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ABSTRACT. In this paper, we give a simple sufficient condition for the eigenvalue-separation properties of real
tridiagonal matrices T . This result is much more than the statement that the pertinent eigenvalues are distinct. Its
derivation is based on recurrence formulae satisfied by the polynomials made up by the minors of the characteristic
polynomial det(xE − T ) that are proven to form a Sturm sequence. This is a new result, and it proves the simple
spectrum property of a symmetric tridiagonal matrix studied in a Grünbaum paper. Two numerical examples underpin
the theoretical findings. The style of the paper is expository in order to address a large readership.
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1. INTRODUCTION

In [2, p.30], Grünbaum assumes that the roots of the characteristic polynomial of a special
symmetric tridiagonal matrix are distinct. In this paper, we give a simple sufficient condition
for this. More precisely, we are able to show that the minors of the characteristic polynomial of
a real tridiagonal matrix satisfy a Sturm sequence provided that the products of corresponding
entries above and below the diagonal are positive. In the case of a symmetric tridiagonal ma-
trix, this condition means that all entries above and below the diagonal are different from zero.
As a consequence, we obtain the eigenvalue-separation properties of Sturm sequences which
is much more that the statement that the eigenvalues are distinct.

The paper is structured as follows. In Section 2, we take over a lemma on the Sturm sequence
from [4] as the main tool to derive a sufficient condition for the eigenvalue-separation proper-
ties of tridiagonal matrices. Then, in Section 3, the lemma on Sturm sequences from Section 2
is applied to obtain the eigenvalue-separation properties of tridiagonal matrices provided that
the products of corresponding entries above and below the diagonal are positive. Section 4 con-
tains two numerical examples that underpin the theoretical findings, one with nonsymmetric
and one with symmetric tridiagonal matrix. In Section 5, the conclusion is given. The non-cited
references [1] and [3] are given because they also contain sections on Sturm sequences so that
they may be of interest to the reader in the context of the treated subject.
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2. PRELIMINARIES ON STURM SEQUENCE

In [4, Section 10.3, pp. 194-200], it is shown that for every linear symmetric mapping A :
Rn → Rn a basis of n orthonormal vectors associated with Lanczos polynomials can be con-
structed such that the mapping A in this basis is represented by a symmetric tridiagonal matrix
T and further that the minors of the characteristic polynomial p(x) = det(xE−T ) form a Sturm
sequence having interesting eigenvalue-separation properties.

In this section, we take over the results derived [4] as the main tool to be used in Section 3.
We start with a sequence of polynomials p0, p1, . . . , pm with real βj , γj that fulfill the recursion
formulae

(2.1) p0(x) = 1, p1(x) = x− β0, pj+1(x) = (x− βj) pj(x)− γj pj−1(x), γj > 0,

j = 1, . . . ,m − 1 for x ∈ R. These polynomials then form a Sturm sequence, also called Sturm
chain, allowing far-reaching assertions about the position and separation properties of their
zeros as stated in the following lemma.

Lemma 2.1 (Lemma on Sturm sequence). For every j = 1, . . . ,m, all the zeros of the polynomial pj
in (2.1) are real as well as pairwise distinct and can be arranged according to

(P1) −∞ < λjj < λj,j−1 < · · · < λj2 < λj1 < +∞.

For every j = 1, . . . ,m− 1 and every zero λ of pj , the relations

(P2) pj(λ) = 0, pj+1(λ) pj−1(λ) < 0

hold. If one sets formally λj,j+1 = −∞ and λj0 = +∞ (that are the left and right boundaries in (P1)),
then

(P3) (−1)k pj(x) > 0, λj,k+1 < x < λjk, k = 0, . . . , j, j = 0, . . . ,m

and, for every j=0,1, . . . ,m-1, there is just one zero λj+1,k of pj+1 in the interval

(P4) λjk < λj+1,k < λj,k−1, k = 1, . . . , j + 1.

Proof. See [4, Section 10.3, Formula (27), p.200], where the text was taken over with minor
changes for the reason of clarity. □

We note that the necessity of the condition γj > 0 in the definition of the Sturm sequence
is not obvious, but is seen during the proof of Lemma 2.1 in the above-cited book. We remark
further that the proof does not depend on the assumption that pj(x) is a minor of pm(x) =
det(xE − T ) with some matrix T . But, in Section 3, we will use polynomials pj(x) that are
minors of pm(x) = det(xE − T ), where T is a real tridiagonal matrix.

