
Celal Bayar University Journal of Science 

Volume 19, Issue 4, 2023, p 323-332 

Doi: 10.18466/cbayarfbe.1327271  S. Ç. Yavuz 

323 

Celal Bayar University Journal of Science 

Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles 

Modified-SiO2; as Catalysts in the Reduction Reaction of Organic 

Pollutants 

Sevtap Çağlar Yavuz1* , Emre Yavuz2 , Serkan Dayan3

1* Department of Medical Services and Technicians, Ilic Dursun Yildirim Vocational School, Erzincan Binali 

Yildirim University, Erzincan, Türkiye 
2 Department of Medical Services and Technicians, Cayirli Vocational School, Erzincan Binali Yildirim University, 

Erzincan, Türkiye 
3 Drug Application and Research Center, Erciyes University, Kayseri, Türkiye

* sevtap.yavuz@erzincan.edu.tr

* Orcid: 0000-0001-6497-2907

Received: 17 July 2023 

Accepted: 26 November 2023 

DOI: 10.18466/cbayarfbe.1327271 

Abstract 

Nanomaterials have been used in catalytic degradation of organic pollutants also act as catalysts in for many 

years. Due to excellent catalytic performances of metal-based nanoparticles, these materials have been used 

extensively in various hybrid catalyst synthesis. The main subject of this study, heterogeneous catalysis is 

a low cost and multi-purpose process for many pollutants. Catalytic degradation of organic pollutants such 

as; 2-nitrophenol, quinolin yellow and rhodamine B was investigated by using Ni, Co, Pd nanoparticles 

modified SiO2 based nanomaterials. The co-doping effect on the prepared nanomaterials has been 

investigated with different characterization methods in terms of structural and morphological features: 

scanning electron microscopy, UV/vis absorption spectroscopy, energy-dispersive X-ray spectroscopy and 

foruier-transform infrared spectroscopy. The highest catalytic reduction efficiencies (97.6% and 97.5%) for 

2-nitrophenol and rhodamine B was obtained by Pd-PEG-AP@SiO2 respectively. The synthesized Co-PEG-

AP@SiO2 illustrated higher  catalytic reduction efficiency for quinolin yellow (70.1%) at the end of 60s. 

The prepared M-PEG-AP@SiO2 nanomaterial (M: Pd,Co,Ni) can be able to utilized degradation of organic 

contaminants effectively. 

Keywords: Catalysts, Catalytic degradation, Nanoparticles, SiO2 nanomaterials 

1. Introduction

Degradation of organic contaminants such as dyes and 

nitro-aromatic compounds by chemical methods can 

be performed quickly, simply and with high 

efficiency. However, removing them with new 

generation nanomaterials is more environmentally 

friendly and feasible. It is essential to combine these 

methods with today's nanomaterials in order to both 

increase the efficiency and reduce the removal costs, 

especially in the methods in which reducing agents 

such as NaBH4, which is one of the chemical 

degradation methods, are used [1,2]. Catalytic 

degradation is an environmentally friendly technique 

that has emerged as a promising alternative for the 

remedation of various organic pollutants [3]. 

Heterogeneous catalyst applications are the basis of 

many chemical technologies used today.  

The application fields of heterogeneous catalysis 

include chemical production, environmental 

technologies, energy storage and conversion [4]. Over 

the last decades, nanotechnology and nanomaterials 

have been of great interest, as it is foreseen that it will 

be an important step for a sustainable future. [5]. These 

nanoscale composites take part in numerous 

applications in most heterogeneous catalysis. [6-9]. 

Due to their high activity noble metals such as Pd, Pt, 

Rh [10] are often used as co-catalysts in catalytic 

reactions. However, because noble metals are 

expensive and scarce, low-cost and high-yield 

alternatives such as non-noble metals such as Ni and 

Co are highly preferred [11-16]. In recent years, the 

release of many toxic and harmful pollutants into the 

environment has increased gradually due to the rapid 

progress of modern industry and agriculture.  
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Organic pollutants in air and water, which are widely 

noticed among these pollutants, are potentially toxic 

and carcinogenic [17]. Organic dyes used in textile and 

food industries are an important source of 

environmental pollution. Dyes often have 

carcinogenic effects on humans and are also toxic to 

aquatic life [18]. 

