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SINGULAR PERTURBATION PROBLEMS USING
INDEFINITE LYAPUNOV FUNCTIONS

Ayhan ALBOSTAN', Ahmet OZEK'

ABSTRACT:With a dynamic system of differential equations consisting of many
variables the singular perturbation methods are of great importance. If we know that
some variables decrease faster than the others, we can reduce the number of the
equations. The reduction makes their solving much more easy. For example, if we use
some numerical methods, the time and storage necessary for the calculations are
reduced.

In this paper, a singular perturbation problem, the existence and separation of the
small, and large solutions of a differential equation are considered, but instead of the
usual way an indefinite Lyapunov function is used for the investigation.

KEYWORDS: indefinite Lyapunov function, singular perturbation, two-time-scale
system, nonlinear systems

SINGULER PERTURBASYON PROBLEMLERINDE
TANIMSIZ LYAPUNOV FONKSIYONLARININ
KULLANILMAST

OZET: Cok degiskenli dinamik bir sistemin tiirevsel denkleminin ¢ozimiinde singiiler
pertiirbasyon yontemi biiyiik 6nem tagimaktadr. Eger sistemdeki bir kisim degiskenlerin
azalmasi, digerlerine gore daha hizli ise denklem sistemini indirgeyebiliriz. Bu
indirgeme, denklem sisteminin ¢oziimiinii olduk¢a kolaylastirmaktadir. Ornegin sayisal
yontemler ile ¢oziim yapilirsa zaman ve iglem bakimindan orijinal sisteme gore daha iyi
sonug elde edilir. Bu makalede bir singiiler pertiirbasyon problemi olan, hizli ve yavas
coziimleri igeren bir tirevsel denklem gozéniinde tutulmugtur, sozkonusu problemin
incelenmesinde alisilagelmis bir yontem yerine tammsiz Lyapunov fonksiyonu
kullaniimugtir.

ANAHTAR KELIMELER: tamimsiz Lyapunov fonksiyonu, singiiler pertiirbasyon,

iki zaman skalali sistemler, dogrusal olmayan sistemler
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L INTRODUCTION

Exact closed-form analytic solutions of nonlinear differential equations are possible
only for a limited number of special classes of differential equations. In general, we
have to resort to approximate meihods [11,[2].

The methods presented here can be classified into three categories: Describing function

methods, Numerical solution methods and Singular perturbation methods [2].

The singular perturbation model of a dynamical system is a state-space model in which
the derivatives of some of the state are multiplied by a small positive parameter [J; that
is

x=fltx,z5,6),xeR’ (1)

é = g(t,x,z,e),z R"‘I 2
We assume that the functions f and g are continously differentiable in their arguments
for (t, x,z,e)e [a,t,hD;xD;x[O,s.,], where D, c R* and D, c R™ are open connected
sets. When we set &=0 in (1)-(2), the dimension of the state equation reduces from ntm

to n because the differential equation (2) degenerates into the equation

0=g(t,x,z,0) €)
we shall say that the nodel (1)-(2) is in standard form if and only if (3) has k21 isolated
real roots.
z=h, (%), i=1,2,..., k 4)

for each (¢,x) €[o,2,]xD,. This assumption ensures that a well-defined #-dimensional

reduced model will correspond to each root of (3). To obtain the i the reduced model,

we substitute (4) into (1) at &=0 to obtain

x = f(t,x,h(t, x),0) (5)
where we have dropped the subscript i from &. It will be clear from the context which

ract of (4) we are using. This model is sometimes called a quasi-steady-state model

because z, whose velocity z= #/& can be large when ¢ is small and g0, may rapidly

converge to a root of (3) which is the equilibrium of (2). The model (5) is also known as

the slow model [1].
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Halanay investigated a singular perturbation problem in [3]. His example was as
follows:

Let us consider the following singular perturbation problem:

X _[An Au}[";] 6)

o Ay Ay )\ x;

where x, eR", x, eR", A1, A21, A;2 and Aj; are nxn, mxn, nxm and mxm matrices,

respectively. Generally this equation can be reduced as £~0, so from equation
AzxtAgx =0 or x;=- A} Ay x,

we have:
x= (An - ApA; Ay (N
However this reduction is not always correct. In the procedure used by Halanay

we define at first a matrix H(n+m x n+m) as

Hz[I’ 01, (8)
T I/ v

where I; and I are the unit matrices of dimension nxn and mxm, respectively. T is an

unknown matrix (nxmy). It can easily be proved, that

-1 _ II 0
" [—T I_,] )

We transform the equation by the matrix H.

