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Abstract: The meshless global radial basis function (RBF) collocation method is widely used to model 
physical phenomena in science and engineering. The method produces highly accurate solutions with an 
exponential convergence rate. However, due to the global approximation structure of the method, dense 
node distributions lead to long computation times and hinder the applicability of the technique. In order to 
overcome this issue, this study proposes a parallel meshless global RBF collocation algorithm. The 
algorithm is applied to 2-D neutron diffusion problems. The multiquadric is used as the RBF. The algorithm 
is developed with Mathematica and eight virtual processors are used in calculations on a multicore 
computer with four physical cores. The method provides accurate numerical results in a stable manner. 
Parallel speedup increases with the number of processors up to five and seven processors for external and 
fission source problems, respectively. The speedup values are limited by the constrained resource sharing 
of the multicore computer’s memory. On the other hand, significant time savings are achieved with parallel 

computation. For the four-group fission source problem, when 4316 interpolation nodes are employed, the 
utilization of seven processors instead of sequential computation decreases the computation time of the 
meshless approach by 716 s. 
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Nötron difüzyon problemleri için paralel ağsız radyal baz fonksiyonu kollokasyon yöntemi 
 
Öz: Ağsız global radyal baz fonksiyonu (RBF) kollokasyon yöntemi bilim ve mühendislikte karşılaşılan 

fiziksel olayların modellenmesinde yaygın bir şekilde kullanılmaktadır. Yöntem, üstel bir yakınsama hızı 

ile yüksek doğruluğa sahip çözümler üretir. Fakat, yöntemin global yaklaşım yapısı nedeniyle, çok sayıda 

ayrıklaştırma noktası kullanılması hesaplama sürelerini uzatmakta ve yöntemin uygulanabilirliğini 
kısıtlamaktadır. Söz konusu sorunun üstesinden gelebilmek için bu çalışmada bir paralel ağsız global RBF 
kollokasyon algoritması önerilmiştir. Algoritma iki boyutlu nötron difüzyon problemlerine uygulanmıştır. 

Multikuadrik fonksiyonu RBF olarak kullanılmıştır. Algoritma, Mathematica yazılımı ile geliştirilmiş ve 

hesaplamalar dört fiziksel çekirdeğe sahip çok çekirdekli bir bilgisayar ile sekiz sanal işlemci ile 

gerçekleştirilmiştir. Yöntem, doğru sayısal sonuçları kararlı bir şekilde sunmuştur. Paralel hızlanma işlemci 

sayısıyla, dış ve fisyon kaynağı problemleri için, sırasıyla beş ve yedi işlemciye kadar artmaktadır. 

Hızlanma değerleri çok çekirdekli bilgisayar belleğinin sınırlı kaynak paylaşımı nedeniyle kısıtlanmıştır. 

Diğer taraftan, paralel hesaplama ile önemli zaman kazanımları elde edilmiştir. Dört-grup fisyon kaynağı 

problemi için, 4316 interpolasyon noktası kullanılması durumunda, seri hesaplama yerine yedi işlemci 

kullanılması ağsız yöntemin hesaplama süresini 716 s kısaltmıştır. 
 
Anahtar kelimeler: Paralel, Ağsız, Radyal baz fonksiyonu, Kollokasyon, Nötron difüzyonu 
 
 

                                                           
*  Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 
Mimar Sinan Campus, 16310, Yıldırım/Bursa 
Corresponding author: Tayfun Tanbay (tayfun.tanbay@btu.edu.tr) 

https://orcid.org/0000-0002-0428-3197


Tanbay T.: Parallel Meshless RBF Collocation Method for Neutron Diffusion  

174 

 
1. INTRODUCTION 
 

Meshless methods emerged in the 1970s for solving astrophysics problems (Lucy, 1977). 
Since their appearance in the literature, these methods were used to numerically solve partial 
differential equations (PDE) encountered in different branches of physics and became an 
alternative to classical mesh-based approaches such as the finite element method (FEM). The 
fundamental difference between meshless and mesh-based methods is that the discretization 
nodes of a meshless approach can be generated without any preliminary definition. This paved 
the way for the development of more flexible algorithms than mesh-based methods. 

