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Abstract: The spread of the SARS-CoV-2 in many countries has led to multiple SARS-CoV-2 variants, and this makes accurate detection 

of SARS-CoV-2 difficult. The reverse transcription real-time polymerase chain reaction (RT-PCR) is a widely used gold-standard method 

to detect SARS-CoV-2, and accurate designing of primers and probes is crucial to prevent false negative results, especially with the rise 

of new dangerous variants. Therefore, it is significant to determine primers and probes targeting conserved regions in the genome 

sequence to diagnose many variants of SARS-CoV-2. In this paper, we propose a novel and efficient method for identifying PCR primers 

and probe sequences by evaluating sequences belonging to SARS-CoV-2 variant of concern and variants of interest. We propose 13 

primer and probe sets by analyzing 54,524 sequences in Alpha variant, 25,465 sequences in Beta variant, 53,501 sequences in Gamma 

variant, 46,225 sequences in Delta variant, and 43,682 sequences in Omicron variant from GISAID. Furthermore, we analyzed 1,008 

sequences in Lambda variant as well as 5,844 sequences in Mu variant to extract primer and probe sets from GISAID. The proposed 

primer and probe sets were validated in 406,757 new SARS-CoV-2 unique genomes collected from NCBI. In silico evaluation presented 

that the proposed set of primers and probes are found inside about 99% of SARS-CoV-2 genome sequences.  Designed primers present 

a higher potential to detect the main SARS-CoV-2 recent variant of concerns and the variants of interests. The superiority of the proposed 

method is also highlighted by comparing the state-of-the-art PCR primer and probe sets based on the number of mismatches for various 

types of SARS-CoV-2 genomes. 
 

Keywords: COVID-19, SARS-CoV-2, SARS-CoV-2 variants, Primer and Probe, Real Time PCR 

*Corresponding author: Ankara Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Department of Software Engineering, 06010, Ankara, Türkiye 

E mail: hilalarslanceng@gmail.com (H. ARSLAN) 

Hilal ARSLAN  https://orcid.org/0000-0002-6449-6952 Received: July 09, 2023 

Accepted: September 26, 2023 

Published: October 15, 2023 

Rıza DURMAZ  https://orcid.org/0000-0001-6561-778X 

Cite as: Arslan H, Durmaz R. 2023. A parallel algorithm for designing primer and probe for accurate detection of severe acute respiratory syndrome 

coronavirus. BSJ Eng Sci, 6(4): 477-485. 

 

1. Introduction 
SARS-CoV-2 detected in 2019 caused a disease called 

COVID-19 by spreading rapidly around the world. The 

spread of the SARS-CoV-2 in many countries has led to 

multiple SARS-CoV-2 variants and accurate detection of 

SARS-CoV-2 variants is crucial to fight the COVID-19 

pandemic. Recent dominant variants of SARS-CoV-2 are 

B.1.1.7 (Alpha), B.1.351 (Beta), P.1. (Gamma), B.1.617 

(Delta), and B.1.1.529 (Omicron). Alpha variant (Volz et 

al., 2021) was first identified in the United Kingdom in the 

fall of 2020, and it spread ∼ 50% more quickly than the 

original SARS-CoV-2 (Lauring and Malani, 2021). 

Although current treatments against the Alpha variant are 

effective, the Alpha variant may cause more severe COVID-

19 disease (Yaniv et al., 2021).  The Beta variant (Tegally 

et al., 2021) first detected in South Africa and the Gamma 

variant (Sabino et al., 2021) first detected in Brazil at the 

end of 2020 spread less quickly than the Alpha variant; 

however, current treatments against the Beta and Gamma 

variants are less effective. The Delta variant (Mlcochova et 

al., 2021) first identified in India may cause more severe 

disease when compared to the other variants. 

