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Abstract 

Vibration caused by mass imbalance is an important factor limiting the performance and fatigue life of the 

rotating system. Therefore, a balancing procedure is necessary for rotating systems. Spindle is the main 

mechanical component in machining centers. Its performance has a direct impact on the machining 

productivity and surface quality of the workpiece. In this paper, regenerative chatter analysis approach is 

used for vibrations of rigid rotors with a massless elastic shaft. This approach is firstly applied in literature 

by this study. In this study, Stability Lobe Diagram (SLD) is plotted the boundary between stable and 

unstable rotations as a function of spindle speed and imbalance mass. SLD process can be easily applied 

between spindle length, balancing mass amount, location of balancing mass on rotor etc. variable 

parameters and spindle speeds for stable rotating system.     

Key words: Rotating machinery, Vibration, Stability analysis 

 

DÖNER MAKİNA TİTREŞİMLERİNİN STABİLİTE ANALİZİ  

İÇİN TIRLAMA STABİLİTE ANALİZİ YAKLAŞIMI 

Özet 

Kütle dengesizliğinden kaynaklanan titreşim, döner sistemlerin performansını ve yorulma ömrünü 

sınırlayan önemli bir etkendir. Bu sebeple döner sistemler için bir dengeleme işlemi gereklidir. Mil, işleme 

merkezlerinin en önemli bileşenidir. Onun performansının işleme verimliliği ve işlenen parçanın yüzey 

kalitesi üzerinde direkt etkisi vardır. Bu çalışmada, rejeneratif tırlama analizi yaklaşımı, kütlesiz elastik 

şaftlı rijit rotorların titreşimlerinde kullanılmıştır. Bu yaklaşım literatürde ilk olarak bu çalışmada 

uygulanmıştır. Bu çalışmada Stabilite Lob Diyagramı (SDD), mil hızı ve dengesizlik kütlesinin bir 

fonksiyonu olarak kararlı ve karasız dönüşler arasındaki sınırda çizilmiştir. SLD, mil uzunluğu, 

dengeleyici kütle miktarı, dengeleyici kütlenin konumu vb. değişken parametreler ile stabil döner 

sistemlerin mil hızları arasında kolaylıkla uygulanabilir. 
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1. INTRODUCTION 

Rotating machine elements are commonly used in mechanical systems. For example, machine tools, 

aircraft gas turbine engines etc. have rotating equipment. Vibration due to mass imbalance is a general 

issue in rotating machine elements. Imbalance occurs if the rotating axis of inertia of the rotating machine 

element (rotor) is not coincident with geometric axis of rotating machine element. As known, higher 

spindle speeds generate much greater centrifugal imbalance forces. Hence, the tendency of the rotating 

machine element towards high power requirements leads to higher operating speeds. Generally, chatter 

vibrations are one of the most critical limiting factors considered in machine tool design. The centrifugal 

force on rotating cutting system of machine tool becomes periodically variable, reaching considerable 

amplitudes and machine tool system becomes shutdown. Therefore, vibration suppression of rotating 

machine element is difficult and important engineering problem. Vibration control is necessary in 

achieving longer bearing life, spindle life, and tool life in high-speed machining. Also, vibration control is 

very important for improving machining surface finish and reducing the number of unexpected 

shutdowns. Significant cost savings for high-speed turbines, compressors etc. and power generation 

stations can be achieved using a variety of vibration control analysis methods [1, 2]. Many techniques 

have been presented to reduce within acceptable limits this vibration on machines: off-line balancing 

methods [3], on-line active balancing methods using mass redistribution devices [4-7], and on-line active 

balancing methods using magnetic bearings [8-11]. These on-line methods can be applied during rotor 

operation if the rotation speed is constant.  

