levels, particularly in radial flow pumps, where detecting 3% 

reductions in manometric height value is challenging. 
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Öz 

Kavitasyon, pompa performansını olumsuz etkileyen ve pompa ömrünü azaltan fiziksel bir olgudur ve pompa 

elemanlarında aşınmaya neden olabilir. Kavitasyon sürecinin başlangıcını ve tam gelişimini belirlemek için çeşitli 

mühendislik yöntemleri geliştirilmiştir. Bunlardan biri, sabit bir debi hızında toplam basınç düşüşü (%3 Hm) ile 

emmedeki net pozitif yük (ENPY) değerinin belirlenmesidir. Tarım sulaması ve endüstride yaygın olarak 

kullanılan radyal pompalarda, kavitasyon koşulları Hm-Q eğrisinde ani bir düşüşe yol açarak %3 Hm değer 

düşüşünü tespit etmeyi zorlaştırır. Bu çalışma, yapay sinir ağları (ANN), destek vektör makineleri (SVM) ve karar 

ağacı regresyonu (DTR) olmak üzere üç makine öğrenmesi modeli kullanarak ENPY, gürültü ve titreşim 

seviyelerini modellenmesiyle literatürdeki diğer çalışmalardan farklılık gösterir. En iyi performans gösteren 

model, %3 Hm düşüşüne karşılık gelen ENPY, gürültü ve titreşim seviyelerini tahmin eder. Bu çalışma, yatay 

şaftlı santrifüj pompada farklı debi hızlarında ENPY değerlerinin belirlendiği ve bu ENPY değerleri için titreşim 

ve gürültü seviyelerinin ölçüldüğü bir çalışmadır. ENPY, gürültü ve titreşim seviyeleri için ANN, SVM ve DTR 

modelleri oluşturulmuştur. Bu modellerin performansları kök ortalama kare hatası (KOKH), ortalama mutlak hata 

(OMH) ve ortalama mutlak yüzde hatası (OMYH) gibi kriterler kullanılarak değerlendirildi.  Ayrıca Taylor ve 

hata kutu diyagramları oluşturulmuştur. ANN modeli ve DTR, ENPY değerleri için yüksek doğrulukta tahminler 

sağlamıştır (sırasıyla R2 = 0.86 ve R2 = 0.8). ANN modeli, gürültü ve titreşim seviyeleri için en iyi tahmin 

performansını sağlamıştır. Pompa Hm değerindeki %3 düşüş seviyesini ANN modeline harici veri girişi olarak 

kullanarak, ENPY3, gürültü ve titreşim seviyeleri belirlenmiştir. ANN modelleri, özellikle radyal akış 

pompalarında manometrik yükseklik değerlerinde %3'lük azalmaların tespit edilmesinin zor olduğu durumlarda, 

ENPY3, gürültü ve titreşim seviyelerini belirlemek için etkili bir şekilde kullanılabilir. 

Anahtar kelimeler: Santrifüj pompalar, Emmedeki net pozitif yük (ENPY), Titreşim, Gürültü, Makine öğrenimi 
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1. Introduction  

Centrifugal pumps play a significant role in energy conversion and liquid transfer in various sectors such as 

agriculture, industry, and other industrial fields (Dong et al., 2019). However, the performance of pump 

applications can be adversely affected by cavitation (Brennen, 2011). Cavitation is a physical phenomenon that 

results in the wearing of pump elements and a serious reduction in pump life (Yüksel and Eker, 2009). Cavitation 

can also lead to cavitation erosion, which is a form of wear and tear that can be harmful to pumps. Cavitation 

erosion occurs when vapor bubbles form in places where the pressure decreases, and then rapidly collapse when 

they pass into a high-pressure zone, causing damage to the pump surfaces (Dzhurabekov et al., 2021). This 

phenomenon occurs when the absolute pressure of the liquid moving in the pump falls below the vaporisation 

pressure of that liquid at a constant temperature, leading to the formation of vapour bubbles. The collapse of these 

bubbles generates a high velocity micro-jet that impacts the adjacent inner metal surface, producing wave shock 

and causing flow pulsation in both radial and axial directions. In the event that the pump operates under cavitation 

conditions for an extended period, the unsteady flow condition may have detrimental effects on components such 

as the impeller, volute, bearing, shaft, seal, and other mechanical parts (Sahdev, 2005). 