Furthermore, the Delta variant spreads 100% more 

quickly than the original SARS-CoV-2 (Lauring and Malani, 

2021). It is not adequate information on whether it causes 

more severe COVID-19 disease, or not. The Lambda 

variant (Baj et al., 2021) first identified in Peru in August 

2020, and it was designated as the Lambda variant by the 

World Health Organization (WHO) in June 2021 (Wink et 

al., 2021). The Mu variant (Uriu et al., 2021) first identified 

in Colombia was designated as a variant of interest in 

August, 2021 by the WHO. It is not known whether the 

Lambda and Mu variants are more contagious or more 

pathogenic than other variants. Finally, the Omicron 

variant (Sahoo and Samal, 2021) first identified in South 

Africa in November 2021, and it may spread more easily 

than other variants including the Delta. Xue et al. (2022) 

investigated factors that affect the recovery of patients 

and they applied machine learning techniques to estimate 

the duration of recovery during Omicron pandemic. 
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Irudayasamy et al. (2022) investigated the effect of 

Omicron on unvaccinated community. Their results 

showed that vaccination decreases mortality risk in a 

significant degree. Arslan (2022b) predicted mortality of 

patients with COVID-19 in an acceptable accuracy.  

The RT-PCR (Cobb et al., 2021; Bustin et al., 2009) is a 

widely known method to detect SARS-CoV-2 although 

optimization of the RT-PCR may include a complicated 

process. Rapid tests for detecting SARS-CoV-2 are based 

on RT-PCR, and these tests require a forward primer, 

reverse primer and probe sequences which together are 

utilized to amplify the signal from the virus within a 

sample. Although this approach provides specific 

detection of the virus and does not rely on tissue culture 

or cell models of animals, new mutations on the primer 

binding sites may be occurred because of the rapid 

evolution of the SARS-CoV-2 (Lownick et al., 2021; Osorio 

and Correia-Neves, 2021). Thus, it is critical to the well 

design of the primer sets, and these primer sets need to be 

updated and evaluated regularly (Nayar et al., 2021; Jain 

et al., 2021). 

Various types of studies are published to detect SARS-

CoV-2 (Jiang et al., 2020; Zoabi, Deri-Rozov, and Shomron, 

2021; Muhammad et al., 2021; Shi et al., 2021; 

Mohamadou et al., 2020; Arslan and Arslan, 2021; Arslan, 

2021a; Arslan and Aygun, 2021; Arslan, 2021b; Togrul and 

Arslan, 2022). Furthermore, there exist efficient methods 

for detecting SARS-CoV-2 variants (Ali et al., 2021; Ogiela 

and Ogiela, 2021; Jamil and Rahman, 2021; Arslan, 2022a; 

Arslan, 2023).  Park et al. (Park et al., 2020) introduced a 

guideline including three steps to design and optimization 

of primer sets. After they selected the primer sets for 

target genes, they performed in silico validation of the 

primer. Finally, they optimized the PCR conditions for 

specific hybridization. Alignment-based methods may be 

used to detect conserved regions that are used for the 

design of universal primers and probes (Anantharajah et 

al., 2021). Davi et al. (2021) determined 26 conserved 

regions in the SARS-CoV-2 genome as a result of the 

alignments of 2,341 full genome sequences. They selected 

nine candidate systems including primers and probes. 

They also analyzed their systems using 211,833 SARS-

CoV-2 genome sequences. However, these methods are 

expensive and require a lot of time. Rincon et al. (2021) 

used an artificial intelligence technique to identify 

primers to detect SARS-CoV-2. They identified 12 unique 

21-bps sequences to appear only SARS-CoV-2 sequences 

using Convolutional Neural Network (CNN). They 

validated their results by using 52,645 SARS-CoV-2 

sequences. Langer et al. (2020) investigated the accuracy 

of artificial intelligence for predicting RT-PCR results for 

detecting SARS-COV-2 using the main knowledge 

provided by emergence departments.  

In this study, we propose a parallel algorithm to identify 

the most conserved segments in the SARS-CoV-2 genomes. 

To determine these segments, we analyze a various 

number of SARS-CoV-2 genome sequences including the 

main SARS-CoV-2 variants of concern and interest. After 

the conserved region is determined, online Primer3Plus 

(2022) is employed to detect primers and probes using 

the conserved region. The proposed primer and probe 

sets are evaluated using specific types of SARS-CoV-2 and 

also evaluated using 406,757 genome sequences 

belonging to various types of SARS- CoV-2. The rest of this 

study is organized as follows. The proposed method is 

presented in Section 2. Experimental results are evaluated 

and compared in Section 3. Finally, Section 4 includes the 

conclusion. 

