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SINGULAR PERTURBATION PROBLEMS USING
INDEFINITE LYAPUNOV FUNCTIONS

Ayhan ALBOSTAN', Ahmet ÖZEK'

ABSTRA CT: Wiîh a dynamic system of differentiaî equutions consisting of many
variabîes the singular perturbaîion methods are ofgreat importance. Ifwe hîow that
some variabîes decrease faster than îhe others, we can reduce the number of the
equations. The reduction makes their solving much more easy. For exampîe, ifwe use
some numerical meîhods, the time and storage necessary for the calcuîaîions are
reduced.

in thîs paper, a singular perturbaiion problem, the existence and separation ofthe
small, and large soîutions of a differentiaî equation are consîdered, but instead of the
usual way an indefinite Lyapunov function is usedfor the investigation.

KEYWORDS: indefinite Lyapunov function, singular perlurbation, tıvo-time-scale
sysîem, nonîinear systems

SÎNGÜLER PERTÜRBASYON PROBLEMLERINDE
TANIMSIZ L YAPUNO V FONKSÎYONLARININ

KULLANİLMASİ

ÖZET: Çok değîşkenli dinamik bir sistemin türevsel denkîeminm çözümünde singüîer
pertiirbasyon yöntemi büyük önem taşımaktadır. Eğer sistemdeki bir kısım değişkenlerin
azalmasi, diğerlerme göre daha hızlı ise denklem sistemim indîrgeyebiliriz. Bu
indirgeme, denklem sisteminin çözümünu oldukça kolaylaştırmaktadır. Örneğin sayısal
yöntemler ile çözüm yapılırsa zaman ve işlem bakimindan orijinal sisteme göre daha iyi
sonuç elde edilir. Bu makalede bir singüler pertürbasyon problemi olan, hızlı ve yavaş
çözümleri içeren bir türevsel denklem gözönünde tutulmuştur, sözkonusu problemin
incelenmesinde alışılagelmiş bir yöntem yerim tammsız Lyapunov fonksiyonu
kullanılmıştır.

ANAHTAR KELİMELER; lammsız Lyapıımv fonksiyonu, singüler pertürbasyon,
iki zaman skalalı sistemler, doğrusal olmayan sistemler
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/. INTRODUCTION

Exact closed-form analytic solutions of nonlinear differential equations are possible

only for a limited number of special classes of differential equatioas: in general, we
have to resort to approximate methods [l], [2].

The methods presented here can be classified into three categories; Describing fünction
methods. Numerical solution methods and Singular perturbation methods [2].

The singular perturbation model of a dynamical system is a state-space model in which
the derivatives ofsome ofthe state are multiplied by a small positive parameter D; that

!S

x=f(t, x, i, e), xeR' (I)
t

z=g(t, x, z, e), z R" (2)

We assume that the fünctions/and g are continously differentiable in their arguments

for {t, x, l, s}e [o, t,]KD,\Dsx[«, e .{, where O, c R' and D; c R" are open connected
sets. When we set £=0 in (1)-(2), thc dimension ofthe state equation reduces from n+m

to n because the differential equation (2) degenerates into the equation

0=g(t, x, z, o) (3)

we shall say that the nodel (1)-(2) is in standard form if and only if (3) has kzl isoiated

real roots.

z=h, <t^), i=l, 2,....., k (4)

far each (t, x) e[o, (, ]xü,. This assumption ensures that a well-defıned n-dimensional
reduçed model will conespond to each root of (3). To obtain the i the reduced model,

we substitute (4) into (l) at 6=0 to obtain

x = f(t, x, h{t, x\o) (5)

where we have dropped the subscript i from h. it will be clear from the context which

rsct of (4) we are using. This model is sometimes cal'ed a quasi-steady-state model

because z, whose velocity z = g l s can be large when e is small and g^>, may rapidly

convergetoarootuf(3)whichistheequilibriumof(2). Themodel(5)isalsoknownas

theslow model [l].
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Halanay investigated a singular perturbation problem in [3]. His example was as
follows:

Let us consider the following singular perturbation problem:
/ \

Xl

\^ex)

An \i x
A, Askx

(6)

where x, eR , x, eR ^4:ı, An, An and An are nxn, mxn, nxm and mxm matrices,

respectively. Generally this equation can be reduced as ea0, so &om equation

AııXf\-A]iXfO or X}=-A^ ,Aıı x,

we have:

x-(AII-^2^All}^ (7)
However this reduction is not always correct. in the procedıu'e used by Halanay

we define at fırst a matrix H(nj rm x n+m) as

rl, 0~
H: (8)

where /; md /; are the unit matrices of dimension nxH and mxm, respectively. T' is an
unknown matrix (nxm). it can easily be proved, that

"-('r ;.)
We transform the equatİon by the matrix H.

THenewva^e. ^fy'1, ^-H.
y 2.

where, x = | j. the new equation îory is:
X,

y-H
A,

\e
'-A»
e " )

H~'y ie.

/

y-

A,, -A,,T

'<
TA, ^i-_A,, -TA,, T-^-A,,T

E " "e

Assume that there exists a rwhich satİsfîes:

IS2

TA,, +^ A,,
(10)



eT(An-AnT)+(A2i-AnT)^e

Then the approximation ofthe differentİa! equation İs

y , =(Aı, -Ai2T)yı+Aıy2

where r»A,, -4;;, if î is small.

(11)

(12)

From equation (11) we can determine matrix T. Now let us see investigate the

properties ofequation (12) using matrix T. Ifthe eigenvalues ofmattîxA22+sTAj2 have

negative real parts, then yi tends to zero. it is actually so \îAn is a stable matrix and s

is small enough. Morever, the smaller fis, the faster y? tends to zero. However, \İA^ is

not stable the singular perturbation technique is not justified. If one does not consider

the sufficient condîtion for applying fhe singular perturbation technique a wrong resull

can be obtained İnstead of a good approximation.

Note that in this case solutions^ tend to the subspace ofthe variable^. (See ¥\%. \}yı(t)

can be called as large solutİon and y^ft) as small solition, expressing the fact that y^t)

tends to zero faster (hasyıft).

Fig.1

in this paper, an explicite third order dİfferential equation is İnvestigated. We give

suffıcient conditions ofthe case in which a second order equation can be approached. it

was not intended to choose parameter e but we studied the basic problem, the existence

and the separation ofthe small (fast) and large (slow) solutions. For the investigation an

indefmite Lyapunov fanction has been used.
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//. SOME DEFIMTIONS

11. 1. Definitions about attractivity

Consider the system

x=g(t, x) (13)
ıvhere geP[R\n, R"l, R+=flo, ı») UcS", connected and open set. Denote d(S, R) the

distance betvveen sets S an R.

Definition l: Mc- R^ııR" is stable set, if Ve>0, ıv9 and VlıSto 3S>0 such that

d[yıı, Mftı)J<S and |jol<a implies d[y(l, tı^ıı), M(t)/<sfoı VtSt,. Where yft, tı, yo) is the

solution of (13) with the intial valueyıi=yft, t!,yıı)'

Definition 2: Mis uniformly stable set of (13) ifit is stable and <s»does not depend on //.

Defınition 3: M is unifomıly asymptotîcally stable set of (13) if it is uniformly stable

and for V£>0, Vct>0 there exist tı>0 end SfO, which does not depend on c, such that if

dfya, M(tı)/<Sa and if \yo \ £a then dly(t, t,, yo), Mft)/<e for ali t>t,.

Definition 4: Mis invariant set of (13) iffor Vftı, yıı):M the solutionj^, ti, yo) exists if

t>tı andyft, t,, yo) e M far ali l>tı.