 

Rhodamine B (Rh B) is an important xanthene dye that 

has many applications in textile, paper, dye and leather 

production [19,20]. Quinolin yellow (QY), an organic 

pollutant, is also a food coloring. Adsorption, 

oxidation, reduction, electrochemical and membrane 

filtration methods are widely applied to remove these 

pollutants in domestic and industrial wastewaters 

[21,22]. 2-Nitrophenol (2-NP), 3-nitrophenol (3-NP), 

4-nitrophenol (4-NP) are among the most persistant 

organic pollutants found in wastewaters by virtue of 

their high stability and solubility [23]. The degradation 

of these contaminants have been studied for last years. 

In order to enhance the photocatalytic degradation 

performance of metal based nanoparticles (Co, Ag2O, 

Pd, Cu, Ni) they should been well-decorated on 

templates graphene, SiO2 etc. [24-27]. 

 

The objective of this investigation is synthesis and 

characterization of Pd/SiO2, Co/SiO2 and Ni/SiO2 

nanomaterials and using for catalytic degradation of 

aqeous solutions of 2-NP, QY and Rh B dyes. 

 

2. Material and Methods 

 

All reagents and solvents were purchased from 

commercial suppliers and used without further 

purification. The molecular interactions among the 

SiO2 and metallic nanoparticles were affirmed by FT-

IR (Fourier-transform infrared spectroscopy) analysis 

using Perkin Elmer 400 FT-IR/FT-FIR Spectrometer 

Spotlight 400 Imaging System. The surface 

morphological characterization was performed by FE-

SEM (Field emission scanning electron microscopy), 

EDX (Energy-dispersive X-ray spectroscopy), and 

mapping analysis using Zeiss GeminiSEM 500. The 

immobilization of nanoparticles on SiO2 was 

examined by X-ray diffraction (Malvern panalytical 

XRD). The concentration of nitrophenol and dyes 

were determined by The UV-vis spectrophotometer 

(Shimadzu UV-2700). 

  

2.1. Synthesis of Compounds 

2.1.1. General Procedure for the Synthesis of 

Pd/SiO2, Co/SiO2 and, Ni/SiO2 Nanomaterials 

 

In order to synthesis Pd/SiO2 nanomaterial, the 

previous method in literature was modified [28]. 0.5 g 

3-amino functionalized silica gel, 0.025 g PEG P123 

and 0.0886 g PdCl2 were weighted and dissolved in 20 

ml ultrapure water. After that this mixture was 

transferred into 25 ml Teflon-lined stainless steel 

hydrothermal unit. The hydrothermal unit was heated 

in microwave oven at 600 W for 10 minute and then 

cooled to room temperature. 0.0378 g NaBH4 was 

added to this mixture and was heated in microwave 

oven at 600 W for 10 minutes again. The precipitates 

were filtered and washed with ultrapure water, 

ethanol, respectively. The obtained nanomaterial was 

dried at 60 oC at for 3 hours. 
 

For synthesis of Co/SiO2 and Ni/SiO2 nanomaterials, 

Co(NO3)2.6H2O (0.1455 g) and Ni(NO3)2.6H2O 

(0.1454 g) was weighted and the similar procedure that 

described above was performed. 
 

2.2. Model Reduction Reaction with Fabricated 

Catalysts 
 

The catalytic efficiencies of Pd-PEG-AP@SiO2, Co-

PEG-AP@SiO2, and Ni-PEG-AP@SiO2 nanoparticles 

were investigated about reduction reaction process and 

the 2-NP, QY, and Rh B were selected as reduced 

organic pollutants with BH4
- ion (in the optimum 

concentration) at ambient temperature in water. In 

brief, firstly, the Pd-PEG-AP@SiO2, Co-PEG-

AP@SiO2, and Ni-PEG-AP@SiO2 nanoparticles (5 

mg) prepared and added to the reaction tube with the 

organic pollutants solution and NaBH4 (0.03 M) as a 

hydrogen source in water (10 ml) at ambient 

temperature and different times. End of the desired 

time, the measurement example (approximately 2.5 

ml) from the catalytic reaction were filtered through 

the micro-column with cotton for UV-vis 

spectrophotometer measurements in different nm 

range. The catalytic performances of Pd-PEG-

AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles were monitored the 

absorption bands relating organic pollutants and the 

corresponding peaks were seen appeared and 

disappeared after reduction process on the UV-vis 

spectrum. 
 