The manufacture process in many factories is extremely automated and requires which the turning, 

milling, drilling and grinding operations run for predictable time periods to maintaining production 

throughput. This means that with existing cutting tools and equipment, machine tools must operate at a 

range of operating speeds up to 12,000 rpm, with an unplanned number of holds. Today's modern machine 

tools can operate from 16,000 rpm up to a maximum of 80,000 rpm. There is a need to apply High Speed 

Machining (HSM) technology to new areas to increase productivity, reduce costs and delivery time, and 

increase processing sensitivity of complex features. Cutting performance in HSM is driven primarily by 

tool holder, tool and spindle dynamics. Generally, vibration analysis can be easily discriminated from 

oscillation effects of machine tools due to the much stricter and lower frequency dynamics of the structure 

of machine tools. Cutting tool and work spindle of machine tool interaction critical and difficult to 

intuitively predict. Machine tools consist of a machining process, a machining process model, a structural 

model and a feedback loop. The cutting force on the cutting tool depends on the feed rate, cutting depth 

and cutting speed. This dynamic shear forces cause a relative displacement between the tool and the 
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workpiece by stimulating the structural model of the tool and/or workpiece. These displacements then 

modulate the cutting feed and/or depth by means of the displacement feedback and possibly cause excited 

instability. To solve the stability problem, the system characteristic equation can be derived and solved to 

obtain the stability limit with respect to the depth of cut. Problem of rotating cutting tool of machine tool  

can be analyzed in one of two methods. The stability analysis can be carried out at stationary inertia 

coordinates; the directional coefficients of the force components in these coordinates change periodically 

with time. Or, this stability analysis can be done in the rotating coordinate space of the cutting tool, in 

which case the directional force coefficients are not time dependent. However, in the latter method, the 

two orthogonal coordinates of the cutting tool are dynamically combined as a function of spindle speed. 

For rotary tool machining, such as milling, drilling and cylinder drilling, the tool rotation causes the 

machining force on each tooth to rotate repeatedly with respect to the inertia coordinate frame. This is 

different than stationary tool machining, such as turning or boring in which the force directions are fixed 

relative to the inertial frame. Stability analysis for rotating tools is extensively investigated in the milling 

and grinding process, but the process is interrupted and therefore changes over time, leading to analysis 

methods that are analytically approximate or use time domain simulations [12]. In this study, a chatter 

stability analysis approach for stability analysis of a rigid rotor’s vibrations is presented. This approach 

was firstly applied for rigid rotors as rotating shaft. Stability Lobe Diagram (SLD) is plotted the boundary 

between stable and unstable rotations as a function of spindle speed of machine tools and imbalance mass. 

Therefore, firstly, modal analysis is performed for spindle-rotor system in perpendicular to each other 

direction. Model analysis of the cutting system is performed by impact force hammer set and CutPro 8 

software. Hence, equivalent mass, damping ratio, stiffness and natural frequency of spindle-rotor system 

are determined. Acting forces on the rotor are determined by a force dynamometer.  

  

2. MODELING OF DYNAMIC ROTOR SYSTEM 
 

The planar rotor model (PRM) is the simplest model for mathematical modeling. Because, only the motion 

of dynamic rotor system in the plane (x-y), that is perpendicular to the rotating elastic spindle (shaft), is 

take into accounted. Even though the PRM is pretty simple rotor model, as critical speed, damping effect, 

it can be used to investigate the principal phenomenon of rotating disc dynamics as well. The rotor in the 

PRM is modeled as a rigid disc supported by a massless elastic spindle mounted on stationary solid 

bearings. Also, it is suitable to a solid spindle supported by elastic bearings. A significant development 

over the simple PRM is which the movement of the rotor is shown by solid form movement instead of 
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particle movement. Although PRM is a single solid rotating disc (rotor) model, it can represent the basic 

some event in the movement of the rotor, including the forward and backward whirling under imbalance 

force, the gyroscopic effect, critical speeds, and so on. In fact, the natural frequency of the system is a 

function of the number of cycles (spindle speed) that can be estimated by this PRM. The geometric and 

force setup of the planar rotor model is shown in Figure 1. In this model, the vibration caused by the 

imbalance is defined by the particle motion of the discrete geometric center. Here, P is the discrete 

geometric center and G is the discrete mass center. 