Defınition 5: Mis uniformly attractive, if it is uniformly asymptotically stable

(consequently invariant) set. The domain ofthe attractivity of Af is the set

A=\{T, s}eR^Q. :Umd\t, T, s}, M{t}=0}
t-KÜ

11. 2. Deftnite and mdefinite Lyapunov funcüons

Lyapunov functions are often for stability investigations of differential equations. They

generally defined by

V:R\Q->R, fîcS" and the origin is in fî.

in stability investigations these fünctions are generally positive defınite ones.

Considering the behaviour of this Lyapunov functions, we can be informed about the

trajectories [4], [5], [6], [9]. in [7], [8] V. Kerte'sz is using an indefınite Lyapunov

fünction. Using this function we can separate "fast" aıd "slow?' solutions. This

separation is the basis ofour investigation in the singular perturbation problem.
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III. THE MAIN THEOREM AND ITS PROOF

Let P be a symmetric conaant nxn matrix, such that the quadratic form x Px, xsR" is

indefinite, A(x, t) is continous nxn matrix function, xeR .

Consider equation

x=A(x, t)x (14)

Instead oîA(x, t), we wrüe simply^.

We define an indefınite Lyapunov function and its derivatives

f>{x)=xTPx, V{x)=xT(ATP+PA)x . (15)

and another function denoted by /?,

p
)_V{x)_xT(ATP+PA)x

w'=y(x)~~^cTıx'Px
(16)

and the sets

Q, ={xeR" :V(x)>»
Q, ={xeR' :V(x)<0

Now we have two theorems;

(17)

Tneorem l; Supposing x (A P-^PA)x>9 if V (x)=ll, xs^) and tStı, then Qı is an

invariant set ofthe solutions of (14). in this case ifthere exists a p, (t) such that p, (t)£

p(x, l) in Qı, then

V{f)>Y(t^^[p, {r)d^ (18)
where V(t)= V (xft)) andxft) isasoIutionof(14)whichsatisfıes. (C(ı)Eg;.

(If ̂p, (t}dt > -oo ,then Kmx(î) > O

Theorem 2: Supposing that, xT(ATP+PA)x<ll if V (x)~0, x^9 and tSt,, then g; is m

invariant set of the solutions. in this case if there exists a py (t), Üıat pg (t)<y(x, t) in Q^,

then

(19)V(t)<Vft)e^[V^)dt
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Where V(t)= V (x)(t», !mdxft) is a solution of (14) which satisfıes x(tı) eQ2.

(If fp, (t)A > -°o ,then lfm\x(t)\ > O )

The follov/ing lemma [7] will be used for the proofofthese theorems.

Lemnıa l: Letconsidermatrix/linpart3, andsete,. Thenforeverysolutionof(14)

which satisfıes Vft)v0 \îtı<t<tı for some (2 ft, ^<co), tbe next equation hold

^_y^^^^^!^M)^ (20)

l, <t<t2 where V(t)=xT(l)Px(t).

Proof: As we know

^(')
±W(t}=dt^ (21)
A"" v'- ;.'(()

Noticing that 4 V(t)ssxrft)(ATft^ft)P+PA(t^(t)))x(t) we integrate both sides ofthe

equation, and the lemma is proved.

Fromit \V(t) |= \V(t, ) \exp ÇpdT,V(t)= V(t,]exp ̂ pdî , (where, p=p(x(î), î)).

The proof of the Theorem l: Let x(l) be the solution of (l 4) far which xftı) eQı. So

inequality V (xftı))>0 is satisfied. As we have considered the expression
f(x, t)=xT(ATP+PA)x (22>

this is positive if V (x)=tt and x^, becwsef(x, t) is continous in its variables. (P is

constant, A consists of continous functions). Boundary set V <x)=0 has an open neigh
bourhood K(t), where

f(x, t) \> O Obviously, K(t)nQı^0.
«dtM

Solution xft) is continous and so V(t)^V (x(t)) is continous too. Assume that a solution
x(t) of (14) satisfying the conditions ofTheorem l., does not remain in set Qı. Because
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ofthe continuity of V(t), there exists a t*>tı, for which tim V(t)=0, i. e. for Ve>93S:
t-*t*-Q

9<t*-t<S=>0<V(l)<e. moreover V(t*)=0 and 3t, <t*, such that

Vte(ts, f):f<x,t)>0 (23)

Let us denote 2e=V(tj) (tf0). We wmt to find a S, for for which ift e(l*-S, <l*) then

VW<E (24)

and tj<t*-S.