We mention that with the definitions λj,j+1 = −∞ and λj0 = +∞, property (P4) reads for
k = j + 1 as follows

(P4)k=j+1 −∞ < λj+1,j+1 < λjj

and for k = 1 as follows
(P4)k=1 λj1 < λj+1,j < +∞.

We want to point out that if we would not have introduced the definitions λj,j+1 = −∞ and
λj0 = +∞, then instead of (P4)k=j+1, we would have

(P4)′k=j+1 λj+1,j+1 < λjj

which is equivalent to (P4)k=j+1 since we have trivially −∞ < λj−1,j+1; and instead of
(P4)k=1, we would have

(P4)′k=1 λj1 < λj+1,j

which is equivalent to (P4)k=1 since we have trivially λj−1,j < +∞.
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3. APPLICATION TO REAL TRIDIAGONAL MATRICES

This section is the core of the present paper. Its results are obtained by applying Lemma 2.1
on Sturm sequences to real tridiagonal matrices. We start with the real tridiagonal matrix

T = tridiag[ai−1, ci, di]i=1,...,N+1 ∈ R(N+1)×(N+1)

with
a0 = aN+1 = 0, ai ∈ R, i = 1, . . . , N,
d0 = dN+1 = 0, di ∈ R, i = 1, . . . , N,

ci ∈ R, i = 1, . . . , N + 1,

or, written in full,

(3.2) T =



c1 d1
a1 c2 d2

a2 c3 d3
. . . . . . . . .

aN−1 cN dN
aN cN+1


.

Such a matrix for the symmetric case di = ai, i = 1, . . . , N with the special diagonal entries
ci = bi − ai − ai−1, i = 1, . . . , N + 1, where bi are real elements is studied in [2, p.27].

Here, we want to apply Lemma 2.1 on the Sturm sequence. For this, we change the denota-
tions of the entries of matrix T as follows. With

γ′
0 = γ′

m = 0,

we set
T = tridiag[γ′

i−1, βi−1, δ
′
i]i=1,...,m

or, written out,

(3.3) T =



β0 δ′1
γ′
1 β1 δ′2

γ′
2 β2 δ′3

. . . . . . . . .
γ′
m−2 βm−2 δ′m−1

γ′
m−1 βm−1


.

Comparison of (3.2) and (3.3) leads to

(3.4) βi−1 = ci, i = 1, . . . ,m(= N + 1),

(3.5) γ′
i−1 = ai−1, i = 2, . . . ,m(= N + 1),
δ′i−1 = di−1, i = 2, . . . ,m(= N + 1).

Now, we introduce the condition

aj ̸= 0, j = 1, . . . , N(= m− 1),
dj ̸= 0, j = 1, . . . , N(= m− 1).

This entails
γ′
j = aj ̸= 0, j = 1, . . . ,m− 1(= N),

δ′j = dj ̸= 0, j = 1, . . . ,m− 1(= N).

Next, we define

(3.6) γj := γ′
j δ

′
j , j = 1, . . . ,m− 1(= N).
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Further, we make the restriction

(3.7) γj > 0, j = 1, . . . ,m− 1.

We choose these γj in the Sturm sequence (2.1). Further, more generally than in [4, Section 10.3,
Formula (25), p. 199], we define

(3.8) pj(x) = det



x− β0 −δ′1
−γ′

1 x− β1 −δ′2
−γ′

2 x− β2 −δ′3
. . . . . . . . .

−γ′
j−2 x− βj−2 −δ′j−1

−γ′
j−1 x− βj−1


,

j = 1, . . . ,m so that pj(x) for j = 1, . . . ,m are the minors of

pm(x) = det(xE − T )

with the identity matrix E and matrix T in (3.3).

Theorem 3.1 (Theorem on Eigenvalue-Separation Properties). Let the real tridiagonal matrix T
in (3.2) be given. Further, let this matrix be rewritten in the form (3.3) with the entries defined in
(3.4), (3.5), and (3.6). Then, if the condition (3.7) is satisfied, the polynomials defined by (3.8) fulfill the
recursion formulae (2.1).