The new varable is y = ( J’;) , Le y=Hx
Y2

where, x = ( jf J . the new equation for y is:
2
i AIZ ;
y=H IA:; éAz;H y ie
. A, -A4,T A
Y7\ 14, + éAz, ~TA,T - éAﬂT TA,, + éAu d o

Assume that there exists a T which satisfies:
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ET(A11-A 1 T)+(A2-A22T)=0 - (11)
Then the approximation of the differential equation is

y  =(An-AnTiyrtAny: (12)
where T=A;] Ay, if £is small.
From equation (11) we can determine matrix 7. Now let us see investigate the
properties of equation (12) using matrix T. If the eigenvalues of matrix A;,+&TA;; have
negative real parts, then y; tends to zero. It is actually so if Az, is a stable matrix and ¢
is small enough. Morever, the smaller ¢ is, the faster y, tends to zero. However, if A5 is
not stable the singular perturbation technique is not justified. If one does not consider
the sufficient condition for applying the singular perturbation technique a wrong result
can be obtained instead of a good approximation.
Note that in this case solutions y tend to the subspace of the variable y;. (See Fig.1) yi(#)
can be called as large solution and y,(#) as small solition, expressing the fact that y(#)

tends to zero faster than y;(1).

4

Fig.1
In this paper, an explicite third order differential equation is investigated. We give
sufficient conditions of the case in which a second order equation can be approached. It
was not intended to choose parameter ¢ but we studied the basic problem, the existence
and the separation of the small (fast) and large (slow) solutions. For the investigation an

indefinite Lyapunov function has been used.



69

II. SOME DEFINITIONS

IL 1. Definitions about attractivity

Consider the system

x=glt,x) (13)
where g eP[R*x(R"], R+=[tg,c0) Q2cR", connected and open set. Denote d(S,R) the
distance between sets § an R.

Definition 1: Mc R'xR" is stable set, if Ve>0, o>0 and vt;2ty 36>0 such that
dfyoM{t)]<5 and |y, | <o implies dfy(t,ty0), M(®)]<e for vtt,. Whete y(ttLyo) is the
solution of (13) with the intial value y,=y(%,t1,y0). 2

Definition 2: M is uniformly stable set of (13) if it is stable and & does not depend on .
Definition 3: M is uniformly asymptotically stable set of (13) if it is uniformly stable
and for Ve>0, V>0 there exist ;>0 end d>0, which does not depend on ¢, such that if
dfye, M(t;)]<& and if | yp | < then dfy (.81, yo), M(®)]<é for all £21;.

Definition 4: M is invariant set of (13) if for V¢, yg):M the solution y(t, t;, yg) exists if
t2t; and y(t, t;, yg) € M for all £2¢;.

Definition 5: AMis uniformly attractive, if it is uniformly asymptotically stable

(consequently invariant) set. The domain of the attractivity of M is the set
A={(r.s) e R'xulimd]t, .}, M(t) = o}
1=

11.2. Definite and indefinite Lyapunov functions

Lyapunov functions are often for stability investigations of differential eqﬁations. They
generally defined by

V:R'xQ—-R, QcR" and the origin is in £2

In stability investigations these functions are generally positive definite ones.
Considering the behaviour of this Ly;apunov functions, we can be informed about the
trajectories [41,[5],[6],[9]. In [7],[8] V. Kerte'sz is using an indefinite Lyapunov
function. Using this function we can separate “fast” and “slow” solutions. This

separation is the basis of our investigation in the singular perturbation problem.
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Ill. THE MAIN THEOREM AND I TS PROOF
Let P be a symmetric constant nxn matrix, such that the quadratic form xTPx, xeR" is
indefinite, A(x,#) is continous nxa matrix function, xeR".

Consider equation

x = A(x,t)x (14)
Instead of A(x,#), we wrile simply A.

We define an indefinite Lyapunov function and its derivatives
P(x)=x"Px, P(x)=x"(4"P+Pa)x , (15)
and another function denoted by p,

P(x) _ x"(47P+Pa)x

plat)= Vix).  x"Px (e
and the sets
o, ={xeR" V(x)>0
0, ={xe R :P(x)<0 (17)

Now we have two theorems:

Theorem 1: Supposing x'(4"P+PA)x>0 if I;'(x)=0, x#) and t2f;, then Q; is an

invariant set of the solutions of (14). In this case if there exists a p, () such that p, ()<
£t in Oy, then

V)2V (oo [ (e 1s)
where V(t)= 14 (x(t)) and x(%) is a solution of (14) which satisfies x(?;) Q.

(If fpa(t)dt > ~a0 then lim|x(t) >0

Theorem 2: Supposing that, x” (4" P+PA)x<0 if 1 (x)=0, x=0 and ¢>¢;, then {; is an
invariant set of the solutions. In this case if there exists a p, (?), that p, (H)<V{x,t) in Q>,

then

V) <V(1) exp [ f po(r)d’c] (19)
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Where V(1)= % (x)(1), and x(?) is a solution of (14) which satisfies x(t;) 0.