We examine function Vft)= V (x(l)) in domam Qı. Here V(t)>S. We may use

Lemma l. (ts<t<t*), V(t)=V(ts) exp | pdı, from (24) we get
13

2sexp \ pdt<s, 'ıît3<t*-S<l<t*
ls

exp pA <^
l, '--- -2

But we know that, p(t)>« iftefts, t*J, (see (23) and the definition of K) i. e.

pA >0

(25)

(26)

so inequality (25) can not be tme, so a S satisfying the defınition ofthe times does not

exist. The other statement ofthe theorem can be derived from the lemma.

Remark: The proof of Theorem 2 is similar to the proof of Theorem l.

IV. THE APPLICATION OF AN INDEFINITE LYAPUNOV
FUNCTIONINA SÎNGULAR PERTURBATION PROBLEM OF A
NONLINEAR THIRD ORDER SYSTEM

IV. l. Theorem 3:

Let P>0 be a constant and let

a,ı(t^, ^xj)

ttlftl^X:^2^C3) (27)
a2(t^ı^2^s)

be continous functions. Let the matrices used in Theorem 2 be:
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r °
A-l O

-a,

; o

O l

-a, -a,j

, p=

-fl2.

and X == X2
\x,^

^0

mtToducvrt^noîationsxı=^', X2:=y, X3=y.

Ifthere exists constantsp, pıiı(t!s9, l;k=l, 2) such that

9<poı<ao<po2,

0<pıı<aı<pi 2,

0<p<aı,

and

F>P^P.
where p2 =max (po2, Pııl, Pı=min(pu, pıı), then there exists ft>0, for which the

expressıon

xT(ATP+PA)x

İs greater îhan zero if

xTPx=9

(28)

(29)

(30)

(31)

(32)

Proof: we substitute A, P and x into (31) and after multiplication by l 11 we get:

^a2X23+(l+ft2 <lı)X2Xs+f, Ja^ıX3+xjX2 (33)

Ifx^, we may introduce some new variables:

X

X-
X

X2
y=?

"3

(34)

bythese(31) is:

af2 +a,yx +(l+aft2 }y+xy (35)

Denote ̂ =(:c, y)expression(35), andwefıxthevaluesofao, a;, a2andvary xand y.

The problem is vvheüıer

z(x. y)>0 (36)

if

x2+y2 =0 (37)

(For x^0 equation (37) is equivalent to (32))
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On the plane x , y expression (36) means a domain bounded by a hyperbola.

îîs equation is

/(x, y)-0 Le.

^ , P^(^", P2 )-P2",
y^-^a, +r 'T/.'"'^^

x+(l + afi2)

The asymptotes are parallel to the axis x, and axis y, and consist ofpoints

^=-1-1^

y, =-l-^a,

(38)

(39)

Expression (37) means a circle around the origin with radius p. (36) and (37) are
satisfied İfthe circle is

a) in the quadrant bounded by Üıe asymptotes, in which where is no point ofthe
hyperbola, and

b) (36) is satisfied between the graph ofthe hyperbola. (see Fig. 2)
r .+

Fig.2
These conditions are

a) x(0, 0)>0, ps;|x, !,

t.e

p^+^p2 !.