 

2. Materials and Methods  
In this section, we present a rapid and accurate method to 

determine forward primers, reverse primers and probes 

used in RT-PCR. The main idea behind the proposed 

method is to determine the most conserved region of the 

sequenced SARS-CoV-2 genomes using a sliding window 

approach in a parallel manner. The algorithm takes 

complete genome sequences of SARS-CoV-2 and the 

length of the conserved region and returns forward 

primers, reverse primers, and probes that are determined 

for the conserved region. The basic steps of the proposed 

algorithm are described in Algorithm 1. The length of the 

conserved region is fixed to 100 base pairs (bps). The first 

sequence in the dataset is fixed to perform a 100-bp 

sliding window approach in Step 1. There is a for loop 

between Steps 4-16 and this loop is executed in parallel by 

OpenMP threads. In this loop, we iterate over all the 

possible beginnings of the 100 bp ranges. For each range, 

we check whether a genome sequence in the dataset 

includes the 100-bp substring in parallel to find the total 

number of matches. At the end of for loop, we determine 

the most repeated 100-bp substring that has the highest 

match score. After identifying the most repeated 100-bp 

sequences, we employ online Primer3Plus to pick primers 

and probes from the most repeated substring in Step 17. 

2.1. Primer and Probes Design 

We follow the steps defined in Algorithm 1 to determine 

the most conserved region of the genome sequences of 

SARS-CoV-2. In the following, we briefly explain the 

genome sequences of SARS-CoV-2 used in this study. 

Whole human genome sequences of SARS-CoV-2 are 

obtained from the Global Initiative on Sharing All 

Influenza Data (GISAID) (Shu and McCauley, 2017). We 

download high-quality and complete sequences to 

minimize sequencing errors. Recently, five variants of 

concern of SARS-CoV-2, which are B.1.1.7, B.1.351, P.1, 

B.1.617.2, and B.1.1.529, have been reported. 

Furthermore, we analyze two variants of interest of SARS-

CoV-2, which are C.7 and B.1.621, recently. WHO Label, 

Scientific Names, date of designation, and the number of 

sequences used in this study are presented in Table 1. 

Next, we run online Primer3Plus to design primer pairs 

and probes adopting the criteria shown in Table 2. 
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Table 1. Properties of the SARS-CoV-2 sequences used in this study 

Variant Name WHO Label Scientific Name Date of Designation # of sequences 

Variant of Concerns 

Alpha B.1.1.7 October, 2020 54,524 

Beta B.1.351 December, 2020 25,465 

Gamma P.1 January, 2021 53,501 

Delta B.1.617.2 October, 202 46,225 

Omicron B.1.1.529 November, 2021 43,682 

Variants of Interest 
Lambda C.7 August, 2020 1,008 

Mu B.1.621 January, 2021 5,844 
 

Table 2. General conditions for designing primers and probes 

Condition Minimum Optimum Maximum 

Primer Size  

Primer Tm (C)  

Primer GC % 

18 

57 

30 

20 

59 

50 

23 

62 

70 

Probe Size  

Probe Tm (C)  

Probe GC % 

18 

57 

20 

20 

60 

50 

27 

63 

80 

 

Algorithm 1. Proposed Parallel Algorithm 

Require: dataSeqs: SARS-CoV-2 genome sequences and 

size: length of the conserved region 

Ensure: Determine forward and reverse primers as well 

as probe 

1: seq ← dataSeqs[0] 

2: n ← length(seq) - size 

3: maxSeq ← 0 

4: parfor k = 1:n do 

5: count ← 0 

6: overlapSeq ← seq[k:k+size] 

7: parfor genSeq in dataSeqs do 

8: if overlapSeq in genSeq then 

9: count = count + 1 

10: end if 

11: end parfor 

12: if count > maxSeq then 

13: maxOverlapSeq = overlapSeq 

14: maxSeq = count 

15: end if 

16: end parfor 

17: Use Primer3Plus to design primers and probes using 

maxOverlapSeq 

 

Table 3 presents the primer and probe sequences 

identified in this study. Furthermore, we present primer 

and probe sizes, melting temperatures (Tm), percentage 

of G and C (GC% = G + C). The "SELF" and "ANY" present 

the possibility which 0the primer will bond to itself 

composing dimers and hairpins. Alpha-1 and Alpha-2 

primers and probes are obtained by running Algorithm 1 

on a set of sequences containing B.1.1.7 variant. Similarly, 

Beta, Gamma, Delta, and Omicron primers and probes are 

obtained by running Algorithm 1 on a specific set of 

sequences including B.1.351, P.1, B.1.617.2, and B.1.1.529 

variant of concerns. Furthermore, Lambda and Mu 

primers and probes are obtained by running Algorithm 1 

on a set of sequences containing C.7 and B.1.621 variants 

of interest and shown in Table 3. The suitability of the 

proposed primers was checked by using PCR Primer Stats 

program (2022) and we achieved acceptable results. 