3. Results and Discussion 

3.1. Synthesis and Characterization 
 

FT-IR 
 

The molecular interaction that occurred in the Pd-

PEG-AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles were verified by infrared 

spectroscopy (FT-IR). The spectra of Pd-PEG-

AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles are given in Figure 1 and the 

data of spectrums of nanoparticles are listed as 

follows; 

 

For Pd-PEG-AP@SiO2, FT-IR (cm-1): 3292, 2980, 

2941, 2878, 1709, 1620, 1565, 1549, 1515, 1403, 

1338, 1048, 795, 784, 712, 704, 693, 682, 674, 660, 

650, 619, 607, 602, 589, 574, 561, 547, 536, 520, 513, 

451, 444, 435, 426, 418, 407, 402. 

 



 

Celal Bayar University Journal of Science  

Volume 19, Issue 4, 2023, p 323-332 

Doi: 10.18466/cbayarfbe.1327271                                                                                                      S. Ç. Yavuz 

 

325 

For Co-PEG-AP@SiO2, FT-IR (cm-1): 3683, 3675, 

3664, 2988, 2972, 2901, 1451, 1406, 1394, 1383, 

1249, 1241, 1229, 1225, 1074, 1066, 1056, 1050, 

1028, 893, 880, 788, 745, 720, 709, 704, 685, 674, 

666, 648, 638, 633, 626, 601, 590, 578, 570, 559, 554, 

542, 530, 518, 513, 493, 471, 463, 454, 441, 433, 424, 

417, 408. 
 

For Ni-PEG-AP@SiO2, FT-IR (cm-1): 3684, 3675, 

3661, 2988, 2972, 2901, 1626, 1451, 1406, 1394, 

1382, 1249, 1241, 1226, 1066, 1054, 1028, 893, 880, 

799, 789, 753, 744, 675, 668, 626, 602, 578, 570, 554, 

539, 532, 526, 520, 471, 464, 449, 441, 430, 419, 412. 

According to the FT-IR data, the N-H/O-H, C-H 

(aliphatic) stretching bands were obtained between ≈ 

3650-3200 cm-1, ≈ 3100-2800 cm-1, respectively. Also, 

the Si-O-Si and Si-O bands were assigned as 1150-

1000 cm-1 and 600-450 cm-1, respectively. Thus, the 

molecular structure of the fabricated nanomaterials is 

compatible with the FT-IR data (Figure 1). 
 

 
 

Figure 1. FT-IR spectra of the fabricated Pd-PEG-

AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles. 
 

XRD 
 

The X-ray diffraction pattern of the Pd-PEG-

AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 are given in Figure 2.  

 
Figure 2. XRD pattern of the fabricated Pd-PEG-

AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles. 

The pattern of Pd-PEG-AP@SiO2 was matched with 

JCPDS card: 87-064, but for other materials, the 

amorphous SiO2 structure was recorded as the 

dominant pattern (Figure 2).  

 

SEM-EDX 

 

The field emission scanning electron microscopy (FE-

SEM), EDX, and Pd, Co, and Ni mapping analyses of 

Pd-PEG-AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 were carried out, and the surface 

morphologies, EDX, and elemental images are given 

in Figure 3-5. When the surface morphologies were 

examined, it was noted that the material containing Pd 

had a granular structure compared to other materials. 