 

Figure 1. Geometric and Force Setup of the Rigid Rotor Model 

Where, 𝜃 is the rotating angle of the rotor, 𝑥, 𝑦, 𝑧 are rotor coordinate frame through the geometric center 

of the shaft and/or of the disc 
 O , 

yx ,
are coordinate transformation with  . P  is the geometric center 

of the disk, P is the displacement of the P due to vibration and G is the mass center of the disk. tr FF ,  

and TF  are radial, tangential and centrifugal total forces respectively. The equations of motion of the 

rotating system with a constant spindle speed  z , can be derived in the rotational coordinates; 

 

 

( ) ( ) ( ) ( )x x x Txm x t c x t k x t F t     

( ) ( ) ( ) ( )
yy y y Tm y t c y t k y t F t                               (1) 

 

where yxm , , yxc , , and yxk ,  are the mass, the viscous damping coefficient, and the shaft-stiffness 

coefficient on the x  and y  directions, respectively. Total force  )(tFT  is can be expressed as; 
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22 )()()( tFtFtF trT                   (2) 

 

where radial  )(tFr  and tangential  )(tFt   forces are can be expressed as; 

)()()()( 2 tthmtamtF zb
n
xbr 


  

)()()()( tthmtamtF zb
t
xbt 


                  (3) 

Where bm  is imbalance mass of the rotating disc. For a constant rotating speed

 .)()( constt zz  
 ,    is zero. If angular acceleration is not zero  0 , the equations of 

motion of the system are expressed as; 

 

( ) ( ) ( ) ( ) ( )cos ( )cos (t)x x x Tx Tm x t c x t k x t F t F t t        

( ) ( ) ( ) ( ) ( )sin ( )sin ( )
yy y y T Tm y t c y t k y t F t F t t t                                (4) 

Where   is angle between ( )TF t  and ( )rF t  as shown in Fig.3. 

 

 

Figure 2. Dynamic position system of the Rigid Rotor Model 

 

Equations (2) and (3) are substituted into Equation (4); 

4 2( ) ( ) ( ) ( ) ( ) ( ) cos ( )cos (t)x x x d z zm x t c x t k x t m h t t t t         



 

                                                 Türkeş / Kirklareli University Journal of Engineering and Science 3(2017) 1-17   

 

Chatter Stability Analysis Approach for Stability Analysis of Rotating Machinery Vibrations                                                   6 

4 2( ) ( ) ( ) ( ) ( ) ( ) sin ( )sin (t)y y y d z zm y t c y t k y t m h t t t t                               (5) 

 

Where )t()t()t(Q 2
z

4
z    . If angular acceleration is zero  0 , the equations of )t(Q  is  

)t()t(Q 4
z  and 0 ( ) ( )T rF t F t    . Combining this term with Eq. (5) gives; 

( ) ( ) ( ) ( ) ( )cos ( )x x x dm x t c x t k x t m h t Q t t     

( ) ( ) ( ) ( ) ( ) sin ( )y y y dm y t c y t k y t m h t Q t t                            (6) 

where )()( tOGth


  is dynamic displacement of through the geometric center of the disk as shown in 

Fig.1 and Fig.2 and,    is angle between )t(F)t(F rT   and mode x  direction as shown in Fig.3. 

Hence, dynamic displacement  )t(h  is can be written as;  

 

)t(x)t(xre)t(re)t(GO)t(h dd 


              (7) 

where PGe   is eccentricity between P and G  and constant, )()( tPPtx

  is the present 

displacement of the geometric center of the disk from the static position  O , )()( tPOtx

  is the 

displacement of the geometric center of the disk on the previous rotation with the amount of   of the disk. 