Cavitation is a phenomenon that relies on both the pump design and operating conditions. To prevent cavitation 

formation, it is crucial to select the appropriate pump for the installation. The parameter that determines whether 

the pump will operate with cavitation or not is the positive head at the suction port, also known as the NPSH. In 

centrifugal pumps, cavitation is a critical factor that restricts the pump inlet (suction) pressure, rotational speed, 

and consequently, the dimensions, weight, and cost of the pump. Furthermore, cavitation also limits the 

mechanically and hydraulically stable and reliable operating range. To ensure cavitation-free operation, it is 

necessary to guarantee that the NPSH value determined based on the system, installation, pumped liquid, and 

operating conditions, denoted as NPSHm, is greater than the pump-specific NPSHg value with a specific tolerance 

(Delale et al., 2020). 

The detection and prevention of cavitation in pumps require a thorough understanding of the onset and full 

development of this phenomenon. A considerable number of studies have focused on investigating cavitation in 

kinetic pumps, as well as water turbines, as revealed by the literature (Al-Obaidi and Towsyfyan, 2019; Bordoloi 

and Tiwari, 2017; Čdina, 2003; Durdu et al., 2021; Kan et al., 2022; Panda et al., 2018). Recently, researchers 

have attempted to identify cavitation by utilizing machine learning models (Arendra et al., 2020; Bordoloi and 

Tiwari, 2017; Matloobi and Riahi, 2021; Panda et al., 2018; Wang, et al., 2019; Wang et al., 2020) . However, 

given the unpredictable nature of cavitation, an accurate numerical estimation of the resulting noise and vibration 

is not feasible. To detect the onset and full development of cavitation, various engineering methods have been 

proposed, among which determining the net positive suction head (NPSH) through measuring the 3% decrease in 

total head (Hm) at a constant flow rate represents a critical value beyond which cavitation is fully developed. The 

method necessitates a specialized test stand and a series of measurements at various flow rates, following the ISO 

3555 standards. 

The early detection of cavitation is essential for ensuring the reliability and efficiency of pumps and extending 

their service life. Effective detection requires the characterisation of cavitation, and the selection of an appropriate 

indicator. The analysis of signals acquired from sensors, such as those measuring vibration, pressure, and noise, is 

a widely used technique for cavitation detection (Sun et al., 2020). Previous studies have shown that the acoustic 

emission of background noise during pump operation can be used to detect incipient cavitation (Escaler et al., 

2006; Neill et al., 1997) analysed various signals to determine the cavitation condition for hydraulic turbines. 

Čdina (2003) developed an electrical control system for preventing cavitation by initiating an alarm, shutdown, or 

control signal based on noise signal reception. The research in this area is generally focused on cavitation 

prevention based on manometric height, noise, and vibration data. 

Radial pumps are commonly used in agriculture and industry, and under cavitation conditions, there is a sharp 

decline in the Hm-Q curve (Keskin, 2002). As a result, determining the 3% decrease in Hm value becomes difficult. 

To address this issue, some studies have utilized artificial neural networks or other machine learning algorithms to 

predict cavitation in (Arendra et al., 2020; Matloobi and Riahi, 2021; Wang et al., 2020; Wang et al., 2019; Yong et 

al., 2009). Unlike these previous studies, the present study focuses on predicting the NPSH, noise, and vibration levels 

associated with the 3% decrease in Hm using an artificial neural network model. 
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The present research focuses on the determination of NPSH values for a horizontal shaft centrifugal pump operating 

at various flow rates. Concurrently, vibration and noise levels corresponding to different NPSH values at various flow 

rates were measured. Machine learning models including ANN, SVM and DTR were generated to predict NPSH, 

vibration and noise levels under a constant pump speed. The predictive success of each model is discussed based on 

metrics such as R2, RMSE, MAE, MAPE, error values, and Taylor diagrams. Taylor diagrams were utilized to assess 

the results obtained from the models in terms of standard deviation and correlation. The external input data for the best-

performing model was adjusted to the level of 3% decline in the manometric height of the pump, and subsequently, 

the NPSH, noise and vibration values were forecasted. 