Based on their formulation, meshless techniques are classified into three groups (Liu, 2010): 
(i) Within the strong-form methods, the shape functions are substituted into the PDE and boundary 
conditions. The RBF collocation method, which was first developed for the solution of 
hydrodynamics problems by Kansa (1986), is the most prominent member of this class. (ii) On 
the other hand, the governing equation is multiplied by a weight function and the resulting 
expression is integrated over the entire problem region when a weak formulation is adopted. The 
integration weakens the continuity requirements of both the shape and weight functions. The 
radial version of point interpolation (Liu and Gu, 2005), Element free Galerkin (EFG) (Belytschko 
et al., 1994), and meshless local Petrov-Galerkin (MLPG) (Atluri and Zhu, 1998) methods are the 
most well-known weak-form based meshless approaches. (iii) Finally, within the hybrid methods, 
strong and weak-form algorithms are used together for different subregions of the problem to 
benefit from the advantageous characteristics of the two main classes. 

Weak-form methods are inherently more stable than strong-form methods. Duan (2008) 
carried out a comparative analysis between RBF based strong- and weak-form meshless 
algorithms and showed that the use of RBFs in a weak formulation rather than the strong-form 
approach reduces the solution matrix’s condition number by one order of magnitude. On the other 
hand, the strong-form RBF collocation method is an exponentially convergent method and can 
yield highly accurate solutions with fewer discretization nodes than other meshless and mesh-
based methods (Li et al., 2003). Another important advantage of strong-form methods is that a 
background mesh is not required since there is no integration in their formulation procedures. 
Therefore, strong-form methods are truly meshless methods. 

In the global RBF collocation approach, the computation times increase rapidly with the 
number of discretization nodes due to the fully populated structure of the collocation matrix. In 
this context, the use of parallel algorithms is a must to avoid long computation times. There exist 
several studies on the parallel implementations of meshless approaches. In one of the earliest 
works, the free mesh method was used in a parallel manner to solve an incompressible fluid flow 
problem (Shirazaki and Yagawa, 1999). Induced damage simulations of composites were carried 
out with the parallelized smoothed particle hydrodynamics (SPH) by Medina and Chen (2000). 
Parallel SPH was also used to model fluid flow problems with a high speedup performance 
(Ferrari et al., 2009, Ihmsen et al., 2011, Marrone et al., 2012, Dominguez et al., 2013a, 
Dominguez et al., 2013b, Cercos-Pita, 2015, Crespo et al., 2015). The parallel reproducing kernel 
particle method (RKPM) was used to model structural mechanics problems (Danielson et al., 
2000) and supersonic flow over a NACA airfoil (Günther et al., 2000). Essential boundary 
conditions were implemented on a single processor by Danielson et al. (2000) and Günther et al. 

(2000). A hierarchical enrichment method was proposed by Zhang et al. (2002) for the complete 
parallelization of the RKPM to carry out 3-D CFD studies. In another work, the parallel version 
of the partition of unity approach was used to solve elliptic PDEs (Griebel and Schweitzer, 2003). 

3-D transient heat conduction problems were solved with a coupled method of fundamental 
and particular solutions approach by Ingber et al. (2004) where parallel domain decomposition 
was applied to stabilize the interpolation matrix and decrease the computation time. The EFG 
method was applied to heat transfer (Singh and Jain, 2005a) and fluid dynamics (Singh and Jain, 
2005b) in a parallel manner. The computational efforts showed that parallelization improved the 
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speedup and efficiency of calculation as the number of discretization nodes increased, where 
speedup is the ratio of wall clock times of sequential to parallel computation and computational 
efficiency is the ratio of speedup to number of processors. However, the efficiency decreased as 
more processors were employed in computations. Parallel RKPM was used for bulk forming 
simulation by Hu et al. (2007a), where the Taylor bar, back extrusion analysis, and wheel forging 
analysis problems were solved with the meshless method. Unlike the general trend of monotonic 
decrease with increasing processor number, the parallel computation efficiency had its lowest 
value when 16 processors were used in calculations for all the cases. The back extrusion and 
wheel forging cases were also studied with the parallel radial point interpolation approach (Hu et 
al., 2007b), and the results indicated that the computation efficiency decreased with the number 
of processors for the wheel forging problem, while a minimum efficiency was obtained with 32 
processors for the back extrusion analysis. 