Furthermore, the uniqueness of proposed primers and 

probes was verified using the tool UCSC In-Slico PCR 

(Stothard, 2020; Kent et al., 2002). 

 

3. Results and Discussion 

In this section, we evaluate primers and probes proposed 

in this study based on the number of sequences that the 

primers and probes found. The proposed primers are 

validated in five datasets containing SARS-CoV-2 variants 

of concern, which include the Alpha (54,524 sequences), 

Beta (25,465 sequences), Gamma (53,501 sequences), 

Delta (46,225 sequences), and Omicron (43,682 

sequences). They are also validated in two datasets 

including SARS-CoV-2 variants of interest, the Lambda 

(1,008 sequences) and Mu (5,844 sequences). Finally, we 

validate the proposed primers using 406,757 whole 

genome sequences including a recent variant of concerns 

and interests of SARS-CoV-2, which is referred to as the 

Mixed dataset. We note that we downloaded all possible 

complete SARS-CoV-2 genome sequences (*.fasta format) 

from NCBI database (NCBISD, 2021) on March 4th, 2021. 

Table 4 summarizes the total number of sequences that 

proposed primers are found against a specific set of 

sequences. The percentage is also shown. Considering 

B.1.1.7 (Alpha) variant of sequences, the appearance of the 

proposed primer sets ranged from 54,165 sequences 

(99.34%) to 54,447 sequences (99.86%). The best score is 

achieved with Mu-1 primers, and only 77 out of 54,524 

sequences do not appear. When considering B.1.351 

(Beta) variant of sequences, the appearance of the 

proposed primer sets ranged from 25,069 sequences 
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(98.44%) to 25,443 sequences (99.91%). The Mu-1 

primer achieves the best frequency of appearance and 

only 22 out of 25,465 sequences do not appear. When 

considering P.1 (Gamma) variant of sequences, the 

appearance of the proposed primer sets ranged from 

52,467 sequences (98.07%) to 53,456 sequences 

(99.92%). The Mu-1 primer achieves the best frequency of 

appearance and only 45 out of 53,501 sequences do not 

appear. For B.1.617.2 (Delta) variant of sequences, the 

appearance of the proposed primer sets ranged from 

44,904 sequences (97.14%) to 46,141 sequences 

(99.82%). The Mu-1 primer achieves the best frequency of 

appearance and only 84 out of 46,225 sequences do not 

appear. For B.1.1.529 (Omicron) variant of sequences, the 

appearance of the proposed primer sets ranged from 

43,069 sequences (98.6%) to 43,670 sequences (99.97%). 

The Mu-1 and Beta-4 primers achieve the best frequency 

of appearance and only 12 out of 43,682 sequences do not 

appear. When we analyze the frequency results on two 

SARS-CoV-2 variants of interest, for C.8 (Lambda) variant 

of sequences, the Beta-2, Beta-4, and Omicron-1 primers 

achieve 100% frequency of appearance. For B.1.1.529 

(Mu) variant of sequences, the Mu-1 primer achieves 

100% frequency of appearance. 

 

Table 3. The properties of the primer and probe sequences identified in this study. F forward primer; R reverse primer; 