2. Materials and Methods 

The present study utilized a 3'' nominal diameter horizontal shaft, stepless centrifugal pump, and the pump 

performance evaluations were conducted at the Sedat Çalışır Pumping Plant, affiliated with the Department of 

Agricultural Machinery and Technologies Engineering of Selçuk University. The pump speed was monitored by 

employing a mechanical/optical tachometer to measure the electric motor shaft speed, where a linear relationship 

exists between the frequency of the electrical network f (Hz) and the electric motor speed n (rpm), while the 

number of electric poles is denoted by P (Hanson et al., 1996). In order to alter the speed of the pump, a frequency 

control device (FCD) with the technical specifications FCD, ATV61, 31 kW, 380/480V HD 37 N4 was utilized. 

The flow rate was measured by employing an electromagnetic flow meter of type S MAG 80, capable of working 

with a flow rate of 1-280 m3 h-1, while the negative pressure was determined via a glycerine type vacuum meter 

and the positive pressure by utilizing a glycerine type manometer. Furthermore, the noise level measurements were 

carried out by employing a Jetnorl brand S4001 type digital sound level meter capable of measuring within the 

range of 30-130 dBA, whereas the vibration measurements were executed by employing a Time brand digital 

TV110 type vibration meter operating within the frequency range of 50-10000 Hz. 

The centrifugal irrigation pump was driven by an 11 kW Watt brand EFF2 class electric motor with a speed of 

2960 rpm, a current of 34 A, a voltage of 380/660 V, and a torque of 60.9 Nm. The pump was directly coupled to 

the motor. During the experiments, the water temperature and ambient temperature were recorded as 13°C and 

10°C, respectively. The measurements were conducted at a constant speed of 2960 rpm (50 Hz) and at various 

flow rates, namely 13.9, 12.5, 11.1, and 9.7 l/s. The measurements of the pump's operating characteristics and the 

subsequent calculations were carried out according to the ISO 2548 standard (Anonymous, 2002). 

The determination of the NPSHp curve that reflects the cavitation characteristics of the pump was conducted 

through simultaneous control of the suction and discharge valves (Eryılmaz, 2004). Initially, the valves were 

adjusted to any position except for being fully open or fully closed, and the pressure values corresponding to a 

certain flow rate (Q1) were obtained. The value of the total manometric height (Hm) was calculated using the 

standard equation and positioned on the vertical axis of the graph as H1. By utilizing the following equation, the 

NPSHp value was calculated, and the values at the same point were placed on the horizontal axis, resulting in the 

acquisition of the Q1 point. Afterwards, the outlet valve was slightly opened, and the flow rate was gradually 

increased. To bring the flow back to the Q1 value, the inlet valve was slightly reduced while the total manometric 

height and Q1 point were obtained using the equation in (1). This process was repeated until the head was at least 

three percent lower than the initial reading. 

NPSH=H1+
Pa-Pv

ρg
         (Eq.1) 

H1=
Pe

ρg
+V2/2g          (Eq .2) 

The present paragraph describes the measurements and standards used for evaluating the vibration and noise 

levels of the horizontal shaft centrifugal pump. The pressure values of atmospheric pressure (Pa), evaporation 

pressure of pump water (Pv), vacuum in suction line (Pe), and water inlet velocity (V) are specified. The vibration 

levels were assessed in three axes of the housing containing the pump shaft, and the composite vibration vectors 

were computed. The ISO 2372 standard was applied for evaluating the vibration acceleration. The vibration and 

noise measurements were performed in triplicate at each flow rate value and for all total manometric height (Hm) 

values acquired for that particular flow rate. The noise measurements adhered to the TS 2709-10, TS 2773, and 

EN ISO 1680 standards, and were conducted within the area encompassing 1 m diameter of the pump. The research 
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employed the approaches outlined in Cucit et al. (2018); Çalışır et al. (2006a); Çalışır et al. (2006b, 2007) for 

assessing the vibration and noise levels. 