The complexity of the parallel MLPG method were studied and compared with FEM and 
finite difference method (FDM) by Trobec et al. (2009). The 2-D time-dependent diffusion 
equation was solved, and parallel computation efficiencies of 70-80% were found in the numerical 
experiments. A parallel RBF interpolation algorithm having 𝑂(𝑁) complexity (i.e., the 
calculation load increases linearly with the number of interpolation nodes) and storage 
requirement was proposed by Yokota et al. (2010). Gaussian RBF was chosen as the radial 
function and using a supercomputer the authors reported parallel efficiencies of 84% and 79% for 
strong and weak scalings, respectively. A node pair-wise approach was proposed by Karatarakis 
et al. (2013) to decrease the computation time for constructing the stiffness matrix of the EFG. 2- 
and 3-D elasticity problems were solved in a parallel manner and significant speedup values were 
found in the numerical experiments. RBF collocation method was employed locally to model two-
phase incompressible fluid flow (Kelly et al., 2014). The results of sequential and parallel 
computations showed that speedup factors improved as the interpolation nodes were refined. The 
meshless finite point method (FPM) was compared with the FEM for modeling 3-D aerodynamics 
by Ortega et al. (2014). The FPM was parallelized and simulations were carried out on a multicore 
computer. The speedup of parallel computations was limited due to the constant memory 
bandwidth and forced sharing of processor resources. 

The local RBF collocation method was used in a parallel manner to solve a natural 
convection problem (Kosec et al., 2014). The simulations showed that the computation time could 
be decreased significantly with the parallel implementation of the meshless approach. In another 
CFD application, a parallel least squares fit based meshless method was used to solve 
compressible flow problems (Ma et al., 2014), where Hilbert space filling curves were used to 
enhance the algorithm for randomly distributed nodes. Later, the same researchers used the 
parallel meshless dynamic point cloud method to model compressible flow problems with moving 
boundaries (Ma et al., 2015). The results of Ma et al. (2014) and Ma et al. (2015) showed that the 
computation time and speedup depend strongly on the type of processor. The approach presented 
by Ma et al. (2014) was further improved with an implicit method and extended to solve 3-D 
cases by Zhang et al. (2018a). 

In order to model elasticity problems with meshless and hybrid FEM-meshless methods, a 
parallel algorithm is presented by Ullah et al. (2016). Parallelization of the methods decreased the 
computation time, however, the computation efficiency decreased as the number of processors 
increased. Inviscid compressible flow was modeled with the meshless weighted least squares 
curve fit (WLSCF) method by Cao et al. (2019). A parallel algorithm was used with multi-layered 
point reordering to deal with the negative impact of irregularly distributed nodes on the memory 
of the processor unit. In another work, the parallel meshless WLSCF method was used to model 
turbulent flows (Zhang et al., 2020), where high levels of speedup were obtained for 2- and 3-D 
problems. A functional programming based parallel algorithm for meshless methods was 
presented by Barbosa et al. (2021). The MLPG method was chosen as the meshless approach, and 
it was found that an increment in number of processors improved the speedup, while it had a 
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negative impact on the computation efficiency. A Poisson disc sampling based parallel domain 
discretization approach was proposed by Depolli et al. (2022) for the hybrid RBF-FDM and 
meshless methods. In a recent work, the discrete least squares meshless method was used within 
a parallel computation strategy for the numerical solution of PDEs (Sefidgar et al., 2022). Poisson 
equation, dam-break, and sediment transport problems were studied, and it was found that the 
parallel computation efficiency decreased with an increasing number of processors. Finally, the 
meshless solutions of neutron diffusion and transport equations were presented by Rokrok et al. 
(2012), Tanbay and Ozgener (2013), Tanbay and Ozgener (2014), Tanbay (2018), Tanbay and 
Ozgener (2019), Tanbay (2019), Tanbay and Ozgener (2020), Kim et al. (2017), Kashi et al. 
(2017), Tayefi et al. (2018), Zhang et al. (2018b), Bassett and Kiedrowski (2019), Khuat and Kim 
(2019), Khuat et al. (2019), Alizadeh et al. (2021), and Bassett and Owen (2022). Among these 
studies, Tayefi et al. (2018) and Bassett and Kiedrowski (2019) presented parallel MLPG 
algorithms for neutron diffusion and transport, respectively. 

The literature review showed that there exist no works on parallelization of the global RBF 
collocation. Therefore, the novelties of this paper can be expressed as follows: 
 In this study, a parallel meshless global RBF collocation algorithm is proposed for the first 

time.  
 The method is used to solve the 2-D multigroup neutron diffusion problems. To the best of 

author’s knowledge, the parallel global RBF collocation method is implemented to model 
neutron diffusion for the first time.  