P probe 
 

Primer Name Sequence Size Tm GC(%) ANY SELF Target 

Alpha-1-F GGCCGGCTGTTTTGTAGAT 19 59.3 52 6 0 ORF1ab 

Alpha-1-P TGATTGAACGGTTCGTGTCT 20 59.1 45 7 1 ORF1ab 

Alpha-1-R GGATGTTTAGTAAGTGGGTAAGCA 24 58.7 41.7 5 3 ORF1ab 

 Alpha-2-F CAGTTTATGATCCTTTGCAACC 22 58.6 40.9 6 2 S 

Alpha-2-P TGAATTAGACTCATTCAAGGAGGA 24 59.3 37.5 11 3 S 

Alpha-2-R ATGTCACCTAAATCAACATCTGG 23 58 39.1 4 2 S 

Beta-1-F CATGCGAAATGCTGGTATTG 20 60.1 45 4 2 ORF1ab 

 Beta-1-P GGTAACTGGTATGATTTCGGTGA 23 60.1 43.5 3 3 ORF1ab 

 Beta-1-R CTACCTGGCGTGGTTTGTATG 21 60.4 52.4 4 0 ORF1ab 

 Beta-2-F ACAATTCTGTGATGCCATGC 20 59.5 45 5 3 ORF1ab 

 Beta-2-P GAAATGCTGGTATTGTTGGTG 21 58 42.9 4 0 ORF1ab 

 Beta-2-R TACCTGGCGTGGTTTGTATG 20 59.5 50 4 0 ORF1ab 
Beta-3-F GTAACAGCTTTAAGGGCCAAT 21 57.5 42.9 6 2 ORF1ab 

 Beta-3-P CCTGTTGCACTACGACAGATG 21 59.4 52.4 7 2 ORF1ab 

 Beta-3-R TTTGTGTAGTACCGGCAGCA 20 60.3 50 5 2 ORF1ab 

 

ORF1ab 

 

Beta-4-F GGCTGTTGCTAATGGTGATT 20 57.7 45 3 2 ORF1ab 

 Beta-4-P TCTGAATTTGACCGTGATGC 20 59.7 45 4 2 ORF1ab 

 Beta-4-R TTCCAACTTACGTTGCATGG 20 59.6 45 8 2 ORF1ab 

 Gamma-1-F GTGCAGGTGCTGCATTACA 19 59.4 52.6 7 3 S 

Gamma-1-P CATTTGCTATGCAAATGGCTT 21 60.1 38.1 12 3 S 

Gamma-1-R GGTTGGCAATCAATTTTTGG 20 60.2 40 5 2 S 

Gamma-2-F CTGGTTGGACCTTTGGTG 18 57.4 55.6 3 1 S 

Gamma-2-P CATTTGCTATGCAAATGGCTT 21 60.1 38.1 12 3 S 

Gamma-2-R TAGAGAACATTCTGTGTAACTCCAAT 26 57.6 34.6 6 3 S 

Delta-1-F AGCTCCAATTTTGGTGCAAT 20 59.6 40 8 2 S 

Delta-1-P AAGTTGAGGCTGAAGTGCAAA 21 60 42.9 5 0 S 

Delta-1-R TGCCTGTGATCAACCTATCAA 21 59.1 42.9 6 1 S 

Delta-2-F AGCTCCAATTTTGGTGCAAT 20 59.6 40 8 2 S 

Delta-2-P TGAGGCTGAAGTGCAAATTG 20 60 45 5 5 S 

Delta-2-R GAAGTCTGCCTGTGATCAACC 20 59.7 52.4 6 2 S 

Omicron-1-F ACAATTCTGTGATGCCATGC 20 59.5 45 5 3 ORF1ab 

 Omicron-1-P GAAATGCTGGTATTGTTGGTG 21 58 42.9 4 0 ORF1ab 

Omicron-1-R TGGCGTGGTTTGTATGAAAT 20 58.9 40 3 2 ORF1ab 

ORF1ab 

 

Lambda-1-F 

Lambda-1-P 

Lambda-1-R 

CCATCATATGCAGCTTTTGC 

AGCAGGCTGTTGCTAATGGT 

GCCACATTCAAAGACTTCTTCA 

20 

20 

22 

59.3 

59.9 

59.4 

45 

50 

40.9 

6 

5 

6 

3 

0 

2 

ORF1ab 

ORF1ab 

ORF1ab 

 

ORF1ab 

Mu-1-F AGGACCTCATGAATTTTGCTC 21 58.3 42.9 6 0 ORF1ab 

 Mu-1-P TGTGTACCTTCCTTACCCAGATC 23 59.4 47.8 4 4 ORF1ab 

Mu-1-R GGCCCCTAGGATTCTTGATG 20 60.8 55 6 2 ORF1ab 
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Table 4. The percentage and total number of sequences that proposed primers are found in the corresponding dataset. 