It was observed that the materials containing Co and 

Ni formed a sheet-like morphology as shown in Figure 

3. Considering the EDX images, the Si, C, O, N, Pd, 

Co, and Ni elements were registered as conforming to 

the structure. The presence of palladium, cobalt, nickel 

metals (Pd weight: ≈3.7%, Co weight: ≈2.7%, and Ni 

weight: ≈2.5% with EDX analysis) dispersed on Pd-

PEG-AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 were confirmed by the EDX and elemental 

mapping method (Figure 4-5).  

 

3.2. Catalytic Studies 

 

We examined the catalytic performances of Pd-PEG-

AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles by using the reduction of 2-

NP, QY and Rh B in the presence of sodium 

borohydride (NaBH4) and deionized water at the 

ambient temperature. The performances of catalysts 

were monitored by UV-vis spectrophotometer due to 

the 2-nitrophenolate molecule (λmax= 414 nm). In the 

reduction of 2-NP, the solution of 2-NP (5.00E-04M) 

has a yellow colour of the absorption band from the 2-

nitrophenolate molecule, and the colour gradually 

vanished due to the reaction product (2-aminophenol).  

 

The catalytic performances were obtained as time-

depended between 10-180 s. The catalytic efficiencies 

of nanoparticles were achieved as 22.4%, 48.3%, and 

97.6% for Pd-PEG-AP@SiO2, 11.1%, 22.4%, and 

73.1% for Co-PEG-AP@SiO2, 11.0%, 11.1%, and 

13.5% for Ni-PEG-AP@SiO2 at the end of 10, 60, and 

180 s, respectively (Figure 6).  

 

Similarly, we were worked the reduction of QY 

(6.60E-05 M) and Rh B (2.09E-05 M) dyes by Pd-

PEG-AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-

AP@SiO2 nanoparticles under the same conditions.  

 

For the reduction of QY, the absorption band at 414 

nm disappeared as time-dependent between 10-60 s 

with the catalysts. The catalytic conversions were 

recorded as 29.2%, 36.0%, and 62.9% for Pd-PEG-

AP@SiO2, 66.9%, 67.1%, and 70.1% for Co-PEG-



 

Celal Bayar University Journal of Science  

Volume 19, Issue 4, 2023, p 323-332 

Doi: 10.18466/cbayarfbe.1327271                                                                                                      S. Ç. Yavuz 

 

326 

AP@SiO2, 58.6%, 59.8%, and 64.7% for Ni-PEG-

AP@SiO2 at the end of 10, 30, and 60 s, respectively 

(Figure 7).  

 

We have also worked on the reduction of Rh B, the 

absorption band at 550 nm disappeared during the 

catalytic reaction. The conversions were founded as 

95.1%, 96.6%, and 97.5% for Pd-PEG-AP@SiO2, 

36.0%, 39.7%, and 40.8% for Co-PEG-AP@SiO2, 

28.1%, 28.9%, and 34.4% for Ni-PEG-AP@SiO2 at 

the end of 10, 30, and 60 s, respectively (Figure 8). 

 

In addition, the kinetic equation for the catalytic 

reaction of organic pollutants can be represented as 

ln(Ct/C0) = − kt, where t is time for the catalytic 

reaction and, k is the apparent first‐order rate constant 

(s− 1) in Table 1. Also, the k' = k/M parameter (M: the 

amount of the catalyst) is introduced for quantitative 

comparison and the parameter is defined as the ratio of 

the rate constant k to the weight of the catalyst added 

[29].  

 

The reaction rate constant parameters were compared 

for the fabricated Pd-PEG-AP@SiO2, Co-PEG-

AP@SiO2, and Ni-PEG-AP@SiO2 nanoparticles and 

as time-depended. Our palladium-containing 

nanomaterial (Pd-PEG-AP@SiO2) was found to be 

highly effective when compared with catalysts made 

from similar substrates in the literature (Table-1). 

 

According to the obtained data, the Pd-PEG-

AP@SiO2 nanoparticle was recorded as the most 

effective catalyst overall. However, it was noted that 

the Co-PEG-AP@SiO2 nanoparticle performed better 

in the QY reduction reaction. The development of 

hybrid materials and their performance in catalytic 

reactions have gained importance in recent years. 

