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Generalizations of the drift Laplace equation over the
quaternions in a class of Grushin-type spaces
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ABSTRACT. Beals, Gaveau, and Greiner established a formula for the fundamental solution to the Laplace equation
with drift term in Grushin-type planes. The first author and Childers expanded these results by invoking a p-Laplace-
type generalization that encompasses these formulas while the authors explored a different natural generalization of
the p-Laplace equation with drift term that also encompasses these formulas. In both, the drift term lies in the complex
domain. We extend these results by considering a drift term in the quaternion realm and show our solutions are stable
under limits as p tends to infinity.
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1. MOTIVATION AND BACKGROUND

1.1. Motivation. In [2], Beals, Gaveau, and Greiner established a formula for the fundamen-
tal solution to the Laplace equation with drift term in a large class of sub-Riemannian spaces,
which includes the so-called Grushin-type planes. In [4], the first author and Childers ex-
panded these results by invoking a p-Laplace-type generalization that encompasses the formu-
las of [2] while in [3], the authors explored a different natural generalization of the p-Laplace
equation with drift term that also encompasses the formulas of [2]. In both cases, the drift term
lies in the complex domain. In this paper, we will consider both approaches, but with a drift
term in the quaternion realm and create an extension of both cases. We will then show our
solutions are stable under limits when p → ∞.

1.2. Grushin-type planes. We begin with a brief discussion of our environment. The Grushin-
type planes are a class of sub-Riemannian spaces lacking an algebraic group law. We begin
with R2 possessing coordinates (y1, y2), a ∈ R, c ∈ R \ {0} and n ∈ N. We use them to construct
the vector fields

Y1 =
∂

∂y1
and Y2 = c(y1 − a)n

∂

∂y2
.

For these vector fields, the only (possibly) nonzero Lie bracket is

[Y1, Y2] = cn(y1 − a)n−1 ∂

∂y2
.

Because n ∈ N, it follows that Hörmander’s condition (see, for example, [1]) is satisfied by
these vector fields.
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We endow R2 with a (singular) inner product, denoted ⟨·, ·⟩, with related norm ∥ · ∥, so that
the collection {Y1, Y2} forms an orthonormal basis. We then have a sub-Riemannian space that
we will call gn, which is also the tangent space to a generalized Grushin-type plane Gn. Points
in Gn will also be denoted by p = (y1, y2). The Carnot-Carathéodory distance on Gn is defined
for points p and q as follows:

dG(p, q) = inf
Γ

∫
∥γ′(t)∥ dt

with Γ the set of curves γ such that γ(0) = p, γ(1) = q and γ′(t) ∈ span{Y1(γ(t)), Y2(γ(t))}. By
Chow’s theorem, this is an honest metric.

We shall now discuss calculus on the Grushin-type planes. Given a smooth function f on
Gn, we define the horizontal gradient of f as

∇0f(p) =
(
Y1f(p), Y2f(p)

)
.

Using these derivatives, we consider a key operator onC2
G functions, namely the p-Laplacian

for 1 < p <∞, given by

∆pf = div(∥∇0f∥p−2∇0f) = Y1
(
∥∇0f∥p−2Y1f

)
+ Y2

(
∥∇0f∥p−2Y2f

)
=

1

2
(p− 2)∥∇0f∥p−4

(
Y1∥∇0f∥2Y1f + Y2∥∇0f∥2Y2f

)
(1.1)

+ ∥∇0f∥p−2
(
Y1Y1f + Y2Y2f

)
.

For more recent results concerning Grushin-type spaces, see [6] and references therein.

2. MOTIVATING RESULTS

2.1. Grushin-type Planes. The first author and Gong [5] proved the following in the Grushin-
type planes.

Theorem 2.1 ([5]). Let 1 < p <∞ and define

f(y1, y2) = c2(y1 − a)(2n+2) + (n+ 1)2(y2 − b)2.

For p ̸= n+ 2, consider

τp =
n+ 2− p

(2n+ 2)(1− p)

so that in Gn \ {(a, b)} we have the well-defined function

ψp =

{
f(y1, y2)

τp , p ̸= n+ 2
log f(y1, y2), p = n+ 2

.

Then, ∆pψp = 0 in Gn \ {(a, b)}.

In the Grushin-type planes, Beals, Gaveau and Greiner [2] extended this equation as shown
in the following theorem.