 Three problems are solved with the developed parallel technique, and the impacts of the 
number of interpolation nodes and processors on the speedup and computational efficiency 
of the algorithm are investigated in detail. 

 
2. MATERIAL AND METHODS 

 
In this section, first, the meshless global RBF collocation method and its application to the 

multigroup neutron diffusion equation will be described. Then, information on the parallel 
implementation of the proposed algorithm within Mathematica will be provided. 

2.1. Global RBF Collocation Solution of the Neutron Diffusion Equation 

Consider a PDE and its boundary conditions in operator form: 
 

𝐿[𝑢(𝒙)] = 𝑓(𝒙), 𝒙 ∈ 𝛺 
(1) 

𝐻[𝑢(𝒙)] = 𝑔(𝒙), 𝒙 ∈ 𝛤 
 
In Eq. (1), 𝐿 is a partial differential operator, 𝐻 is a partial differential and/or algebraic 

operator, 𝑢 is the dependent variable, 𝑓 and 𝑔 are driving functions, and 𝒙 = (𝑥, 𝑦) are spatial 
Cartesian coordinates. In order to solve Eq. (1) with RBF collocation, firstly, interpolation nodes 
with 𝑁𝐷 members on the domain and 𝑁𝐵 members on the boundary are generated as 

 
𝐷 = {𝒙1, … , 𝒙𝑁𝐷

} 

(2) 𝐵 = {𝒙𝑁𝐷+1, … , 𝒙𝑁𝐷+𝑁𝐵
} 

𝐸 = {𝒙𝑁𝐷+𝑁𝐵+1, … , 𝒙𝑁𝑇
} 

 
where 𝐷 and 𝐵 are the sets of interpolation nodes for 𝛺 and 𝛤, respectively. When the problem 
includes Neumann type boundary conditions, method’s accuracy can be enhanced by creating 

interpolation nodes outside the problem region, and solving the PDE on the boundary (Fedoseyev 
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et al., 2002). This approach is used in this study and 𝐸, with 𝑁𝐸  members, represents the 
interpolation nodes generated outside the problem domain. Hence the total number of 
interpolation nodes is 𝑁𝑇 = 𝑁𝐷 + 𝑁𝐵 + 𝑁𝐸. The nodes can have a uniform or random 
distribution. 

Following the generation of the interpolation nodes, the field variable of the PDE is 
approximated with a finite series of RBFs: 

 

𝑢(𝒙) ≅ ∑ 𝑎𝑗𝜓𝑗(𝒙)

𝑁𝑇

𝑗=1

 (3) 

 
In Eq. (3), 𝜓 is the RBF and the coefficients 𝑎𝑗 , 𝑗 = 1, … , 𝑁𝑇 are calculated at the end of the 

numerical solution. Approximating the field variable of Eq. (1) with Eq. (3), and collocating at 𝒙𝑖 
gives 

 

∑ 𝑎𝑗𝐿(𝜓𝑖𝑗)

𝑁𝑇

𝑗=1

= 𝑓𝑖, 𝑖 = 1, … , 𝑁𝐷 + 𝑁𝐵 

(4) 

∑ 𝑎𝑗𝐻(𝜓𝑖𝑗)

𝑁𝑇

𝑗=1

= 𝑔𝑖 ,        𝑖 = 𝑁𝐷 + 1, … , 𝑁𝐷 + 𝑁𝐵 

 
or in matrix form 

 
𝑲𝒂 = 𝒃 (5) 

 
where 𝜓𝑖𝑗 = 𝜓(𝒙𝑖), 𝑓𝑖 = 𝑓(𝒙𝑖), 𝑔𝑖 = 𝑔(𝒙𝑖) and the elements of the collocation matrix 𝑲, and 
the vectors 𝒂 and 𝒃 are determined by 

 

𝑘𝑖𝑗 = {
𝐿(𝜓𝑖𝑗), 𝑖 = 1, … , 𝑁𝐷 + 𝑁𝐵,   𝑗 = 1, … , 𝑁𝑇

𝐻(𝜓𝑖𝑗), 𝑖 = 𝑁𝐷 + 1, … , 𝑁𝐷 + 𝑁𝐵,   𝑗 = 1, … , 𝑁𝑇

 
(6) 

𝒂 = [𝑎1 ⋯ 𝑎𝑁𝑇 ]𝑇 ,   𝒃 = [𝑓(𝒙1) ⋯ 𝑓(𝒙𝑁𝐷+𝑁𝐵
) 𝑔(𝒙𝑁𝐷+1) ⋯ 𝑔(𝒙𝑁𝐷+𝑁𝐵

)]
𝑇

 
 
The solution of Eq. (5) yields the coefficients 𝑎𝑗, 𝑗 = 1, … , 𝑁𝑇, and thus the numerical result. 