Also, the development of low-cost and one-pot 

materials is attracting more attention. Although the 

catalytic performance of rare elements (Pd, Ru, Pt etc.) 

is high, the catalytic performance of other metals is 

also frequently investigated. In particular, the 

development of materials containing other metals is 

supported by researchers.  

 

 

 

 

 

 
 

  
 

 
 

Figure 3. SEM images (50.00 KX) of the fabricated 

Pd-PEG-AP@SiO2 (a), Co-PEG-AP@SiO2 (b), and 

Ni-PEG-AP@SiO2 (c) nanoparticles, respectively. 
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Herein, the good performance with the fabricated 

nanoparticles were achieved in the reduction of some 

organic pollutants such as 2-NP, QY and Rh B which 

it is known that the dyes are serious environmental 

pollutants. The reduction or removal of these type 

molecules is very important. The hybrid materials can 

be easily produced to reduce these harmful compounds 

with high activity.  

 

 
 

 
 

 
 

Figure 4. EDX images of the fabricated Pd-PEG-

AP@SiO2 (a), Co-PEG-AP@SiO2 (b), and Ni-PEG-

AP@SiO2 (c) nanoparticles, respectively. 

 

 

 

 

 

 
 

Figure 5. EDX-mapping images of the fabricated Pd-

PEG-AP@SiO2 (a) (Pd mapping), Co-PEG-AP@SiO2 

(b) (Co mapping), and Ni-PEG-AP@SiO2 (c) (Ni 

mapping) nanoparticles, respectively

.
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Figure 6. Time-dependent UV–vis absorption spectra of the 2-NP (5.00E-04 M) reduced by NaBH4 catalyzed by Pd-

PEG-AP@SiO2 (a), Co-PEG-AP@SiO2 (b), and Ni-PEG-AP@SiO2 (c) nanoparticles, respectively. 
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Figure 7. Time-dependent UV–vis absorption spectra of the QY (6.60E-05 M) reduced by NaBH4 catalyzed by Pd-

PEG-AP@SiO2 (a), Co-PEG-AP@SiO2 (b), and Ni-PEG-AP@SiO2 (c) nanoparticles, respectively. 

 

0

0,2

0,4

0,6

0,8

1

1,2

300 350 400 450 500 550 600

A
b

so
rb

a
n

ce
 (

A
)

Wavelength (nm)

QY (0 s)

10 s

30 s

60 s

0

10

20

30

40

50

60

70

80

90

100

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10 30 60

C
o
n

v
er

si
o
n

 (
%

)

A
b

so
r
b

a
n

ce
 a

t 
4

1
4

 n
m

Time (s)

(A) (%)

0

0,2

0,4

0,6

0,8

1

1,2

300 400 500 600

A
b

so
rb

a
n

ce
 (

A
)

Wavelength (nm)

QY (0 s)

10 s

30 s

60 s

0

10

20

30

40

50

60

70

80

90

100

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10 30 60

C
o
n

v
er

si
o
n

 (
%

)

A
b

so
r
b

a
n

ce
 a

t 
4

1
4

 n
m

Time (s)

(A) (%)

0

0,2

0,4

0,6

0,8

1

1,2

300 400 500 600

A
b

so
rb

a
n

ce
 (

A
)

Wavelength (nm)

QY (0 s)

10 s

30 s

60 s

0

10

20

30

40

50

60

70

80

90

100

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10 30 60

C
o
n

v
er

si
o
n

 (
%

)

A
b

so
r
b

a
n

ce
 a

t 
4

1
4

 n
m

Time (s)

(A) (%)

a) 

b) 

c) 



 

Celal Bayar University Journal of Science  

Volume 19, Issue 4, 2023, p 323-332 

Doi: 10.18466/cbayarfbe.1327271                                                                                                      S. Ç. Yavuz 

 

330 

 
 

 
 

 

 
 

Figure 8. Time-dependent UV–vis absorption spectra of the Rh B (10 ppm (2.09E-05 M) reduced by NaBH4 catalyzed 

by Pd-PEG-AP@SiO2 (a), Co-PEG-AP@SiO2 (b), and Ni-PEG-AP@SiO2 (c) nanoparticles, respectively. 
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Table 1. The catalytic efficiency rate constant of Pd-PEG-AP@SiO2, Co-PEG-AP@SiO2, and Ni-PEG-AP@SiO2 

catalysts. 