Theorem 2.2 ([2]). Let L ∈ R. Consider the following quantities

α =
−n

(2n+ 2)
(1 + L) and β =

−n
(2n+ 2)

(1− L).

We use these constants with the functions

g(y1, y2) = c(y1 − a)n+1 + i(n+ 1)(y2 − b)

h(y1, y2) = c(y1 − a)n+1 − i(n+ 1)(y2 − b)
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to define our main function f(y1, y2), given by

f(y1, y2) = g(y1, y2)
αh(y1, y2)

β .

Then, D(f) := ∆2f + iL[Y1, Y2]f = 0 in Gn \ {(a, b)}.

Non-linear generalizations of Theorem 2.2 have been explored by the first author and Childers
in [4] and by the authors in [3]. The following theorem extends Theorem 2.2 through a p-
Laplace type divergence form.

Theorem 2.3 ([4]). For L ∈ R with L ̸= ±1, consider the following parameters for p ̸= n+ 2:

α =
n+ 2− p

(1− p)(2n+ 2)
(1 + L) and β =

n+ 2− p

(1− p)(2n+ 2)
(1− L)

with the functions:

g(y1, y2) = c(y1 − a)n+1 + i(n+ 1)(y2 − b)

h(y1, y2) = c(y1 − a)n+1 − i(n+ 1)(y2 − b)

to define the main function:

fp,L =

{
g(y1, y2)

αh(y1, y2)
β , p ̸= n+ 2

log
(
g(y1, y2)

1+Lh(y1, y2)
1−L

)
, p = n+ 2

.

Then

∆pfp,L := div

(∥∥∥∥Y1fp,L + iLY2fp,L
Y2fp,L − iLY1fp,L

∥∥∥∥p−2(
Y1fp,L + iLY2fp,L
Y2fp,L − iLY1fp,L

))
= 0.

The following theorem of the authors takes an alternative approach to extending Theorem
2.2 through a generalization of the drift term.

Theorem 2.4 ([3]). For L ∈ R with:

L ̸= ±n+ 2− p

n(1− p)

consider the parameters:

α =
n+ 2− p− Ln(1− p)

2(n+ 1)(1− p)
and β =

n+ 2− p+ Ln(1− p)

2(n+ 1)(1− p)

with the functions

g(y1, y2) = c(y1 − a)n+1 + i(n+ 1)(y2 − b)

h(y1, y2) = c(y1 − a)n+1 − i(n+ 1)(y2 − b)

to define the main function:

fp,L(y1, y2) = g(y1, y2)
αh(y1, y2)

β .(2.2)

Then on Gn \ {(a, b)}, we have:

Gp,L (fp,L) := ∆pfp,L + iL [Y1, Y2]
(
∥∇0fp,L∥p−2fp,L

)
= 0.

Main Question. We wish to extend the preceding generalizations of Theorem 2.2 over the quaternions,
denoted H. Recall that the solved partial differential equation of Theorem 2.2, namely

∆2f + iL[Y1, Y2]f = 0,
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features a drift term bearing the purely complex-imaginary coefficient iL ∈ C. We ask if this coefficient
can be generalized to a purely quaternion-imaginary coefficient of the form

Q = Li+Mj +Nk ∈ H \ R,

where the case of Q = 0 reduces to the result of Theorem 2.1. With respect to Theorem 2.3, we explore
smooth solutions to the generalization

∆pf := div

(∥∥∥∥Y1f +QY2f
Y2f −QY1f

∥∥∥∥p−2(
Y1f +QY2f
Y2f −QY1f

))
= 0.

With respect to Theorem 2.4, we explore smooth solutions to the generalization

Gp,Q (f) := ∆pf +Q [Y1, Y2]
(
∥∇0f∥p−2f

)
= 0.

3. A P-LAPLACIAN TYPE GENERALIZATION OVER H

3.1. Case I: L+M+N ̸= 0.

Let Q = Li+Mj+Nk ∈ H \R with L+M +N ̸= 0. We consider the following parameters:

µ =

√
|Q2|

|L+M +N |

ω =
Q

L+M +N

ξ =
√
|Q2|(L+M +N)

α =
n+ 2− p

(1− p)(2n+ 2)
(1 + ξ)

and β =
n+ 2− p

(1− p)(2n+ 2)
(1− ξ),

where ξ ̸= ±1. We use these constants with the functions:

g(y1, y2) = µc(y1 − a)n+1 + ω(n+ 1)(y2 − b)

h(y1, y2) = µc(y1 − a)n+1 − ω(n+ 1)(y2 − b)

to define our main function:

(3.3) fp,Q(y1, y2) =

{
g(y1, y2)

αh(y1, y2)
β , p ̸= n+ 2

log
(
g(y1, y2)

1+ξh(y1, y2)
1−ξ
)
, p = n+ 2

.