Interpolation nodes can be used as the collocation nodes or a different set of nodes can be 
generated for collocation. In this work, the same nodes are utilized for both interpolation and 
collocation. The collocation matrix 𝑲 is a fully populated matrix in the global RBF collocation 
method. By defining a support domain for all the interpolation nodes that cover the nearest 
neighbours of 𝒙𝑗, the approach can be localized. The localization of the method leads to a sparse 
collocation matrix with higher stability, however, it also degrades the accuracy and the 
convergence characteristics of the global method. 

Although various radial functions have been proposed, the most widely utilized radial 
function for RBF collocation is the multiquadric function, which was first proposed by Hardy 
(1971) for approximating geographic surfaces. Multiquadric is defined by 

𝜓𝑗(𝒙) = √(𝑥 − 𝑥𝑗)
2

+ (𝑦 − 𝑦𝑗)
2

+ 𝑐2 (7) 

 



Tanbay T.: Parallel Meshless RBF Collocation Method for Neutron Diffusion  

178 

In Eq. (7), 𝑐 is the shape parameter and has a substantial impact on the numerical solution. 
Theoretically, it is shown by Madych (1992) that for function interpolation, the numerical error 
would vanish as 𝑐 → ∞ if the calculation could be performed with infinite precision arithmetic. 
In practice, increasing 𝑐 decreases the approximation error and leads to a faster convergence, 
however, it also has an adverse effect on the stability. In fact, the shape parameter has an optimum 
value that provides a balance between accuracy and stability. 

The neutron diffusion equation is a PDE that governs the interaction of neutrons with various 
materials in a nuclear reactor core. Modeling this behavior in an accurate and computationally 
efficient manner has a crucial role in the design of nuclear power plants. Within the multi-energy 
group approach having 𝐺 energy groups, the operators, field variable, and right-hand side 
functions of Eq. (1) take the following form for the time-independent neutron diffusion equation 
in 2-D rectangular geometry: 

 

𝐿[𝜙𝑔] = −𝐷𝑔∇2𝜙𝑔
 (𝑚) + Σ𝑟,𝑔𝜙𝑔

 (𝑚), 0 ≤ 𝑥, 𝑦 ≤ 𝑎 

(8) 𝐻[𝜙𝑔] = {

𝜙𝑔, 𝑥, 𝑦 ∈ 𝛤𝐷

𝜕𝜙𝑔

𝜕𝑛
, 𝑥, 𝑦 ∈ 𝛤𝑁

 

𝑓 = ∑ Σ𝑠,𝑔′→𝑔𝜙
𝑔′
(𝑚)

𝑔−1

𝑔′=1

+
𝜒𝑔

𝑘(𝑚−1)
∑ 𝜈𝑔′Σ𝑓,𝑔′𝜙

𝑔′
(𝑚−1)

𝐺

𝑔′=1

+ 𝑆𝑔 

 
where 𝜙𝑔, is the neutron flux distribution, 𝐷𝑔 is the diffusion constant, Σ𝑟,𝑔 is the removal cross 
section, 𝜒𝑔 is the fission spectrum function, 𝜈𝑔 is the number of neutrons released per fission for 
group 𝑔, Σ𝑠,𝑔′→𝑔 is a group-to-group scattering cross section representing the probability that a 
neutron would scatter from group 𝑔′ down to group 𝑔, 𝑘 is the multiplication factor, ∇2 is the 
Laplacian, 𝜕 𝜕𝑛⁄  represents the derivative in the normal direction, and 𝑚 is the iteration index. 
𝛤𝐷 and 𝛤𝑁 represent the Dirichlet and Neumann type boundaries, respectively. Two types of 
problems are encountered in nuclear reactor physics. If there is no fissile material (i.e. non-
multiplying medium), the neutrons are supplied by an external source, 𝑆𝑔, and the neutron 
diffusion equation is solved directly with 𝑓 = 𝑆𝑔. On the other hand, if the medium is multiplying, 
then the coupled 𝐺 PDEs are solved with fission source iteration (Tanbay and Ozgener, 2014). 