Proof. The proof is done by mathematical induction.
Base case (j = 1): For j = 1, we have

p1+1(x) = p2(x) = det

[
x− β0 −δ′1
−γ′

1 x− β1

]
=

∣∣∣∣ x− β0 −δ′1
−γ′

1 x− β1

∣∣∣∣
= (x− β0) (x− β1)− γ′

1 δ
′
1

= (x− β1) (x− β0)︸ ︷︷ ︸
=p1(x)

−γ1 1︸︷︷︸
=p0(x)

= (x− β1) p1(x)− γ1 p0(x)

so that the recursion formula pj+1(x) = (x− βj) pj(x)− γj pj−1(x) in (2.1) is proven for j = 1.
Before we continue with the induction step, we add two further base steps in order to obtain

more insight into the process and to prepare the induction step.
Additional base case (j = 2): For j = 2, we get

p2+1(x) = p3(x) =

∣∣∣∣∣∣
x− β0 −δ′1 0
−γ′

1 x− β1 −δ′2
0 −γ′

2 x− β2

∣∣∣∣∣∣ .
Expansion of this determinant along the last row leads to

p2+1(x) = (−γ′
2) (−1)3+2

∣∣∣∣ x− β0 0
−γ′

1 −δ′2

∣∣∣∣+ (x− β2) (−1)3+3

∣∣∣∣ x− β0 −δ′1
−γ′

1 x− β1

∣∣∣∣
= γ′

2 [(x− β0) (−δ′2)] + (x− β2) p2(x)

= (x− β2) p2(x)− γ′
2 δ

′
2 (x− β0)

= (x− β2) p2(x)− γ2 (x− β1)

= (x− β2) p2(x)− γ2 (x− β2−1)
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so that the recursion formula pj+1(x) = (x− βj) pj(x)− γj pj−1(x) in (2.1) is proven for j = 2.
Additional base case (j = 3): For j = 3, we obtain

p3+1(x) = p4(x) =

∣∣∣∣∣∣∣∣
x− β0 −δ′1 0 0
−γ′

1 x− β1 −δ′2 0
0 −γ′

2 x− β2 −δ′3
0 0 −γ′

3 x− β3

∣∣∣∣∣∣∣∣ .
Expansion of this determinant along the last row leads to

p3+1(x) = (−γ′
3) (−1)4+3

∣∣∣∣∣∣
x− β0 −δ′1 0
−γ′

1 x− β1 0
0 −γ′

2 −δ′3

∣∣∣∣∣∣
+ (x− β3) (−1)4+4

∣∣∣∣∣∣
x− β0 −δ′1 0
−γ′

1 x− β1 −δ′2
0 −γ′

2 x− β2

∣∣∣∣∣∣︸ ︷︷ ︸
=p3(x)

= γ′
3

{
(−γ′

2) (−1)3+1

∣∣∣∣ x− β0 0
−γ′

1 0

∣∣∣∣+ (−δ′3) (−1)3+3

∣∣∣∣ x− β0 −δ′1
−γ′

1 x− β1

∣∣∣∣}
+ (x− β3) p3(x)

= γ′
3 [ 0 + (−δ′3) p2(x) ] + (x− β3) p3(x) = (x− β3) p3(x)− γ′

3 δ
′
3 p2(x)

= (x− β3) p3(x)− γ3 (x− β3−1)

so that the recursion formula pj+1(x) = (x− βj) pj(x)− γj pj−1(x) in (2.1) is proven for j = 3.
Induction step: Assume that the recursion formula

pj+1(x) = (x− βj) pj(x)− γj pj−1(x)

is proven for an index j ≥ 4 (for j ∈ {1, 2, 3}, we have already checked the validity). Then, we
have to show

pj+2(x) = (x− βj+1) pj+1(x)− γj+1 pj(x).

Now, according to (3.8), we have

pj+2(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− β0 −δ′1 0
−γ′

1 x− β1 −δ′2 0
−γ′

2 x− β2 −δ′3 0
. . . . . . . . .

...
−γ′

j−1 x− βj−1 −δ′j 0
−γ′

j x− βj −δ′j+1

0 0 0 · · · 0 −γ′
j+1 x− βj+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Expansion along the last row gives

rclpj+2(x) = (−γ′
j+1) (−1)(j+2)+(j+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x− β0 −δ′1 0
−γ′

1 x− β1 −δ′2 0
−γ′

2 x− β2 −δ′3 0
. . . . . . . . .