Using equation 3.3, we have the following theorem.

Theorem 3.5. Let Q = Li+Mj +Nk ∈ H \ R with L+M +N ̸= 0. On Gn \ {(a, b)}, we have:

∆pfp,Q := divG

(∥∥∥∥Y1fp,Q +QY2fp,Q
Y2fp,Q −QY1fp,Q

∥∥∥∥p−2(
Y1fp,Q +QY2fp,Q
Y2fp,Q −QY1fp,Q

))
= 0.

Proof. Suppressing arguments and subscripts, we let:

Υ :=

(
Υ1

Υ2

)
=

(
Y1f +QY2f
Y2f −QY1f

)
.
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Observing that:

∆pf = div
(
∥Υ∥p−2Υ

)
= ∥Υ∥p−4

(
p− 2

2

2∑
s=1

Ys∥Υ∥2Υs + ∥Υ∥2(Y1Υ1 + Y2Υ2)

)

it suffices to show:

Λ :=
p− 2

2

2∑
s=1

Ys∥Υ∥2Υs + ∥Υ∥2(Y1Υ1 + Y2Υ2) = 0.

For p ̸= n+ 2, we compute the following:

Y1f = µc(n+ 1)(y1 − a)ngα−1hβ−1(αh+ βg)

Y2f = ωc(n+ 1)(y1 − a)ngα−1hβ−1 (αh− βg)

Y1f +QY2f = µc(n+ 1)(y1 − a)ngα−1hβ−1 (αh(1− ξ) + βg(1 + ξ))

Y2f −QY1f = ωc(n+ 1)(y1 − a)ngα−1hβ−1 (αh(1− ξ)− βg(1 + ξ))

and ∥Υ∥2 = 2µ2c2(n+ 1)2(y1 − a)2ngα+β−1hα+β−1
(
α2(1− ξ)2 + β2(1 + ξ)2

)
.

We then calculate:

Y1Υ1 + Y2Υ2 =
1

(−1 + p)2gh
µ2c2(−1 + ξ2)(1 + n)(2 + n− p)(−2 + p)(y1 − a)2ngαhβ

Y1∥Υ∥2 = − 1

(−1 + p)3gh

(
2µ2c2(1− ξ2)2(n+ 1)(n+ 2− p)2(y1 − a)2n−1

× gα+β−1hα+β−1
(
µ2c2(y1 − a)2n+2 − µ2n(n+ 1)(−1 + p)(y2 − b)2

) )
and Y2∥Υ∥2 =

1

(−1 + p)3gh
2µ4c3(1− ξ2)2(n+ 1)(n+ 2− p)2(1 + np)

× (y1 − a)3n(b− y2)g
α+β−1hα+β−1.

Using the above quantities, we compute:

p− 2

2

2∑
s=1

Ys∥Υ∥2Υs = − 1

(−1 + p)4
µ4c4(−1 + ξ2)3(n+ 1)(n+ 2− p)3(3.4)

× (y1 − a)4ng2α+β−2hα+2β−2(p− 2)

and ∥Υ∥2(Y1Υ1 + Y2Υ2) =
1

(−1 + p)4
µ4c4(n+ 1)(y1 − a)4ng2α+β−2hα+2β−2

× (n+ 2− p)3(−1 + ξ2)3(p− 2)

whereby it follows that Λ = 0, as desired. The case p = n+ 2 is similar and omitted. □

3.2. Case II: L+M+N = 0.
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Let Q = Li+Mj+Nk ∈ H \R with L+M +N = 0. We consider the following parameters:

ξ =
√
2|LM + LN +MN |

α =
n+ 2− p

(1− p)(2n+ 2)
(1 + ξ)

and β =
n+ 2− p

(1− p)(2n+ 2)
(1− ξ),

where ξ ̸= ±1. We use these constants with the functions:

g(y1, y2) = ξc(y1 − a)n+1 +Q(n+ 1)(y2 − b)

h(y1, y2) = ξc(y1 − a)n+1 −Q(n+ 1)(y2 − b)

to define our main function:

(3.5) fp,Q(y1, y2) =

{
g(y1, y2)

αh(y1, y2)
β , p ̸= n+ 2

log
(
g(y1, y2)

1+ξh(y1, y2)
1−ξ
)
, p = n+ 2

.