2.2. Parallel Computation with Mathematica 

The parallel meshless RBF collocation method is implemented with an in-house code that is 
newly developed with Mathematica. Calculations are performed with a personal computer having 
a multicore Intel i5 1.60GHz processor with 4 cores and 8 threads. The processor architecture is 
x86-64, and the random access memory capacity is 8GB. 

Mathematica uses the Wolfram Symbolic Transfer Protocol (WSTP) for processor 
communication. Resources are shared through a virtual shared memory and the message passing 
is based on the WSTP. By default, the number of processors utilized in calculations is equivalent 
to the number of physical cores. However, additional virtual processors can be activated by using 
the built-in function LaunchKernels[𝑁𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟] where 𝑁𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 represents the desired number 
of virtual processors (kernels in Mathematica’s terminology). Since the processor has 8 threads, 

in this work 8 kernels are used in calculations. 
RBF collocation solution of a PDE consists of three main steps: 

1) Generating the discretization nodes of Eq. (2) utilized for interpolation and collocation 
2) Calculating the elements of the collocation matrix, 𝑘𝑖𝑗 and the elements of the source vector, 

𝑏𝑖 of Eq. (6) 
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3) Solving Eq. (5) to obtain 𝑎𝑖 
The generation of the discretization nodes and the calculation of 𝑘𝑖𝑗 and 𝑏𝑖 with the 

developed parallel algorithm are performed with the built-in function ParallelTable. The 
arguments computed with the ParallelTable function are distributed to the kernels with another 
built-in function, DistributeDefinitions. The linear system is solved with the LinearSolve 
function, which employs efficient algorithms and does not have an effect on the parallel 
computation efficiency. 
 
3. RESULTS AND DISCUSSION 

The performance of the parallel RBF collocation algorithm is investigated through the 
solution of three test cases. A single energy group external source case, and two multigroup fission 
source cases are considered. Dirichlet type boundary conditions exist at 𝒙 ∈ (𝑎, 𝑦) ∪ (𝑥, 𝑎), while 
Neumann type boundary conditions exist at 𝒙 ∈ (0, 𝑦) ∪ (𝑥, 0) for all the problems. Uniformly 
distributed interpolation nodes with a spacing of ℎ are used, and the members of 𝐸 are located at 
a distance of ℎ from the boundaries. Parallel speedup and efficiency are defined as 

 

Speedup =
𝑇1

𝑇𝑝
 

(9) 
Efficiency =

Speedup

𝑁𝑝
 

 
where 𝑇1 and 𝑇𝑝 represent the wall clock times with 1 and 𝑁𝑝 processors, respectively. Accuracy 
of the solution is determined via the maximum and root mean square (RMS) errors in neutron 
flux for the external source problem 

 
𝜖𝑚𝑎𝑥 = max

1≤𝑖≤𝑁𝑇

[|𝜙𝑎(𝒙𝑖) − 𝜙𝑛(𝒙𝑖)|] 

(10) 
𝜖𝑅𝑀𝑆 = √

1

𝑁𝑇
∑[𝜙𝑎(𝒙𝑖) − 𝜙𝑛(𝒙𝑖)]2

𝑁𝑇

𝑖=1

 

 
while the accuracy of fission source problems is examined with the relative error in multiplication 
factor 

 

𝜖𝑘 =
|𝑘𝑎 − 𝑘𝑛|

𝑘𝑎
 (11) 

 
where 𝑛 and 𝑎 refer to numerical and analytical, respectively. The performance of the method can 
be studied with both constant and node number dependent shape parameter strategies. With the 
variable shape parameter strategy, 𝑐 is decreased with the number of nodes as 𝑐 = 𝑎 𝑁𝑇

1 2⁄⁄ . 
Decreasing 𝑐 with 𝑁𝑇  has a stabilizing effect on the method and it was efficiently used for neutron 
transport equation (Tanbay and Ozgener, 2020). 
 