(ar fpo(t)dt > —o0 ,then fﬁiﬁx(t)l >0)

The following lemma [7] will be used for the proof of these theorems;

Lemma 1: Let consider matrix A in part 3, and set Q;. Then for every solution of (14)

which satisfies V(#)=0 if t;<t<t; for some 1, (t;<t;<c0), the next equation hold

v()=7, )exp( [ xT (»;XAT (T’X(T)zfzs PA(r, x(z')))x('r) y (1)} 20)

11<i<t; where V(t)=xr(t)Px(t).

Proof: As we know

d
4a _ar 21
= InV(r) S 1)

Noticing that % V)=x"(t)(A" (t,x(t) P+PA(t,x(1)))x(t) we integrate both sides of the

equation, and the lemma is proved.

Fromit | V@) |= [Viey lexp [ pdz,V(e) = V(t,)exp [ odr | (where, p=p(x(1, D).

The proof of the Theorem 1: Let x(#) be the solution of (14) for which x(t;) €@;. So

inequality V (x(t))>0 is satisfied. As we have considered the expression
foe,)=x"(ATP+PA)x (22)

this is positive if V (x)=0 and x=0, because f{x,?) is continous in its variables. (P is

constant, A consists of continous functions). Boundary set 14 (x)=0 has an open neigh

bourhood K(?), where

fix,t) |> 0 Obviously, K(¢)nQ;=&.

xeK(r)

Solution x(#) is continous and so V(t)=i; (x(1)) is continous too. Assume that a solution

x(t) of (14) satisfying the conditions of Theorem 1., does not remain in set @;. Because
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of the continuity of V(¥), there exists a t*>t;, for which Iimo V()=0, i.e. for Ve>035:
-

O<t*-t<F=0<V(t)<e. moreover V(t*)=0 and 7 t;<¢*, such that

Ve e(ts,t*)f (x,0)>0 (23)
Let us denote 2&=V{t;) (t;>0). We want to find a &, for for which if teft*-§<¢*) then
Vig<e (24)
and t<t*-8,

We examine function ¥{1)= Z (x{?)) in domain Q,. Here V{(#)>0. We may use

Lemma 1. (ta<t<t™), V(t)=V(t;) exp f pdt , from (24) we get
3
2sexp J: pdr <g, if ty<t*-S<t<t*

exp J;pd'c <§ (25)

But we know that, p#)>0 if t &fts, t*],(see (23) and the definition of K) Le.
f pdt >0 (26)

so inequality (25) can not be true, so a & satisfying the definition of the times does not

exist. The other statement of the theorem can be derived from the lemma.

Remark: The proof of Theorem 2 is similar to the proof of Theorem 1.

IV. THE APPLICATION OF AN INDEFINITE LYAPUNOV
FUNCTION IN A SINGULAR PERTURBATION PROBLEM OF A
NONLINEAR THIRD ORDER SYSTEM

IV.1. Thegrem 3:
Let >0 be a constant and let
ag(t,x ;,X2x3)
a(t1,x5,Xx2,%3) (27)

az(txp,x2,x3)
be continous functions. Let the matrices used in Theorem 2 be:



[0 1 0 1 0 0 %;
A—L 0 o0 1 |,P=|0 1 0 |and x=|x,|#0
-d; ~d; dy 0 0 - f? -

introducing notations x;=y, x;= y ; x;=j: ;
If there exists constants p, pu(i=0,1;k=1,2) such that
0<por<ap<poz,
O0<pir<ar<pi
O<p<a;,

and

where p,=max é)g},pjg), pi=min(pg, p11), then there exists f>0, for which the
expression

xT(ATP+PA)x
is greater than zero if

x"Px=0

Proof: we substitute 4, P and x into (31) and after multiplication by 1/2 we get:

Blaxds+(1+B ay)xpcs+Blagexstxix;

If x#0, we may introduce some new variables:

X _x,
X = Ty = =
X, y X
by these (31) is:

ap’ +af’x+ (1 + a,[a’)y + Xy

73

28)

(29)

(30)

(31

(32)

(33)

(34)

(35)

Denote y = (J_C, J'J') expression (35), and we fix the values of ay, a1, a; and vary x and y.

The problem is whether
wx,7)>0

if
¥+y°=0

(For x#0 equation (37) is equivalent to (32))

(36)

(37)



74

On the plane X, y expression (36) means a domain bounded by a hyperbola.