Using equation 3.5, we have the following theorem.

Theorem 3.6. Let Q = Li+Mj +Nk ∈ H \ R with L+M +N = 0. On Gn \ {(a, b)}, we have:

∆pfp,Q := divG

(∥∥∥∥Y1fp,Q +QY2fp,Q
Y2fp,Q −QY1fp,Q

∥∥∥∥p−2(
Y1fp,Q +QY2fp,Q
Y2fp,Q −QY1fp,Q

))
= 0.

Proof. The proof of Theorem 3.6 is similar to that of Theorem 3.5 and left to the reader. □

We then conclude the following corollary.

Corollary 3.1. Let p > n + 2. The function fp,Q, as above, is a nontrivial smooth solution to the
Dirichlet problem {

∆pfp,Q(y) = 0, y ∈ Gn \ {(a, b)}
0, y = (a, b)

.

4. A GENERALIZATION OF THE DRIFT TERM OVER H

4.1. Case I: L+M+N ̸= 0.

Let Q = Li+Mj+Nk ∈ H \R with L+M +N ̸= 0. We consider the following parameters:

µ =

√
|Q2|

|L+M +N |

ω =
Q

L+M +N

ξ =
√
|Q2|(L+M +N)

α =
n+ 2− p− ξn(1− p)

2(n+ 1)(1− p)

and β =
n+ 2− p+ ξn(1− p)

2(n+ 1)(1− p)
,

where:

ξ ̸= ±n+ 2− p

n(p− 1)
.
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We use these constants with the functions:

g(y1, y2) = µc(y1 − a)n+1 + ω(n+ 1)(y2 − b)

h(y1, y2) = µc(y1 − a)n+1 − ω(n+ 1)(y2 − b)

to define our main function:

(4.6) fp,Q(y1, y2) = g(y1, y2)
αh(y1, y2)

β .

Using equation 4.6, we have the following theorem.

Theorem 4.7. Let Q = Li+Mj +Nk ∈ H \ R with L+M +N ̸= 0. On Gn \ {(a, b)}, we have:

Gp,Q (fp,Q) := ∆pfp,Q +Q [Y1, Y2]
(
∥∇0fp,Q∥p−2fp,Q

)
= 0.

Proof. Suppressing arguments and subscripts, we compute the following:

Y1f = µc(n+ 1)(y1 − a)ngα−1hβ−1(αh+ βg)(4.7)

Y1f = µc(n+ 1)(y1 − a)ngβ−1hα−1(αg + βh)

Y2f = ωc(n+ 1)(y1 − a)ngα−1hβ−1(αh− βg)(4.8)

Y2f = −ωc(n+ 1)(y1 − a)ngβ−1hα−1(αg − βh)

and ∥∇0f∥2 = 2µ2c2(n+ 1)2(y1 − a)2ngα+β−1hα+β−1
(
α2 + β2

)
.

Using the above, we compute:

Y1Y1f = µc(n+ 1)(y1 − a)n−1gα−2hβ−2

×
(
ngh(αh+ βg) + µc(n+ 1)(y1 − a)n+1

×
(
(αh+ βg)

(
(α− 1)h+ (β − 1)g

)
+ gh(α+ β)

))
Y2Y2f = −µ2c2(n+ 1)2(y1 − a)2ngα−2hβ−2

×
(
(αh− βg)

(
(α− 1)h− (β − 1)g

)
− gh(α+ β)

)
Y1∥∇0f∥2 = 4µ2c2(n+ 1)2(y1 − a)2n−1gα+β−2hα+β−2(α2 + β2)x(4.9)

×
(
ngh+ µ2c2(n+ 1)(y1 − a)2n+2(α+ β − 1)

)
Y2∥∇0f∥2 = −4ω2µ2c3(n+ 1)4(y1 − a)3n(y2 − b)gα+β−2hα+β−2(4.10)