2.1. Machine Learning 

Machine learning involves the creation of computer programs that can access data and utilize it to learn 

autonomously (Pattnaik et al., 2021). This method emphasizes the input and the solution to the problem in order 

to discover the optimal algorithm that leads to the solution. Machine learning is an application of artificial 

intelligence, which allows systems to learn and improve from experience without explicit programming (El 

Guabassi et al., 2021). In machine learning algorithms, models are constructed with the aim of achieving the 

desired prediction in the most efficient and quickest manner, with the highest probability (Gültepe, 2019). 

2.1.1 Artificial neural network 

The Artificial Neural Network (ANN) is composed of a multilayer perceptron structure, including input, 

hidden, and output layers. Learning algorithms commonly employed in ANNs encompass radial basis function 

networks, perceptron algorithms, backpropagation, and elastic backpropagation (Liakos et al., 2018). These 

learning algorithms operate as a machine learning mechanism that updates the weights between each node by 

learning the correlation between input and output variables (Shin and Cho, 2021) 

The neural network model follows two primary processes. The first process is a feed-forward process that 

computes the output value by considering the input variables, variables in the hidden layer, relationships between 

each variable (connectivity, weight), and transfer functions. The second process is a backpropagation process that 

rectifies the relationship between the variables using the error between the output value computed from the model 

and the actual value to ensure accurate calculation. In the neural network, each node has a weight that reflects the 

significance of its signal. It receives an input signal and calculates the information according to the relevant 

equation (Shin and Cho, 2021). 

2.1.2 Decision Tree regression 

Decision trees are machine learning models that take the form of a tree-like structure and can be used for 

classification or regression (Liakos et al., 2018). In a decision tree, each node in the tree represents a test on an 

attribute or feature, and each branch represents the outcome of the test. The process of creating a decision tree 

involves recursively splitting the dataset into subsets based on the value of a particular attribute or feature until a 

stopping criterion is met (Loh, 2011; Pekel, 2020). During the training phase, the algorithm evaluates the fitness 

of each attribute or feature to serve as a decision node by calculating the error between the predicted values and 

the actual values, using a predefined fitness function. The attribute or feature that results in the lowest error is 

selected as the decision node (Pekel, 2020). Subsequent splits are performed in the same manner until a stopping 

criterion, such as a predefined tree depth or minimum number of instances at a node, is reached. 

2.1.2 Support vector machine regression 

The Support Vector Machine (SVM) is a frequently employed machine learning method for the 

characterization and classification of data, using information derived from their characteristics (Shin and Cho, 

2021). SVM operates as a binary classifier by creating a linear separation hyperplane to differentiate between 

data samples. The most common SVM algorithms encompass Support Vector Regression, Least Squares Support 

Vector Machine, and Successive Projection Algorithm-Support Vector Machine (Liakos et al., 2018). The 

foundation of the SVR algorithm lies in the ε-insensitive function and the kernel function (Takeda et al., 2007). 

SVR functions transform the data into a higher dimensional feature space to achieve a non-linear learning 

algorithm in the original low dimensional space (Geng et al., 2020). 

3. Results and Discussion 

3.1. Experimental results 

At the optimal operational speed of the pump (2960 rpm), the hydraulic system achieved an efficiency of 

38.5%, a flow rate of 13.5 l s-1, and a manometric height of 46.3 m. At this speed point, the specific speed of the 

pump was computed as nq=19.2 (ns=70.5), thereby indicating that the pump belongs to the category of radial flow 

pumps. Figure 1 presents the variation of manometric height, noise level, and vibration values in relation to NPSH 
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at a constant speed of the pump. The Hm value remained constant up to a specific NPSH level, after which there 

were sudden drops in the Hm value. These sudden decreases in manometric height were also observed in the works 

of other researchers, including Coutier et al. (2003); Kaya (2020); Salvadori et al. (2015). Notably, these sudden 

drops were more noticeable at flow rates of 11.1 and 9.7 l s-1 in our study. (Kaya, 2020) also reported that sudden 

drops were observed at low flow rates. 