−γ′
j−1 x− βj−1 0

0 0 0 −γ′
j −δ′j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (x− βj+1) (−1)(j+2)+(j+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x− β0 −δ′1
−γ′

1 x− β1 −δ′2
−γ′

2 x− β2 −δ′3
. . . . . . . . .

−γ′
j−1 x− βj−1 −δ′j
0 −γ′

j x− βj

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=pj+1(x)

= γ′
j+1


(−γ′

j) (−1)(j+1)+j

∣∣∣∣∣∣∣∣∣∣∣

x− β0 −δ′1 0 0 0
−γ′

1 x− β1 −δ′2 0 0
−γ′

2 x− β2 −δ′3 0
. . . . . . . . .

0 0 0 −δ′j−1 0

∣∣∣∣∣∣∣∣∣∣∣

+ (−δ′j+1) (−1)(j+1)+(j+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x− β0 −δ′1 0
−γ′

1 x− β1 −δ′2 0
−γ′

2 x− β2 −δ′3 0
. . . . . . . . .

−γ′
j−2 x− βj−2 −δ′j−1

0 −γ′
j−1 x− βj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣


+ (x− βj+1) pj+1(x)

= γ′
j+1 { γ′

j · 0− δ′j+1 pj(x) }+ (x− βj+1) pj+1(x)

= (x− βj+1) pj+1(x)− γj+1 pj(x)

so that, indeed, the recursion formula pj+2(x) = (x − βj+1) pj+1(x) − γj+1 pj(x) in (2.1) is
proven, which was to be shown. This ends the proof of Theorem 3.1. □

From Theorem 3.1, we obtain the following important consequences.

Consequence 3.1 (Simple sufficient condition for eigenvalue-separation properties of real tridi-
agonal matrices). Let the real tridiagonal matrix T be given by (3.2) with elements ai satisfying a0 =
aN+1 = 0 and real ai, i = 1, . . . , N as well as d0 = dN+1 = 0 and real elements di, i = 1, . . . , N
with the condition that ai di > 0, i = 1, . . . , N . Since the polynomials defined in (3.8) fulfill the recur-
sion formulae in (2.1), the eigenvalues of matrix T are real as well as pairwise distinct, and they can be
arranged such that the properties (P1) - (P4) in Lemma 2.1 on Sturm sequences are valid.
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Proof. We need only mention that, in this special case, γj = γ′
j δ

′
j = ai dj > 0, j = 0, . . . ,m−1 =

N . □

Consequence 3.2 (Simple sufficient condition for eigenvalue-separation properties of symmet-
ric tridiagonal matrices). Let the symmetric tridiagonal matrix T be given by (3.2) with a0 = aN+1 =
0 satisfying elements di = ai ̸= 0, j = 1, . . . , N . Since the polynomials defined in (3.8) fulfill the re-
cursion formulae in (2.1), the eigenvalues of matrix T are real as well as pairwise distinct, and they can
be arranges such that the properties (P1) - (P4) in Lemma 2.1 on Sturm sequences are valid.

Proof. We need only mention that, in this case, γj = γ′
j
2
= a2i > 0, j = 0, . . . ,m− 1 = N . □

Remark 3.1.
(R1) This is much more than the statement that the eigenvalues of T are distinct.
(R2) The obtained result holds, in particular, in the case when di = ai, i = 1, . . . , N and ci =

bi−ai−ai−1, i = 1, . . . , N +1 with real elements bi studied in [2, p.27]. Whereas Grünbaum
assumes that the pertinent eigenvalues are distinct, in this paper, under mild conditions it could
be proven that they are distinct.

(R3) We remind the reader that the eigenvectors of symmetric matrices with distinct eigenvalues are
pairwise orthogonal.

4. NUMERICAL EXAMPLE

In this section, we present two numerical examples. The first one treats a real nonsymmetric
tridiagonal matrix and the second one a symmetric tridiagonal matrix.

4.1. Numerical Example 1. As the first numerical example, we choose

T = T4 =


0 −2 0 0

−1 0 −2 0
0 −1 0 −2
0 0 −1 0

 ∈ R4×4

so that m = 4 as well as ai = −1, i = 1, 2, 3(= N) and di = −2, i = 1, 2, 3(= N) or γ′
j = −1, j =

1, 2, 3(= m − 1) and δ′j = −2, j = 1, 2, 3(= m − 1) as well as ci = 0, i = 1, 2, 3, 4(= N + 1).
Further, βj = 0, j = 0, 1, 2, 3(= m− 1), γj = γ′

j δ
′
j = 2 > 0, j = 1, 2, 3(= m− 1). Let Ei ∈ Ri×i

be the i× i-identity matrix for i = 2, 3, 4. Herewith,

p4(x) = (xE4 − T4).