Primer 

Name 

B.1.1.7 

(Alpha) 

B.1.351 

(Beta) 

P.1 

Gamma) 

B.1.617.2 

(Delta) 

C.8 

(Lambda) 

B.1.621 

(Mu) 

B.1.1.529 

(Omicron) 

Mixed 

Dataset 

Alpha-1 54,257 25,352 52,467 46,026 1,004 5,675 43,634 402,892 

 (99.51%) (99.56%) (98.07%) (99.57%) (99.6%) (97.11%) (99.89%) (99.05%) 

Alpha-2 54,380 25,069 53,210 45,440 1,006 5,740 43,275 403,665 

 (99.74%) (98.44%) (99.46%) (98.3%) (99.8%) (98.22%) (99.07%) (99.24%) 

Beta-1 54,293 25,369 53,437 45,572 1,006 5,838 43,585 404,793 

 (99.58%) (99.62%) (99.88%) (98.59%) (99.8%) (99.9%) (99.78%) (99.52%) 

Beta-2 54,165 25,422 53,359 44,904 1,008 5,841 43,650 404,698 

 (99.34%) (99.83%) (99.73%) (97.14%) (100%) (99.95%) (99.93%) (99.49%) 

Beta-3 54,222 25,403 53,320 46,036 979 5,831 43,644 404,808 

 (99.45%) (99.76%) (99.66%) (99.59%) (97.12%) (99.78%) (99.91%) (99.52%) 

Beta-4 54,301 25,432 53,383 46,127 1,008 5,841 43,670 405,247 

 (99.59%) (99.87%) (99.78%) (99.79%) (100%) (99.95%) (99.97%) (99.63%) 

Gamma-1 54,166 25,280 53,422 45,935 1,007 5,805 43,093 402,564 

 (99.34%) (99.27%) (99.85%) (99.37%) (99.9%) (99.33%) (98.65%) (98.97%) 

Gamma-2 54,361 25,362 53,443 45,998 1,006 5,813 43,069 402,615 

 (99.7%) (99.6%) (99.89%) (99.51%) (99.8%) (99.47%) (98.6%) (98.98%) 

Delta-1 54,292 25,379 53,434 46,098 1,007 5,821 43,630 403,766 

 (99.57%) (99.66%) (99.87%) (99.73%) (99.9%) (99.61%) (99.88%) (99.26%) 

Delta-2 54,292 25,379 53,434 46,098 1,007 5,821 43,630 403,766 

 (99.57%) (99.66%) (99.87%) (99.73%) (99.9%) (99.61%) (99.88%) (99.26%) 

Omicron-1 54,165 25,422 53,359 44,904 1,008 5,841 43,650 404,698 

 (99.34%) (99.83%) (99.73%) (97.14%) (100%) (99.95%) (99.93%) (99.49%) 

Lambda-1 54,427 25,362 53,428 45,943 1,007 5,833 43,668 404,798 

 (99.82%) (99.6%) (99.86%) (99.39%) (99.9%) (99.81%) (99.97%) (99.52%) 

Mu-1 54,447 25,443 53,456 46,141 1,007 5,844 43,670 405,415 

 (99.86%) (99.91%) (99.92%) (99.82%) (99.9%) (100%) (99.97%) (99.67%) 

 

Finally, we analyze the frequency of appearance on the 

Mixed dataset. The proposed primer sets ranged from 

402,564 sequences (98.97%) to 405,415 sequences 

(99.67%). The Mu-1 primer achieves the best frequency of 

appearance and only 1342 out of 406,757 sequences do 

not appear. In silico analysis presents that the sets of 

primers and probes proposed in this study potentially 

anneal to a highly conserved region of the SARS-CoV-2.  

Designed primers are also analyzed using Oligo 7 software 

(Rychlik, 2007) based on duplex formation and hairpin 

formation. Moreover, Oligo 7 program analyzes primers 

by calculating an efficiency score that is a possibility that 

a given oligonucleotide is going to prime at a given site on 

the sequence currently analyzed. It is noted that when 

efficiency scores of the primers are between 450 and 500, 

excellent results are obtained for multiplex PCR, and the 

priming is more likely when this score is over 220 

(threshold) (Rychlik, 2007). Figure 1 presents efficiency 

values of forward primers, reverse primers, and probes 

designed in this study. When the proposed primers are 

evaluated based on primer efficiency, as you can see in 

Figure 1, the efficiencies of the primers and probes are 

above the threshold and the designed primers either fall 

in 450-500 primer efficiency range or close to this range. 