 

Figure 1. Hm, noise and vibration values depending on NPSHR variation at 2960 min-1 rpm of the pump 

The results of the experiment indicate that, at constant speed and flow rate values of the pump, noise and 

vibration levels increased significantly beyond a certain level of NPSH, as depicted in Figure 3. This suggests that 

the pump was operating in a cavitated state (Čdina, 2003). According to Čdina (2003), the sound frequency of a 

cavitated pump differs from that of a non-cavitated one. The noise levels of the pump were measured at 83.8-82.9-

83.0 and 82.5 dBA for flow rates of 13.9-12.5-11.1 and 9.7 l s-1, respectively, with a decrease in the Hm value of up 

to 3%. Conversely, the average noise levels after the 3% reduction in the Hm value of the pump were 86.8-85.3-

85.9 and 85.4 dBA, respectively. The vibration levels measured until the 3% reduction zone of the Hm value of the 

pump were 15.45-14.78-14.77 and 14.36 m s-2 for flow rates of 13.9-12.5-11.1 and 9.7 l s-1, respectively. Following 

the 3% drop zone of the Hm value, the average vibration levels of the pump were determined as 25.45-22.78-25.6- 

and 24.2-mm s-2, respectively. As evident from these results, cavitation significantly affected the noise and vibration 

levels of the pump. Cavitation is typically accompanied by structural vibration and noise, with a specific sound 
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frequency or broadband peak corresponding to the 3% load drop due to cavitation (Čdina, 2003; Čudina and Prezelj, 

2008; 2009; Kan et al., 2022). It is essential to accurately measure the noise and vibration levels associated with this 

3% reduction. However, measuring the 3% reduction in radial type pumps used in the study proved to be a 

challenging task. To overcome this issue, the subsequent part of the study determined the optimal model 

performance by applying a machine learning algorithm to NPSH, noise, and vibration levels. The machine learning 

algorithm was employed to estimate the values corresponding to the 3% reduction in the Hm value over the best 

model. 

3.2. Machine learning modelling and performances 

In typical machine learning models, the data set is divided into training and test sets, with the majority of the 

data being used for training and a smaller portion reserved for testing. Splitting the data is a crucial step in machine 

learning to evaluate model performance and determine its suitability for real-world applications. Testing the model 

on the held-out data is the best approach to assessing its accuracy. The commonly used split is 75% for training 

and 25% for testing. However, a better way to evaluate the accuracy of the model is to test it on the data that was 

not used during training (Salem et al., 2022). 

Various error metrics are used to assess model performance and measure the relationship between predicted 

and actual values (Güven, 2022). Three commonly used measurement methods are root mean square error 

(RMSE), relative root mean square error (RRMSE), and coefficient of determination (R2). RMSE measures the 

difference between predicted and observed values, while RRMSE or normalized RMSE enables a direct 

comparison between different meta-models and output variables with different units. R2 is used to assess model 

performance by determining the proportion of variance in the response variable explained by the independent 

variables (Shahhosseini et al., 2019). The algorithms were implemented and evaluated using the R statistical 

programming language. 

 

Figure 2. Neural network model applied to NPSH 

The present study employs artificial neural network (ANN) models to process the data, which are first normalised. 

In the literature, several data normalisation techniques have been proposed, such as Minimum, Maximum, Median, 

Sigmoid, and Z-Score rules (Jayalakshmi and Santhakumaran, 2011). The Z-Score rule is utilised in this study as it 

generates a statistically normal distribution and indicates the position of each data point in terms of the standard 

deviation. The standard value represents how far the data point is from the mean, where negative values indicate that 

the data point is below the mean, and positive values indicate that the data point is above the mean (Cho, 2020). 