×
(
α2 + β2

)
(α+ β − 1)

and

2∑
s=1

Ys∥∇0f∥2(Ysf) = 4µ3c3(n+ 1)3(y1 − a)3n−1g2α+β−3hα+2β−3(α2 + β2)

×
(
(αh+ βg)

(
ngh+ µ2c2(n+ 1)(y1 − a)2n+2(α+ β − 1)

)
+ ωµc(n+ 1)2(y1 − a)n+1(y2 − b)(α+ β − 1)(αh− βg)

)
∥∇0f∥2(Y1Y1 + Y2Y2f) = 2µ3c3(n+ 1)3(y1 − a)3n−1g2α+β−3hα+2β−3

×
(
α2 + β2

)(
ngh(αh+ βg) + 4µc(n+ 1)(y1 − a)n+1ghαβ

)
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so that

∆pf = ∥∇0f∥p−4

(
(p− 2)

2

2∑
s=1

Ys∥∇0f∥2(Ysf) + ∥∇0f∥2(Y1Y1f + Y2Y2f)

)
= −ξ2

p−2
2 µp−1cp−1n2(n+ 1)p−2(y1 − a)n(p−1)−1g

αp+β(p−2)−p
2 h

α(p−2)+βp−p
2

(
α2 + β2

) p−2
2

×
(
ξµc(y1 − a)n+1 + ω(1− p)(n+ 1)(y2 − b)

)
.

We then compute:

Q[Y1, Y2]
(
∥∇0f∥p−2f

)
=

Q2
p−2
2 µp−2cp−1n(n+ 1)p−2(y1 − a)n(p−1)−1

(
α2 + β2

) p−2
2

× ∂

∂y2

(
g

αp+β(p−2)−(p−2)
2 h

α(p−2)+βp−(p−2)
2

)
= ξ2

p−2
2 µp−1cp−1n2(n+ 1)p−2(y1 − a)n(p−1)−1g

αp+β(p−2)−p
2 h

α(p−2)+βp−p
2

×
(
α2 + β2

) p−2
2
(
ξµc(y1 − a)n+1 + ω(1− p)(n+ 1)(y2 − b)

)
= −∆pf.

□

4.2. Case II: L+M+N = 0.

Let Q = Li+Mj+Nk ∈ H \R with L+M +N = 0. We consider the following parameters:

ξ =
√
2|LM + LN +MN |

α =
n+ 2− p− ξn(1− p)

2(n+ 1)(1− p)

and β =
n+ 2− p+ ξn(1− p)

2(n+ 1)(1− p)
,

where:

ξ ̸= ±n+ 2− p

n(p− 1)
.

We use these constants with the functions:

g(y1, y2) = ξc(y1 − a)n+1 +Q(n+ 1)(y2 − b)

h(y1, y2) = ξc(y1 − a)n+1 −Q(n+ 1)(y2 − b)

to define our main function:

(4.11) fp,Q(y1, y2) = g(y1, y2)
αh(y1, y2)

β .

Using equation 4.11, we have the following theorem.

Theorem 4.8. Let Q = Li+Mj +Nk ∈ H \ R with L+M +N = 0. On Gn \ {(a, b)}, we have:

Gp,Q (fp,Q) := ∆pfp,Q +Q [Y1, Y2]
(
∥∇0fp,Q∥p−2fp,Q

)
= 0.

Proof. The computations proving Theorem 4.8 are similar to those of the proof of Theorem 4.7
and are left to the reader. □
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Observing that

ξ ̸= ± n(p− 1)

n+ 2− p
implies p ̸=

∣∣∣∣ξ(n+ 2) + n

n+ ξ

∣∣∣∣, ∣∣∣∣ξ(n+ 2)− n

n− ξ

∣∣∣∣
we have immediately the following corollary.

Corollary 4.2. Let p > max
{∣∣ ξ(n+2)+n

n+ξ

∣∣, ∣∣ ξ(n+2)−n
n−ξ

∣∣}. Then the function fp,Q of equation 4.6 is a
nontrivial smooth solution to the Dirichlet problem{

Gp,Q (fp,Q(y)) = 0, y ∈ Gn \ {(a, b)}
0, y = (a, b)

.