This points out that the proposed primers may be 

achieved excellent for multiplex PCR. 

3.1. Comparison with Existing Primers 

In this section, we present results related to the primers 

reported by Davi et al. (2021). The properties of the 

primers and probes shown by Davi et. al. (2021) are given 

in Table 5. Furthermore, the percentages of appearance 

for each primer designed by Davi et al. (2021) against the 

different datasets including the main SARS-CoV-2 

concerns and two types of SARS-CoV-2 variant of interests 

are presented in Table 6. The results revealed that the 

UFRN-5, URFN-6, and URFN-7 primers cannot accurately 

detect the sequences belonging to the Mu variant. 

Furthermore, the URFN-8 and URFN-9 primers have a 

lower percentage of appearance on the Mixed dataset and 

appear in only 60.12% of the sequences including recent 

variants of SARS-CoV-2.  
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Figure 1. Efficiency scores of (a) forward primers (b) reverse primers (c) probes designed in this study. 

 

Table 5. The information regarding the primers and probes shown by Davi et al. (2021) 

Primer Name Sequence Length Tm GC(%) Target Size 

UFRN-1-F GGGCATACACTCGCTATGTC 20 58.22 55 ORF1a 101 

UFRN-1-R GCATGAAGCTTTACCAGCAC 20 57.73 50 ORF1a 101 

UFRN-1-P TCTGTGGCCCTGATGGCTACCCT 23 67.22 60.87 ORF1a 101 

UFRN-2-F GGCTACTAACAATGCCATGC 20 57.22 50 ORF1a 137 

UFRN-2-R TAACATTTGGGCCGACAACA 20 58.02 45 ORF1a 137 

UFRN-2-P GGGTGGTAGTTGTGTTTTAAGCGG 24 62.33 50 ORF1a 137 

UFRN-3-F TTCATGTTGTCGGCCCAAAT 20 58.37 45 ORF1a 98 

UFRN-3-R TGGTGCAAGTAGAACTTCGT 20 57.1 45 ORF1a 98 

UFRN-3-P GAAGACATTCAACTTCTTAAGAGTGC 26 58.71 38.46 ORF1a 98 

UFRN-4-F TGGTGCTAGGAGAGTGTGG 19 58.33 87.89 ORF1a 95 

UFRN-4-R CCCACATGGAAATGGCTTGAT 21 58.89 47.62 ORF1a 95 

UFRN-4-P CTTATGAATGTCTTGACACTCGTTTATA 28 58.01 32.14 ORF1a 95 

UFRN-5-F AGGGCACACTAGAACCAGAA 20 58.27 50 ORF1b 105 

UFRN-5-R CAATTTCAGCAGGACAACGC 20 58.31 50 ORF1b 105 

UFRN-5-P GGTCCAGACATGTTCCTCGGAACT 24 64.18 54.17 ORF1b 105 

UFRN-6-F TCTTCACGACATTGGTAACCC 21 57.95 47.62 ORF1b 90 

UFRN-6-R TCACTACAAGGCTGTGCATC 20 57.9 50 ORF1b 90 

UFRN-6-P TACCTCAAGCTGATGTAGAATGGAAG 26 60.41 42.31 ORF1b 90 

UFRN-7-F CTTCACGACATTGGTAACCCT 21 57.95 47.62 ORF1b 90 

UFRN-7-R GTCACTACAAGGCTGTGCAT 20 58.19 50 ORF1b 90 

UFRN-7-P GTGTACCTCAAGCTGATGTAGAATGG 26 61.4 46.15 ORF1b 90 

UFRN-8-F GGCACAGGTGTTCTTACTGA 20 57.46 50 S 107 

UFRN-8-R TCAAGTGTCTGTGGATCACG 20 57.56 50 S 107 

UFRN-8-P CCAACAATTTGGCAGAGACATTGC 24 61.62 45.83 S 107 

UFRN-9-F AGGCACAGGTGTTCTTACTG 20 57.45 50 S 93 

UFRN-9-R TCACGGACAGCATCAGTAGT 20 58.45 50 S 93 

UFRN-9-P TCCAACAATTTGGCAGAGACATTGC 25 62.75 44 S 93 
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Table 6. The percentage of appearance for each primer designed by Davi et al. (2021) against the different datasets 

including the main SARS-CoV-2 concerns and two types of SARS-CoV-2 variant of interests 
 