The ANN models implemented in this study are composed of four hidden layers. The threshold value of 0.04 and 

learning rate value of 0.05 are determined to yield the best outcomes. Figure 2 presents an overview of the network 

model applied to NPSH. The error values of the ANN models of NPSH, noise, and vibration data are determined as 

3.76, 1.28, and 0.43, respectively, and the number of steps is found to be 578, 229, and 286, respectively.  
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The input variables of the artificial neural network models were the flow rate and Hm, while the output variables 

were NPSH, noise and vibration. For each model, 24 data points were allocated for training, and 8 data points were 

allocated for the test set. The support vector machine regression algorithm was used to create the NPSH, noise, and 

vibration models with specific parameters, such as SVM-Type: eps-regression, SVM-Kernel: radial, cost: 1, gamma: 

0.5, and epsilon: 0.1. The number of support vectors was determined as 15, 16, and 18 for the NPSH, noise, and 

vibration models, respectively. Table 1 presents the parameters used for the decision tree regression models. 

Table 1. Decision tree regression models 

 Minsplit cp Maxdepth Terminal nod Decision nod 

NPSH 12 0.01 5 3 1 

Noise 4 0.01 5 11 9 

Vibration 3 0.01 5 15 13 

The ANN model yielded the highest performance among the models created for NPSH prediction, as illustrated 

in Figure 3. The prediction performances of the ANN and DTR models were found to be comparable. The 

coefficient of determination (R2) values for the ANN, SVM, and DTR models were 0.86, 0.37, and 0.8, 

respectively, while the corresponding root mean square error (RMSE) values were 0.55 m, 1.28 m, and 0.7 m, 

respectively. The MAPE values of the models were 6.09, 15.1 and 8.7, and the MAE values were 0.4 %, 1.1 % 

and 0.65 %, respectively. The success of the SVM model in predicting NPSH was found to be markedly low. 

The prediction performance of the models for the vibration level of the pump were evaluated using R2, RMSE, 

MAE and MAPE values. Among the models, the ANN model achieved the highest R2 value of 0.86, indicating 

that the model was able to explain 82% of the variance in the data (Figure 4). The RMSE, MAE and MAPE values 

of the ANN model were also the lowest at 2.1 m s-2, 0.42% and 8.77%, respectively. The SVM model achieved an 

R2 value of 0.69, while the DTR model had an R2 value of 0.57. However, the SVM and DTR models had higher 

RMSE and MAE values compared to the ANN model. Therefore, the ANN model was found to be the most 

successful in predicting the vibration level of the pump. 

 

Figure 3. Performance of models created for NPSH estimation 
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Figure 4. Performance of models created for vibration estimation 

 

Figure 5. Performance of models created for noise estimation 

The R2 values for the prediction performances of artificial neural network (ANN), support vector machine 

(SVM), and decision tree regression (DTR) models with respect to the noise level of the pump were determined 

as 0.86, 0.79, and 0.68, respectively, as depicted in Figure 5. The corresponding root mean square error (RMSE) 

values for these models were measured as 0.64 dBA, 0.8 dBA, and 1.04 dBA, while the mean absolute error (MAE) 

values were calculated as 0.51%, 0.58%, and 0.84%, respectively. Notably, the ANN model exhibited the most 

successful prediction performance among the models evaluated. In terms of noise level prediction, the SVM model 

outperformed the NPSH model. Furthermore, the ANN model demonstrated superior performance in predicting 

the vibration level of the pump compared to the other models considered. 

The errors in the NPSH, vibration, and noise prediction values for the models are presented in Figure 6. 

According to these graphs, the models generally underestimated the NPSH predictions compared to the actual 

values (Figure 6a). Specifically, the models performed poorly in predicting the 26th data point. The error values 

for the vibration level of the models varied, either being low or high, depending on the test data (Figure 6b). The 

least accurate prediction for the vibration level was observed for the 32nd test data point. Furthermore, the models 
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generally overestimated the noise level prediction compared to the actual value. Upon an overall examination of 

the graphs, it can be observed that the ANN model achieved the highest level of success in terms of error values. 