3.1. External Source Problem 
 
The following trigonometric source is considered for the external source case 
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𝑆 = cos (
𝜋𝑥

2𝑎
) cos (

𝜋𝑦

2𝑎
) (12) 

 
which yields an analytical neutron flux distribution expressed by 
 

𝜙𝑎 =
cos (

𝜋𝑥
2𝑎

) cos (
𝜋𝑦
2𝑎

)

Σ𝑎 + 2𝐷 (
𝜋

2𝑎
)

2  (13) 

 
where Σ𝑎 = Σ𝑟. The geometric and nuclear parameters are chosen as 𝑎 = 0.25𝑚, Σ𝑎 = 1.43676 
𝑚−1,  and 𝐷 = 0.0177764𝑚 (Tanbay and Ozgener, 2014). Figure 1 shows the variation of RMS 
and maximum errors in neutron flux with the number of interpolation nodes on a semi-logarithmic 
scale. These results are obtained with a constant shape parameter of 𝑐 = 𝑎√0.01. The 
convergence curves indicate that the parallel RBF collocation algorithm produces accurate flux 
distributions in a stable manner. 
 

 
Figure 1: 

Variation of 𝜖𝑚𝑎𝑥 and 𝜖𝑅𝑚𝑠 with 𝑁𝑇 for the external source case 
 
Speedup and efficiency of parallel computation of the one-energy group external source 

problem are presented in Figure 2 for four sets of interpolation nodes. Speedup of the computation 
improved with the number of processors up to 𝑁𝑝 = 5 for all values of 𝑁𝑇. The communication 
between the processors becomes apparent for 𝑁𝑝 ≥ 6 which leads to an asymptotic behavior of 
the speedup. Similar to the findings of Ortega et al. (2014), the speedup is limited due to the fact 
that a multicore computer was used for the calculations. The efficiency of the parallel algorithm 
decreases as 𝑁𝑝 increases, and such a trend is frequently observed in parallel implementations of 
numerical methods. 
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a. 

 
b. 

Figure 2: 
a. Speedup and b. efficiency of parallel computation for the external source case 

3.2. Two-group Fission Source Problem 
 

For the two-group problem, the domain size is 𝑎 = 0.25𝑚 and the nuclear constants are presented 
in Table 1, which yield a multiplication factor of 𝑘𝑎 = 1.96413. A convergence parameter of 
10−6 is used for the iterative solution. Figure 3 demonstrates the variation of 𝜖𝑘 with 𝑁𝑇 where 
𝑐 = 𝑎 𝑁𝑇

1 2⁄⁄ , and the results are found with 29 iterations. The error values clearly display the 
accuracy and stability of the meshless algorithm. 
 

Table 1. Nuclear parameters for the two-group fission source problem (Tanbay and 
Ozgener, 2013) 

Group 𝐷(𝑚) 𝜈 Σ𝑓(𝑚−1) Σ𝑟(𝑚−1) Σ𝑠,𝑔→𝑔+1(𝑚−1) 𝜒 

1 0.012245 2.65 6.300 13.552 6.776 0.575 

2 0.012245 2.55 6.776 8.228 - 0.425 
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Figure 3: 

Convergence of the two-group fission source problem 
 
Figure 4 illustrates the parallelization speedup and efficiency of the RBF collocation 

approach. The speedup of the algorithm improves up to 7 processors, and the efficiency decreases 
with increasing 𝑁𝑝. A comparison with the external source problem shows that the speedup and 
efficiency of parallelization are higher for the two-group fission source case. The highest speedup 
values for the first and second cases are found to be 2.537 with 𝑁𝑇 = 1681 and 𝑁𝑝 = 5 and 
3.158 with 𝑁𝑇 = 1296  and 𝑁𝑝 = 7, respectively. This improvement in parallel speedup is due 
to the fact that the fission source problem is much more CPU-intensive than the external source 
case. Two coupled PDEs are solved iteratively for the fission source case, while a single PDE is 
solved directly for the external source problem. 

 

 
a. 

 
b. 

Figure 4: 
a. Speedup and b. efficiency of parallel computation for the two-group fission source problem 
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3.3. Four-group Fission Source Problem 
 
The third and final case is a four-group problem for which 𝑎 = 0.5𝑚. The nuclear parameters 

are provided in Table 2, where 𝐷 and Σ have dimensions of 𝑚 and 𝑚−1, respectively. These data 
yield an exact multiplication factor of 𝑘𝑎 = 0.87227. The numerical solutions are obtained with 
13 iterations where the iteration convergence parameter is 10−6. The parallel approach produces 
accurate and stable results as illustrated with the convergence curve in Figure 5, which is obtained 
with 𝑐 = 𝑎 𝑁𝑇

1 2⁄⁄ . 
 