5. THE LIMIT AS P → ∞

5.1. p-Laplacian Type Generalization over H. Recall that on Gn \ {(a, b)}, we have

∆pf = divG(∥Υ∥p−2Υ)

= ∥Υ∥p−4

(
1

2
(p− 2)

(
Y1∥Υ∥2Υ1 + Y2∥Υ∥2Υ2

)
+ ∥Υ∥2

(
Y1Υ1 + Y2Υ2

))
,

where Υ defined by

Υ :=

(
Υ1

Υ2

)
=

(
Y1f +QY2f
Y2f −QY1f

)
.

Formally letting p → ∞, we obtain:

∆∞f = (Y1∥Υ∥2)Υ1 + (Y2∥Υ∥2)Υ2.

5.1.1. Case I: L+M +N ̸= 0.

Formally letting p → ∞ in equation 3.3, we obtain:

f∞,Q(y1, y2) = g(y1, y2)
1+ξ
2n+2h(y1, y2)

1−ξ
2n+2 ,

where we recall the functions g(y1, y2) and h(y1, y2) are given by:

g(y1, y2) = µc(y1 − a)n+1 + ω(n+ 1)(y2 − b)

h(y1, y2) = µc(y1 − a)n+1 − ω(n+ 1)(y2 − b).

We then have the following theorem.

Theorem 5.9. The function f∞,Q, as above, is a smooth solution to the Dirichlet problem{
∆∞f∞,Q(y) = 0, y ∈ Gn \ {(a, b)}

0, y = (a, b)
.

Proof. We may prove this theorem by letting p → ∞ in a prudent multiple of Equation (3.4)
and invoking continuity (cf. Corollary 3.1). For completeness, though, we compute formally.
We let:

A =
1 + ξ

2n+ 2
and B =

1− ξ

2n+ 2
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and compute:

Y1f = µc(n+ 1)(y1 − a)ngA−1hB−1(Ah+Bg)

Y2f = ωc(n+ 1)(y1 − a)ngA−1hB−1 (Ah−Bg)

Y1f +QY2f = µc(n+ 1)(y1 − a)ngA−1hB−1 (Ah(1− ξ) +Bg(1 + ξ))

Y2f −QY1f = ωc(n+ 1)(y1 − a)ngA−1hB−1 (Ah(1− ξ)−Bg(1 + ξ))

∥Υ∥2 = 2µ2c2(n+ 1)2(y1 − a)2ngA+B−1hA+B−1
(
A2(1− ξ)2 +B2(1 + ξ)2

)
.

We then have:

Y1∥Υ∥2 = 2µ2c2(1− ξ2)2n(n+ 1)2(y1 − a)2n−1(y2 − b)2(gh)
−1−2n
n+1

Y2∥Υ∥2 = 2ωµc3(1− ξ2)2n(n+ 1)(y1 − a)3n(y2 − b)(gh)
−1−2n
n+1

so that:

Y1∥ξ∥2ξ1 = 2µ3c4(1− ξ2)3n(n+ 1)2(y1 − a)4n(y2 − b)2(gh)
−1−2n
n+1 gA−1hB−1

Y2∥ξ∥2ξ2 = −2µ3c4(1− ξ2)3n(n+ 1)2(y1 − a)4n(y2 − b)2(gh)
−1−2n
n+1 gA−1hB−1.

The theorem follows. □

5.1.2. Case II: L+M +N = 0.

Formally letting p → ∞ in equation 3.5, we obtain:

f∞,Q(y1, y2) = g(y1, y2)
1+ξ
2n+2h(y1, y2)

1−ξ
2n+2 ,

where we recall the functions g(y1, y2) and h(y1, y2) are given by:

g(y1, y2) = ξc(y1 − a)n+1 +Q(n+ 1)(y2 − b)

h(y1, y2) = ξc(y1 − a)n+1 −Q(n+ 1)(y2 − b).

We then have the following theorem.

Theorem 5.10. The function f∞,Q, as above, is a smooth solution to the Dirichlet problem{
∆∞f∞,Q(y) = 0, y ∈ Gn \ {(a, b)}

0, y = (a, b)
.

Proof. The proof of Theorem 5.10 is similar to that of Theorem 5.9 and omitted. □

5.2. Generalization of the Drift Term over H. Recall that the drift p-Laplace equation in the
Grushin-type planes Gn is given by:

Gp,Q(f) := ∆pf +Q[Y1, Y2]
(
∥∇0f∥p−2f

)
= 0 .