 

Figure 6. Error diagrams a) NPSH b) Vibration c) Noise 

 

Figure 7. Taylor diagrams of test results a) NPSH b) Vibration c) Noise 
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Taylor diagrams given in Figure 7 were used to evaluate the results obtained from the variables with standard 

deviation and correlation ( Demir, 2022; Bayram and Çıtakoğlu, 2023). The NPSH, vibration, and noise values, 

along with the estimation values derived from SVM, ANN, and DTR models, have been thoroughly analyzed 

within these diagrams based on statistical criteria including standard deviation, correlation coefficient, and 

centered root mean square difference (RMSD).  

Based on the Taylor diagram presented in Figure 7, it is evident that the ANN model displayed the highest 

level of success among the models for predicting vibration and noise, particularly in relation to NPSH. In Figure 

7a, it can be observed that while the ANN and DTR models exhibit similar R2 values for the NPSH predictions, 

the ANN model surpasses the DTR model in terms of error criteria. ANN gave the best results in terms of the 

errors of the models of noise and vibration values (Figure 7b, c). According to Taylor diagrams, the ANN model 

gave the best result. 

Due to the abrupt reduction in the Hm-Q curve of radial pumps during cavitation, measuring or reading the 

3% reduction value of Hm is problematic. Among the machine learning algorithms utilized for the NPSH, noise, 

and vibration values of the pump, the ANN models that displayed the best performance had the 3% decrease level 

of Hm value incorporated as external data. During the data input procedure, the flow values were kept constant 

in the models, and the Hm values were computed by taking 3% reduction of the initial Hm value. Consequently, 

the NPSH3 values, noise, and vibration levels of the pump were projected from the models and presented in  

Table 2. 

Table 2. Prediction of NPSH3, noise and vibration levels via ANN model 

Speed (min-1) Flow rate (l s-1) Hm3 (m) NPSH3 (m) Noise (dBA) Vibration (m s-2) 

2960 13.9 47.72 5.51 83.4 15.25 
2960 12.5 48.79 5.25 83.5 15.47 
2960 11.1 50.22 4.22 83 15.66 
2960 9.7 51.72 4.1 82.88 16.3 

The artificial neural network model yielded a range of 5.51-4.1 m for the NPSH3 value. At this point, the pump 

exhibited an average noise level of 83.19 dBA and an average vibration level of 15.67 ms-2. Prior to reaching the 

NPSH3 point, the average noise level and vibration level of the pump were determined as 83.01 dBA and 14.56 

ms-2, respectively. Notably, a small change of 0.18 dBA was observed between the average noise levels before and 

after the NPSH3 point. In contrast, a significant difference of 1.11 m s-2 was observed between the average vibration 

levels before and after the NPSH3 point. 

4. Conclusions 

In summary, this study aimed to model and predict the net positive head (NPH), noise, and vibration levels of 

a horizontal shaft centrifugal pump in suction using machine learning algorithms such as artificial neural network 

(ANN), support vector machine regression (SVR), and decision tree regression (DTR). The results revealed that 

at constant speed and flow rate values, the Hm value followed a constant course until a certain NPSH value, after 

which sudden decreases in Hm level were observed. The measured noise and vibration levels of the pump were 

clearly separated before and after cavitation, with average noise values of 85.8 dBA and average vibration levels 

of 24.4 m s-2 during cavitated operation. The ANN model demonstrated the best performance in NPSH prediction 

(R2 = 0.86), followed by the DTR model (R2 = 0.8), whereas the SVR model was found to be less successful in 

NPSH prediction. Both ANN and DTR models were found to be suitable for NPSH prediction, with the ANN 

model exhibiting the most favorable performance in predicting the noise and vibration levels of the pump during 

the NPSH test. Moreover, it was determined that the change in vibration level can be used to monitor the beginning 

of cavitation before the NPSH3 value, which is difficult to detect through a 3% reduction in manometric height 

value. Hence, the ANN model can be effectively used to determine NPSH3, noise, and vibration levels, particularly 

in radial flow pumps. 
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