Its equation is

x(a‘c, 55) =0 ie.
B Bla,(1+ap’)-pa
y=—Ppa,+ °_( #) f : (38)
X+ (1 +a,p )
The asymptotes are parallel to the axis x , and axis ¥, and consist of points
x,=-1-ap’ (39)

Yo =-1-p’a,
Expression (37) means a circle around the origin with radius f. (36) and (37) are
satisfied if the circle is
a) in the quadrant bounded by the asymptotes, in which where is no point of the

hyperbola, and

b) (36) is satisfied between the graph of the hyperbola. (see Fig. 2)
y

y
A,

S ///’ //////
Fig. 2
These conditions are
a)  x(0,0)>0, B<lx,, (40)
ie
p<|1+ap. (41)
The sign of X, is the same of ¥,, and
B<sh  B<|afp® (42)
by  xX,,7,}>0, (43)

that is
a,f-a, f(1+a, f°)>0, (44)
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SO _ ‘ ;
a,>a,(I+a, ) (45)

Because of the conditions of the theorem a,,4,>0, so (43) is equivalent to

a, —d, 2
— L >0, 4
a,a, ‘3 ( 6)

(40) satisfies because of condition @,>0. In (39) both X,and ¥, are negative. Inequality

(41)is
55]1+a,{3’l=1+az[32
SO
ap’-B+1z0 ) (47
1+.1-4 i
If a, >1/4 then S eR, if 0<a,<1/4 then B e(-——z———ai,oo} . So if a;>1/4 then (42)
g a!
and (43) hold if
1 la, - a
—=<p< L. {48)
dﬂ « aJaU

in case of 0<a;<I/4, (42) and (43) are true if

1+,1-4 -
max(i,J] <p< R, (49)
a, 2a, a,d,

These intervals are not allowed to be empty by the conditions of the theorem, because
i<i<\/p_2pz <\/“2‘“o )
a P b aa,

orif a, (0,1/4)

1 1+.1-4a
max( ————4]<max(1 1).

a4 a,

2

a, 2a,

ie.

, <——< 4
4, 2a, by - P a,d,

There exist 3 with the required properties. Obviously, if 4, , 4, 4, are not constants,

max(i 1+,11-4a,) 1 \/p—P2<Jaz—“o_ (50)

but satisfy the conditions stated in theorem, (36) remains true.
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1V.2. Applications of indefinite Lyapwnov function in appoximations of a third order
nonlinear differential equation

Let us see the next nonlinear third order differential equation:
}+a2 )"wa, j’+a,,y =0

where 4,, 4,, a, are functions of £, y, y, y . Assume that the conditions of Theorem 3

are satisfied. In our investigations we use ‘he notations of Theorem 3.

Let us have a B as in the previous theorem. Because of Theorem 1., if x"Px=0 then

xT(ATP+PA)x>0. By Theorem 1. Q; is an invariant set of the solutions. Fig 3., shows

the meaning of it in the space of y, y 5 y . If B is large enough, set { is near the plain

(x,,x,), so plain (x,, x,) is approximately an invariant set of the solutions.

y A
y Q,

Fig. 3.

IV.3. On the behaviour of the solutions
Let Q; and @; be satisfying the definitions used in part 3. From Theorems 1. and 3.,
applying (Decfinition 5) on Fig. 4 in the domain between the hyperbolas y>#, in Q;

<0, so in the expression of ¥ the power of p is negative.

%
=2 <0
P=y

On the solutions V increases. so as in Fig. 4, the solutions come out of set Q. So set @,

is an attractor and 1ts region of attractivity is Q5.
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y A >0
Qq

R

Fig. 4.

The proof is easy because in @ Lemma 1. holds, and on the cone Theorem 3 also
satisfies. Thus, @; is a uniformly attaractive set. If B is large enough, it means that x,
tends faster to zero than x, or x,. So we encounter a typical singular perturbation
problem, solved by indefinite Lyapunov function and by the singular perturbation

technique.

V. NUMERICAL EXAMPLE

To illustrate our results, there is a numerical example for the linear equation

y+5y+y+y=0,
the coefficients of which satisfy the conditions of Theorem 3, if 1<<2. The numerical
approximation of the roots of its characteristical equation is

AlI=-4.8360

A2=-0.0820+j0.4473

A3=-0.0820-j0.04473
We can easily see, that the real part of A; has larger absolute value, than that of the
others. So the component of the solutions belonging to A; decreases much faster, than

that of the others.

The eigenvectors v,, v,, v, belonging to eigenvalues A;, A2, Az are approximately

0.043 Fe 1
v,=|-0207|, w,=|\-0802|, wv,=|-0448
1 -0.194 -0.047

Accordingly, components decreasing faster than the others are approximately in

direction of basic vector
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The solutions tend to a plane which is close to the plane (x,, x,).
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