Also, )t(x)t(xr)t(r dd   is displacement between rotation center of the rotor (during static of 

the rotor)  O  and geometric center of the rotor (during dynamic of the rotor)  P  of the rotor system. The 

values of the )t(rd  can be obtained from the case of a centrifugal force equal to the shaft deflection force 

(Hook’s law); 

)t(F)t(F .centrshaft      e)t(rm)t(rk d

2

zd        

 e)t(r)t(r
m

k
d

2

zd      
m

k2

n    

 e)t(r)t(r
m

k
)t(r d

2
zdd

2
n       

n

zr



  

 e)t(r

)t(r
r

d

d2


                   (8) 

 

By resonance condition of the rotating rotor system; 
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 
e

r1)t(rd
2
n2

z





     
 2

2

1
)(

r

r
etrd


             (9) 

Hence, plotting of the stability lobes can be achieved by scanning the chatter frequencies  zc    

around the natural frequency  n  of the structure for the 
n

c

n

zr







 . 

 

Figure 3. Vibration modes and Radial force  )t(Fr  of the dynamic rigid rotor system. 

 

However, for this article    is zero. Hence, Eq. (6) can be written as; 

 
2( ) ( ) ( ) ( ) ( )cos ( )x x x d zm x t c x t k x t m h t t t      

2( ) ( ) ( ) ( ) ( )sin ( )y y y d zm y t c y t k y t m h t t t                            (10) 

 

Defining the following terms;  

)t(cosC)t(K x  ; )t(sinC)t(K y     .cons)t(C 2

z    

The equations of motion can be written as; 

( ) ( ) ( ) ( ) ( )x x x x dm x t c x t k x t K t m h t     

( ) ( ) ( ) ( ) ( )y y y x dm y t c y t k y t K t m h t                            (11) 
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By defined the following terms from Eq.(7);        txtxe ;         txtxrd  .  

Combining these terms with Eq. (11) gives; 

 ( ) ( ) ( ) ( ) ( )x x x x dm x t c x t k x t K t m x t x t          

 ( ) ( ) ( ) ( ) ( )y y y x dm y t c y t k y t K t m x t x t                                     (12) 

The equations of motions are converted to a form in terms of arc length,  u , instead of time  t  defined 

as follows:  

tVu     V
dt

du
ut   

where V  is the mean linear speed of the disk given by: 

60

nd
V


      and, where d  is the disk diameter  m , n  is spindle speed  rpm . For convenience, the 

dimensionless equations of motion for this spindle are:  

 

 
2

( ) ( ) ( )x x x x d

du du
m x c x k x K t m x u x u d

dt dt


   
         

   
    

 

 
2

( ) ( ) ( )y y y y d

du du
m y c y k y K t m x u x u d

dt dt


   
         

   
           (13) 

 

Furthermore, the equations are then simplified somewhat by dividing the x-direction equation through by 

2
2

Vm
dt

du
m xx 








 and the y-direction equation by  

2
2

Vm
dt

du
m yy 








 and defining the following 

terms; 

 

Vm

c
c

x

x
x ~  ,              

2

~

Vm

k
k

x

x
x  ,         

2

~

Vm

mK
F

x

dx
x


  

 

Vm

c
c

y

y
y ~ ,            

2

~

Vm

k
k

y

y
y  ,          

2

~

Vm

mK
F

y

dy
y


  

 

By simplifications the equations of motion are gives;   

 

 ( ) ( )x x xx c x k x F x u x u d              
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 ( ) ( )y y yy c y k y F x u x u d                   (14) 

To obtain of the characteristic equation of system, the equations of motion can be written in matrix form 

as [13]; 

0 0 01 0 ( ) 0

0 00 1 ( ) 0

x x x x

y yy y

c k F Fx x x x u d

c Fy y y y u dF k





                 
                                      

         (15) 

Taking the Laplace Transform and determinant to find the characteristic equation of system yields; 

     

    sd
xyyxxy

xxyyxxxyxyyx

eFkscsFkk

sFkckcsFkccksccssE





~~~~~~

)
~~

(~~~)
~~

(~~~~~)(

2

234

                    (16) 

where; 

xFa
~

14  ,   xyx Fcca
~~~