Primer 
Name 

B.1.1.7 
(Alpha) 

B.1.351 
(Beta) 

P.1 
(Gamma) 

B.1.617.2 
(Delta) 

C.8 
(Lambda) 

B.1.621 
(Mu) 

B.1.1.529 
(Omicron) 

Mixed 
Dataset 

UFRN-1 98% 98.83% 99.38% 99.05% 99.8% 98.36% 99.86% 98.15% 

UFRN-2 98.89% 99.37% 96.95% 99.07% 98.81% 99.16% 99.63% 98.35% 

UFRN-3 98.51% 98.7% 88.31% 98.96% 99.7% 99.49% 99.42% 98.28% 

UFRN-4 99.31% 98.96% 99.5% 99.1% 100% 99.81% 99.96% 97.07% 

UFRN-5 99.34% 99.79% 99.87% 99.37% 99.8% 0.29% 99.95% 98.33% 

UFRN-6 99.56% 99.72% 99.71% 99.36% 99.5% 5.18% 99.97% 99.18% 

UFRN-7 99.58% 99.71% 99.71% 99.34% 99.40% 5.18% 99.97% 99.18% 

UFRN-8 99.78% 99.7% 99.8% 99.48% 99.9% 99.9% 99.89% 60.12% 

UFRN-9 99.79% 99.7% 99.8% 99.69% 99.31% 99.9% 99.89% 60.12% 

 

Next, we choose the best-performing primer sets 

developed by Davi et al. (2021) and WHO to compare 

against the best primer set obtained by the proposed 

method. They are chosen based on the highest frequency 

of appearance on the mixed dataset. Table 7 presents the 

properties of the primers and probes. Experimental 

results present that the proposed primer and probe have 

a higher frequency of appearance on the main SARS-CoV-

2 variants of concern and interest. On the other hand, the 

frequency of appearance of the primer proposed by WHO 

is lower in the sequences belonging Lambda variant. 

Furthermore, the primer proposed by Davi et al. (2021) 

cannot accurately detect the Mu variant. 

 

Table 7. The properties of the best-performing primers and probes developed by Davi et al. (2021), WHO, and the 

proposed method 
 

Study Primer Name Sequence Length Tm GC(%) 

Davi et al. (2021) 

UFRN-6-F TCTTCACGACATTGGTAACCC 21 57.95 47.62 

UFRN-6-P TACCTCAAGCTGATGTAGAATGGAAG 26 60.41 42.31 

UFRN-6-R TCACTACAAGGCTGTGCATC 20 57.9 50 

WHO 

N_Sarbeco_F1 CACATTGGCACCCGCAATC 19 60.15 57.89 

N_Sarbeco_P1 ACTTCCTCAAGGAACAACATTGCCA 25 63.15 44 

N_Sarbeco_R1 GAGGAACGAGAAGAGGCTTG 20 58 55 

Proposed Study 

Mu-1-F AGGACCTCATGAATTTTGCTC 21 58.3 42.9 

Mu-1-P TGTGTACCTTCCTTACCCAGATC 23 59.4 47.8 

Mu-1-R GGCCCCTAGGATTCTTGATG 20 60.8 55 

 

4. Conclusion 

In this study, we propose an efficient parallel method to 

identify primers and probes for real-time PCR. Compared 

to the alignment-based method, the proposed method is 

effectively detected to the conserved region. We analyze 

the performance of the proposed primers and probes 

based on the number of matches of the PCR primers for 

genome sequences of SARS-CoV-2. Experimental results 

present that the proposed primers and probes have about 

99% matches for the genome sequences including the 

recent variants of SARS-CoV-2.  In future, other pandemics 

may occur as a result of the increasing population and 

growing interaction between people. We believe that the 

proposed method can be applied to develop more 

accurate primers and probes for identifying any type of 

virus and contribute treatment for the rapidly 

propagating virus as well as help limit the spread of the 

virus. In future studies, we will also provide laboratory 

results of the primers and probes. Furthermore, we will 

extend the proposed technique for other types of virus. 
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