The sign of x, is the same of y,, and

p^!, p<|^p2

b) x(^s>.Vo)>o,

that is

a, lf-a, 132(l+a, p2)>»,

(40)

(41)

(42)

(43)

(44)
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so

a, >a, (]+a, /f) (45)

Because ofthe conditions ofthe theorem a,, a, >0, so (43) is equivalent to

d-, - Clr

öf^.
>p2. (46)

(40) satisfies because ofcondition a, >9. in (39) both x, and y, are negative. Inequality

(41) is

f, <\l+a^J\=l+afi2

so

d, p2 -P+7£0 (47)

\fıı^l/4±enpe R, \îV<a, <l/4ütm P e [ '- 
' 

\\ 
' 

~L, a> | . So if a, >l/4 then (42)
2a,

and (43) hold if

A<P<J'^
a. V a, a^

(48)

in case of 0<aı<l/4, (42) and (43) are true if

max\ -,l l+^l-4a, j ^-d, (49)
\a, ~ 2a, ) . V a, a,

These intervals are not allowed to be empty by the conditions ofthe theorem, because

\P-P2l l
< - <

Pî

a, -a,

a, a,

or if a, £(0, 1/4)

ı. e.

; l+^l-4a, \ __J l . l
max| -, -'- - '- l < "MX| -,.

^' 2,3, ) \a, 'a,

l l+^l-4a, \^ l ^ \p^-^^ \a, -t,
max\ -, -'4-'~\ <-<J" ..2"' <

'\a, ' 2a, ) ~ p, ~\^ pî \ «,<t,
(50)

There exist /3 with the required properties. Obviously. if a,, a,, a, are not constants,

but satisfy the conditions stated in theorem, (36) remains true.
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IV.2. Applications ofindefinite Lyapınov funcüon m appoximations0f a third order
nonlinear differential equatwn

Let us see the next nonlinear third orderdifferential equation:

y+a, y+a, y+a, y=0

where tfg, a,, a, are functions oît, y, y, ^. Assume thatthe conditions ofTheorem 3

are satisfıed. in our investigations we use he notations ofTheorem 3.

Let us have a P as in the previous theorem. Because of Theorem I., \{x Px=0 then

x (A P+PA)x>0. By Theorem l. g) is an invmant set ofthe solutions. Fig 3., shows

the meaning of it in the space ofy, y, y . If p is large enough, set g; is near the plain

(x,, x, ), so plain (x,, x, ) is approximately an invariant set ofthe solutions.

Fig. 3.

IV3. On the behaviour ofthe solutions

Let Q, ı and Qs be satisfying the definitions used in part 3. From Theorems l . and 3.,

applying (Defınition 5) on Fig, 4 in the domain between the hyperbolas ^>9, in Qı

V<ff^ so in the expression of Vthe power of p is negative.

p^<0
On the solutions fincreases.. so as in Fig. 4, the solutions come out ofset Qı. So set Qı

is an attractor and ıts region of attractivity is ̂ 2.
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y * I>0

V2<V,

Fig. 4.

The proof is easy because in Qs Lemma l. holds, and on the cone Theorem 3 also

satisfıes. Thus, Qı is a uniformly attaractive set. If P is large enough, it means that Xj

tends faster to zero than x; or Xj. So we encounter a typical sİngular perturbation

problem, soîved by indefînite Lyapunov functİon and by the singular perturbation

technique.

V. NUMERICAL EXAMPLE

To illusü-ate our results, there is a numerical example for the linear equation

y+5y+y+y=0,

the coefficients ofwhich satisfy the conditions ofTheorem 3, if7.<P<2. The numerical

approximaîion ofthe roots ofits characteristİcal equation is

İ1^-4. S360

İ2--O. OS29+J0.4473

A3=-0. «829-j0. «4'i73

We can easily see, that the real part of A/ has larger absolute value, than that ofthe

others. So the component ofthe solutions belonging to /l; decreases much faster, than

thatofthe others.

The eigenvectors v,, v,, Vj belonging to eigenvalues /l;, /İ2, is are approximately

{ 0.043} { l \ [l \
V. =V, = -0.207

l

v,= -OS02

-0. 194.

-0.448

1-0.047,

Aceordingly, compoaents decreasing faster than the others are approximately in

dİrection of basic vector



78

f0'
e=| O

l

The solutions tend to a plane which is close to the plane (x,, x,).
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