3  ,   xxxyxy FFkccka
~

)
~~

(~~~
2   

  xxxyyx FFkckca
~

)
~~

(~~~
1  ,   xxxy FFkka

~~~~
0   

 

Combining these terms with (16) gives: 

 

  sd
yyx ekscsasasasasaFsE 

~~~
)( 2

01
2

2
3

3
4

4           (17) 

Setting )(sE  equal to 0, this becomes: 

 
01

2
2

3
3

4
4

2 ~~

asasasasa

kscs
e

yysd






              (18) 

Equation (18) is then separated into two parts: 

dseU 1 , 

01
2

2
3

3
4

4

2

2

~~

asasasasa

kscs
U

yy




                                                               (19) 

Letting js    the roots of )(sE  will occur when 1)(2 jU  therefore: 
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 
   3

310
2

2
4

4

2 ~~

1




aajaaa

cjk yy




              (20) 

Eq.(20) is squared resulting in the following: 

     23
31

2

0
2

2
4

4
2222 ~~

 aaaaack yy            (21) 

Expanding this and collecting terms yields: 

   

 

2 8 2 6 2 4

4 4 2 3 4 0 2 3 1

2 2 2 2 2

2 0 1 0

2 2 2 1

2 2 0y y y

a a a a a a a a a

a a a k c a k

  



       

      
            (22) 

 

The roots of this equation can now be found. Since (20) was squared to produce (22), the number of found 

roots will be twice the number actually found in the system. As a result, only the positive real roots of the 

equation need to be examined. Each positive real root i  
is substituted back into (19) to find )(2 ijU  . 

The angle of the resulting number is calculated as follows: 

 

 
 )(Re

)(Im
tan

2

21

i

i
i

jU

jU




                  (23) 

 

The angle is then used to generate the values of the delay values,  , where; 

 

  iiik k  2    k=0, 1, 2, .......             (24) 

 

One of these sequences is produced for each root. Sequences of all these roots are brought together and 

sorted in ascending order. This sequence represents intervals on the time delay axis. These delay values 

are computed at each positive real root and gives a large set for  .....,3,2,1k  The total set of delays are 

then brought together in an increasing order to form intervals of the   axis. 

 

3. STABLITY ANALYSIS OF ROTOR SYSTEM 

 

Vibration due to mass imbalance is one of the important factors limiting the performance of a rotating 

system and the fatigue life. There are two important control methods for suppressing vibration caused by 

imbalance. These are active and passive control methods. Both methods are used to balance the rotating 



 

                                                 Türkeş / Kirklareli University Journal of Engineering and Science 3(2017) 1-17   

 

Chatter Stability Analysis Approach for Stability Analysis of Rotating Machinery Vibrations                                                   11 

system.  Active vibration control is more effective and more flexible than passive vibration control. It is 

therefore more useful. There are also two types of active vibration control techniques. These are direct 

active vibration control techniques and active balancing techniques. Off-line balancing methods in active 

balancing techniques [3] are widely used in practice. Even so these techniques are usually time-consuming 

and cannot be used if the distribution of imbalance changes during operation. In some studies as in [4-7] 

was tried to use some kind of mass redistribution device to actively balance the rotating systems during 

operation. This method can be used to determine the vibration caused by the imbalance or the force 

transmitted to the base, lateral force actuators such as magnetic bearings [8-11].  All of the above-

mentioned investigations focus on the constant rotation speed condition. This is called the “steady state”. 

Due to the assumption of constant speed of rotation, the rotor coefficient method is used to model the 

dynamic rotor system. All rotor dynamics equations are constructed with constant influence coefficients. 