A routine expansion of the drift term yields the observation

Gp,Q(f) = ∆pf +Qcn(y1 − a)n−1

×
(
p− 2

2
∥∇0f∥p−4

(
∂

∂y2
∥∇0f∥2

)
f + ∥∇0f∥p−2 ∂

∂y2
f

)
= 0.

Dividing through by p−2
2 ∥∇0f∥p−4 and formally taking the limit p → ∞, we obtain:

G∞,Q(f) = ∆∞f +Q[Y1, Y2]
(
∥∇0f∥2

)
f.
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5.2.1. Case I: L+M +N ̸= 0. Considering equation 4.6 and formally letting p → ∞ yields:

f∞,Q(y1, y2) = g(y1, y2)
1

2(n+1)
(1−nξ)h(y1, y2)

1
2(n+1)

(1+nξ),

where we recall the functions g(y1, y2) and h(y1, y2) are given by:

g(y1, y2) = µc(y1 − a)n+1 + ω(n+ 1)(y2 − b)

h(y1, y2) = µc(y1 − a)n+1 − ω(n+ 1)(y2 − b).

We have the following theorem.

Theorem 5.11. The function f∞,Q, as above, is a smooth solution to the Dirichlet problem{
G∞,Qf∞,Q(y) = 0, y ∈ Gn \ {(a, b)}

0, y = (a, b)
.

Proof. We may prove this theorem by letting p → ∞ in Equations (4.7), (4.8), (4.9), (4.10) and
invoking continuity (cf. Corollary 4.2). However, for completeness we compute formally. We
let:

A =
1

2(n+ 1)
(1− nξ)and B =

1

2(n+ 1)
(1 + nξ)

and, suppressing arguments and subscripts, compute:

Y1f = µc(n+ 1)(y1 − a)ngA−1hB−1(Ah+Bg)

Y2f = ωc(n+ 1)(y1 − a)ngA−1hB−1(Ah−Bg)

∥∇0f∥2 = 2µ2c2(n+ 1)2(y1 − a)2ngA+B−1hA+B−1
(
A2 +B2

)
Y1∥∇0f∥2 = 4µ2c2(n+ 1)2(y1 − a)2n−1gA+B−2hA+B−2(A2 +B2)

×
(
ngh+ µ2c2(n+ 1)(y1 − a)2n+2(A+B − 1)

)
Y2∥∇0f∥2 = −4ω2µ2c3(n+ 1)4(y1 − a)3n(y2 − b)

(
A2 +B2

)
(A+B − 1)

× gA+B−2hA+B−2

so that:

∆∞f = Y1∥∇0f∥2Y1f + Y2∥∇0f∥2Y2f
= 4µ3c3(n+ 1)3(A2 +B2)(y1 − a)3n−1g2A+B−3hA+2B−3

×
(
(Ah+Bg)

(
ngh+ µ2c2(n+ 1)(A+B − 1)(y1 − a)2n+2

)
+ ωµc(n+ 1)2(y1 − a)n+1(y2 − b)(A+B − 1)(Ah−Bg)

)
= 4ξωµ3c3n2(n+ 1)3(y1 − a)3n−1(y2 − b)g2A+B−2hA+2B−2(A2 +B2).

We also compute:

Q[Y1, Y2]
(
∥∇0f∥2

)
f = QgAhB

(
cn(y1 − a)n−1 ∂

∂y2
∥∇0f∥2

)
= −4ξωµ3c3n2(n+ 1)3(y1 − a)3n−1(y2 − b)

(
A2 +B2

)
× gA+B−2hA+B−2

The theorem follows. □
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5.2.2. Case II: L+M +N = 0. Considering equation 4.11 and formally letting p → ∞ yields:

f∞,Q(y1, y2) = g(y1, y2)
1

2(n+1)
(1−nξ)h(y1, y2)

1
2(n+1)

(1+nξ),

where we recall the functions g(y1, y2) and h(y1, y2) are given by:

g(y1, y2) = ξc(y1 − a)n+1 +Q(n+ 1)(y2 − b)

h(y1, y2) = ξc(y1 − a)n+1 −Q(n+ 1)(y2 − b).

We have the following theorem.

Theorem 5.12. The function f∞,Q, as above, is a smooth solution to the Dirichlet problem{
G∞,Qf∞,Q(y) = 0, y ∈ Gn \ {(a, b)}

0, y = (a, b)
.

Proof. The proof of Theorem 5.12 is similar to that of Theorem 5.11 and omitted. □
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