 

Catalyst Substrate k (s-1)a k/M (s-1 g-1)b 

Pd-PEG-AP@SiO2 2-NP 2.53E-02c 1.10E-02e 2.08E-02f 5.07E+00c 2.20E+00e 4.16E+00f 

Co-PEG-AP@SiO2 2-NP 1.18E-02c 4.22E-03e 7.29E-03f 2.36E+00c 8.44E-01e 1.46E+00f 

Ni-PEG-AP@SiO2 2-NP 1.16E-02 1.97E-03 8.05E-04 2.32E+00 3.93E-01 1.61E-01 

Pd-PEG-AP@SiO2 QY 3.45E-02c 1.48E-02d 1.65E-02e 6.91E+00c 2.97E+00d 3.31E+00e 

Co-PEG-AP@SiO2 QY 1.10E-01c 3.71E-02d 2.01E-02e 2.21E+01c 7.42E+00d 4.03E+00e 

Ni-PEG-AP@SiO2 QY 8.82E-02c 3.04E-02d 1.74E-02e 1.76E+01c 6.08E+00d 3.48E+00e 

Pd-PEG-AP@SiO2 Rh B 3.01E-01c 1.13E-01d 6.13E-02e 6.03E+01c 2.26E+01d 1.23E+01e 

Co-PEG-AP@SiO2 Rh B 4.46E-02c 1.69E-02d 8.73E-03e 8.91E+00c 3.38E+00d 1.75E+00e 

Ni-PEG-AP@SiO2 Rh B 3.30E-02c 1.14E-02d 7.04E-03e 6.61E+00c 2.28E+00d 1.41E+00e 

Cu/Ligand@Fullerene 

[30] 
Rh B 

9.31E-03 

(120 s) 

7.52E-03 

(240 s) 

6.58E-03 

(360 s) 

3.72E+00 

(120 s) 

3.01E+00 

(240 s) 

2.63E+00 

(360 s) 

Cu/Ligand@Fullerene 

[30] 
2-NP 

1.39E-02 

(30 s) 

1.46E-02 

(90 s) 

6.78E-03 

(300 s) 

5.57E+00 

(30 s) 

5.83E+00 

(90 s) 

2.71E+00 

(300 s) 

Co3O4@nHAP [31] 
Rh B 

2.74E-03  

(90 s) 

1.94E-03  

(240 s) 

2.24E-03  

(900 s) 

9.13E-01 

(90 s) 

6.45E-01 

(240 s) 

7.47E-01 

(900 s) 

Co3O4@nHAP [31] 
2-NP 

4.03E-03 

(180 s) 

7.31E-03 

(360 s) 

5.27E-03 

(540 s) 

1.34E+00 

(180 s) 

2.44E+00 

(360 s) 

1.76E+00 

(540 s) 
a The reaction rate constant.  b The reaction rate constant per total weight of tested catalyst (5 mg). c 10 s, d 30 s, e 60 s, f 180 s.

4. Conclusion 

 

The M-PEG-AP@SiO2 nanomaterial (M: Pd, Co, Ni) 

was prepared by a facile hydrothermal route in order to 

degradation of organic contaminants effectively. The 

obtained nanocatalysts were characterized by XRD, 

SEM, EDX, FT-IR techniques. The synthesized Pd-

PEG@SiO2 nanomaterial have illustrated outstanding 

catalytic performance for 2-NP (97.6% conversion) and 

Rh B (97.5% conversion) degradation. In addition, the 

Co-PEG-AP@SiO2 catalysts also showed the best 

catalytic performance for QY after 60 seconds (70.1% 

conversion). Owing to the obtained results, the proposed 

nano catalyst can be able utilized for remediation of 

contaminated environmental water samples by organic 

contaminants such as dyes and toxic aromatic 

compounds. 
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