Estimation of the imbalance, which is very important in the balancing and active vibration control 

schemes, is carried out by estimating the effect coefficients. An alternative method to estimate the rotating 

system imbalance is provided by Reinig and Desrochers [14] and Zhu et al. [15]. States of the rotor 

dynamic system are increased to include imbalance forces. Then, an observer is used to estimate the 

determined increased states in their methods.  Their methods are also related to the constant spindle speed 

case. For this reason, the magnified system is a time-invariant linear system. Luenberger observer 

(Luenberger [16]) can be used to estimate the imbalance forces. In addition to the constant spindle speed 

(rpm), the imbalance vibration control must be completed for a time-varying transient time to save time 

and improve performance in some other situations. For example, a machining tool must be subjected to a 

cutting process in which the spindle enters a steady state during high-speed machining. To reduce the 

effect of the cutting tool vibration during the cutting cycle, the machine tool's vibration control must be 

active during acceleration time. Although several researchers as in (Knospe et al. [17]) have indicated how 

to conduct imbalance vibration control during the startup through the critical speed, their basic method is 

to interpolate the influence coefficients between different speeds. This is a quasi-steady strategy.  Very 

little research has been done with rapid acceleration and low damping rate for balancing and active control 

of the rotor system. Zhou and Shi [18] obtained an analytical expression of the vibration that induced the 

imbalance of a rotor system during acceleration. In this analytical sense, if the acceleration is high and the 

damping is low, there may be a free vibration component that appears suddenly in the vibration triggered 

by the imbalance. Under these conditions, the semi-steady state assumption does not apply. In addition, 

Zhou and Shi [2] proposed a real-time active compensation scheme for the rapid acceleration case. Their 

scheme is based on the least squares estimation for imbalance [19]. 
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The first reported research on chatter stability is done by Merritt [20], who presented a method of 

analyzing the stability as a function of cutting depth and speed, and presented the results by so-called a 

Stability Lobe Diagram (SLD). In drawing a SLD, three common methods are well-known. The first uses 

the Nyquist approach in which the stability is analyzed with respect to chosen cutting parameters, such as 

the cutting depth and the speed, and the critical values for each physical parameter are identified. The 

second approach is based on a Time Domain Simulation (TDS) which uses a closed loop dynamical 

cutting model and is performed for various cutting parameters [21]. The third approach of obtaining SLD 

is an analytic prediction technique, developed by Tobias and Fishwick [22]. In this technique SLD is 

plotted the boundary between stable and unstable cuts as a function of spindle speed and chip width. 

These diagrams provide a means of selecting favorable combinations of spindle speed and axial depth of 

cut in end milling, for example, for increased Material Removal Rates (MRR). Following this work, 

Fourier series expansion of time varying parameters of the centrifugal total force  TF  has been 

implemented in solving the differential equations of the analytical model in an iterative manner. TF  is 

usually assumed linear with respect to imbalance mass of the rotating disk  bm  and dynamic 

displacement of vibration  )(th . The centrifugal total force  TF  is also assumed independent of the 

spindle speed  z . However, it is well-known that the centrifugal total force is highly nonlinear with 

respect to all rotating parameters. The work presented in this paper follows the footsteps of Tobias and 

Fishwick in simulating the cutting stability using an analytic approach [22].  The centrifugal total force 

 TF  direction is assumed constant, and the rotating disk is modeled by a rigid mass and linear stiffness 

and damper elements. The force is determined by the x direction motion as given in Eq.(4). Stability of the 

system is analyzed using the Nyquist criterion in performing analytic simulations.   

)t(x)t(xre)t(GO)t(h d 


 

Using equation (12), the closed loop transfer function is obtained as; 

)1()(1

)(

s
b

b

esGCm

sGCm

e

X


                 (25) 

The system is modeled as a closed loop controller, as shown in Figure 4,   
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Figure 4. Block diagram of regenerative cutting process 

 

where )(sG  is the open loop transfer function obtained between the centrifugal total force  TF  and the 

displacement in the )(tx  direction. The denominator of the closed loop transfer function is given by 

equation (18), and the system stability based on Nyquist criterion is determined using; 

)0,1()1()( jesGCm s
b  

               (26) 

the location of the left side of Eq.(26)  is  studied with respect to the point (-1, 0j).  This is done by first 

setting s=j, 

  11)(    j
b eGCm                (27) 

 

Next, this equation is studied in two-parts as given in Eq.(18). The left side of Eq.(18) has unit magnitude 

and phase of   for all positive real frequency values, and it gives a unit circle or a critical trajectory. The 

right side of Eq.(18) presents a Nyquist curve, and its intersection with the unit circle determines 