Table 2. Nuclear parameters for the four-group fission source problem (Tanbay and 
Ozgener, 2014) 

Group 𝐷 𝜈 Σ𝑓 Σ𝑟 Σ𝑠,𝑔→𝑔+1 Σ𝑠,𝑔→𝑔+2 Σ𝑠,𝑔→𝑔+3 𝜒 

1 2.876787 2.4 0.0049492 0.028204 0.023597 4.079×10-6 4.449×10-8 0.768 

2 1.570845 2.4 0.0022188 0.005275 0.001615 4.231×10-8 - 0.232 

3 0.722486 2.4 0.0043629 0.017612 0.004684 - - 0 

4 0.964199 2.4 0.0110879 0.026546 - - - 0 
 

 
Figure 5: 

Convergence of the four-group fission source problem 
 

The wall clock time, speedup, and computational efficiency of the parallel algorithm for the 
four-group case are presented in Table 3 for three sets of interpolation nodes. The speedup of the 
method improves as 𝑁𝑝 increases except at 𝑁𝑝 = 8 where overhead occurs due to communication. 
Although the speedup is limited by the multicore processor, the results show the significance of 
parallel computation. For instance, the wall clock time of the RBF collocation decreased by 716 
s for 𝑁𝑇 = 4356 when 7 virtual processors are utilized instead of sequential computation. 
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Table 3. Wall clock time, speedup, and computational efficiency of the method for the 
four-group fission source problem 

𝑁𝑝 1 2 3 4 5 6 7 8 

𝑁𝑇 = 2116 

Time (s) 272.855 142.481 113.544 107.071 99.619 96.276 90.840 93.355 

Speedup 1 1.915 2.403 2.548 2.739 2.834 3.004 2.923 

Efficiency 1 0.957 0.801 0.637 0.548 0.472 0.429 0.365 

𝑁𝑇 = 3136 

Time (s) 571.171 311.132 256.496 236.229 217.572 205.266 199.596 203.313 

Speedup 1 1.836 2.227 2.418 2.625 2.783 2.862 2.809 

Efficiency 1 0.918 0.742 0.604 0.525 0.463 0.409 0.351 

𝑁𝑇 = 4356 

Time (s) 1100.160 600.250 505.445 459.450 419.364 396.436 384.242 396.828 

Speedup 1 1.833 2.177 2.394 2.623 2.775 2.863 2.772 

Efficiency 1 0.916 0.725 0.599 0.525 0.462 0.409 0.346 
 
4. CONCLUSIONS 

The global radial basis function collocation method is an exponentially convergent and 
highly accurate technique to solve partial differential equations. However, the fully populated 
collocation matrix of the approach increases the computation time in a fast manner as the 
interpolation node set gets denser. Therefore, parallelization of the method is imperative for cases 
that require a large number of discretization nodes, such as multi-region configurations where the 
dependent variable may change sharply between different regions, to reflect the physical 
phenomena accurately. 

In this work, a parallel meshless global RBF collocation algorithm is developed and it is 
utilized for the solution of the 2-D neutron diffusion equation. Multiquadric is employed as the 
RBF and three problems, including a one-group external source case, a two-group fission source 
case and a four-group fission source case, are solved with the proposed algorithm. The speedup 
and computation efficiency are used as the criteria to assess the performance of parallelization 
while maximum and RMS errors in neutron flux distribution and relative error in multiplication 
factor are considered to measure accuracy. The RBF collocation method produces accurate and 
stable numerical solutions. Eight virtual processors are used in the numerical experiments, and 
the results show that the speedup of the method improves up to five and seven processors for the 
one-group external and multigroup fission source problems, respectively. Although speedup 
values are limited by the memory constraint of the multicore computer, the parallel approach 
provides significant time savings for CPU-intensive problems. 

In recent years, graphics processing units (GPU) become indispensable hardware elements 
for modeling complex physical phenomena. Parallelization of meshless methods with the aid of 
GPU has resulted in high levels of speedup and efficiency in computational fluid dynamics 
applications. Therefore, future works can be performed on implementing the parallel global RBF 
collocation method with GPU clusters. High performance computation with this parallel meshless 
technique has the potential to produce exceptionally accurate solutions for 3-D, multi-region 
nuclear reactor physics problems. 
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