)(2 jU .  Eq.(20) defines these frequency values. Regenerative chatter occurs at a frequency equal to the 

closest mode of the rotating shaft/disk system natural frequencies, and it generates a relative motion 

between the shaft rotating center and the disk rotating center.  Thus, there is always a phase difference 

between two consecutive vibration wave forms, and it is given by 

n
k s






2
                  (28) 

where k  is the number of waves in one period,   phase difference  rad , s  rotating shaft/disk system 

frequency  s1  ;  n  is spindle speed  srev .  This equation corresponds to Eq.(24), where  

s

k






2

2 
    →  



60
n             (29) 

)(1 jU  and )(2 jU  defined in Eq.(18) are simulated in Fig. 5, where for values between larger and 

smaller than the obtained positive real values of i , 2U  curve is simulated to show if it enters into or 
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exits the stability region, or the unit circle.  Since two roots exist, one is shown to enter while the other 

exits. At each delay value  given in Eq.(20), two positive real roots exist and at these values the unit 

circle is intersected. The SLD is obtained by determining the imbalance mass of the rotating disk bm  for 

a given range of spindle speed.  The limit values of imbalance mass of the rotating disk is obtained from 

Eq.(26) with the help of Eq.(28) as 

 jb
eGC

m





1

1
lim

               (30) 

or, by considering only the real values,  

 )(Re2

1
lim jGC

mb                  (31) 

The SLD obtained for the two degree of freedom model in Fig. 1 is given in Fig. 6.  A Matlab program 

was written, in generating both Fig. 5 and Fig. 6. 

 

 

Figure 5. Unit circle and Nyquist curve 
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Figure 6. Stability Lobe diagram for dynamic system.  

 

Stability of this system was investigated by applying τ decomposition form to Nyquist criteria. The 

centrifugal total force, which changes in the course of time, proportionally with the dynamic reaction 

forces occurred from the external perpetual forces on the rotating system, is a general acceptance of linear 

modeling. For this reason, the constant component of the centrifugal total force tF  is neglected but 

variable component rF
 
produced by dynamic load is taken into account. According to the Nyquist 

criteria, the right side of this equation expresses Nyquist plane curve U2 and the left side expresses critical 

orbit U1. Thus, the positive real root of this equation gives the chatter frequency of the system as seen in 

Fig. 5. The above mentioned analytical method is the determination of the natural frequency of the system 

and mode shapes by measuring transfer functions by using an impact hammer and accelerometer. 

Analytical predictions of performance can be done by using this information. This analysis technique is 

based on the investigation of stability and plotting the SLD from the solution of the characteristic equation 

of the system depending on the critical parameters such as axial imbalance mass of the system and spindle 

speed as seen in Fig. 6. This analysis is made with the acceptance that the force process is linear according 

to external perpetual force and imbalance mass which doesn't depend clearly on rotating speed. 
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4. CONCLUSIONS 
 

Although the model used is very simplistic and does not account for the most of the system parameters, it 

helps the reader get a fundamental understanding of the rotating system dynamics and stability issues. A 

two degree of freedom model of rotating system is developed, and the vibration phenomenon is analyzed 

to show how it can be prevented. The simulated results determine the critical imbalance mass of the 

rotating disk values as a function of the spindle speed. The results show that larger imbalance masses free 

of chatter can, in general, be accomplished at large speeds. However, the stability switches are 

unavoidable no matter how large the speed is. Large stable gaps occur at high spindle speeds, where the 

rotational frequency of the rotating disk is equal to the dominant natural frequency of the rotating 

shaft/disk structure. This stability analysis approach can be easily applied between spindle length, 

balancing mass amount, location of balancing mass on rotor etc. variable parameters and spindle speeds 

for stable rotating system. Hence, system sizing will be achieved by considering elastic modulus (E) and 

Yield strength (σ) of the system spindle for more stable rotating system.     
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