Further, let

T3 =

 0 −2 0
−1 0 −2
0 −1 0

 ∈ R3×3

and

T2 =

[
0 −2

−1 0

]
∈ R2×2.

Then,
pj(x) = (xEj − Tj), j = 4, 3, 2.

For the eigenvalues
λj,k, k = 1, . . . , j
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of Tj for j = (m = 4), 3, 2, we obtain

λ4 :=


λ4,1

λ4,2

λ4,3

λ4,4

 =


2.2882
0.8740

−0.8740
−2.2882

 , λ3 :=

 λ3,1

λ3,2

λ3,3

 =

 2.0000
−0.0000
−2.0000


and

λ2 :=

[
λ2,1

λ2,2

]
=

[
1.4142

−1.4142

]
,

where the numbering of the vector components is such that

−∞ < λj,j < λj,j−1 < · · · < λj,2 < λj,1 < +∞
for j = 4, 3, 2. Therefore, (P1) is satisfied.

Further, we check (P2). The cases j = 4 and j = 1 are left to the reader. For j = 3, we obtain

(P2)k=1 : p3(λ3,1) = 0 , p4(λ3,1) p2(λ3,1) = −8 < 0,

(P2)k=2 : p3(λ3,2) = 0 , p4(λ3,2) p2(λ3,2) = −8 < 0,

(P2)k=3 : p3(λ3,3) = 0 , p4(λ3,3) p2(λ3,3) = −8 < 0.

Moreover, for j = 2,

(P2)k=1 : p2(λ2,1) = 0, p3(λ2,1) p1(λ2,1) = −4 < 0,

(P2)k=2 : p2(λ2,2) = 0, p3(λ2,2) p1(λ2,2) = −4 < 0.

Thus, (P2) is numerically underpinned. Next, we check (P3). The cases j = 4 and j = 1 are left
to the reader. For j = 3, we obtain

(P3)k=1 : (−1)k p3(x) = (−1)k︸ ︷︷ ︸
<0

(x− λ3,1)︸ ︷︷ ︸
<0

(x− λ3,2)︸ ︷︷ ︸
>0

(x− λ3,3)︸ ︷︷ ︸
>0

= 3 > 0

for
x =

λ3,2 + λ3,1

2

.
= 1

so that
λ3,2 < x < λ3,1.

Further,

(P3)k=2 : (−1)k p3(x) = (−1)k︸ ︷︷ ︸
>0

(x− λ3,1)︸ ︷︷ ︸
<0

(x− λ3,2)︸ ︷︷ ︸
<0

(x− λ3,3)︸ ︷︷ ︸
>0

= 3 > 0

for
x =

λ3,3 + λ3,2

2
= −1

so that
λ3,3 < x < λ3,2.

Moreover, for j = 2,

(P3)k=1 : (−1)k p2(x) = (−)k︸︷︷︸
<0

(x− λ2,1)︸ ︷︷ ︸
<0

(x− λ2,2)︸ ︷︷ ︸
>0

= 2 > 0

for
x =

λ2,2 + λ2,1

2
= 0
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so that
λ2,2 < x < λ2,1.

On the whole, (P3) is numerically underpinned. Finally, we check (P4). The cases j = 1 and
j = 4 are left to the reader. For j = 3, we obtain

(P4)k=1 : λ3,1
.
= 2.0000 < 2.2882

.
= λ4,1 < λ3,0 = +∞,

and λ4,1 is the only component of λ4 satisfying the above inequality. Further,

(P4)k=2 : λ3,2
.
= −0.0000 < 0.8740

.
= λ4,2 < λ3,1

.
= 2.0000,

and λ4,2 is the only component of λ4 satisfying the above inequality. Finally,

(P4)k=3 : λ3,3
.
= −2.0000 < −0.8740

.
= λ4,3 < λ3,2

.
= −0.0000,

and λ4,3 is the only component of λ4 satisfying the above inequality.
For j = 2, we obtain

(P4)k=1 : λ2,1
.
= 1.4142 < 2.0000

.
= λ3,1 < λ2,0 = +∞,

and λ3,1 is the only component of λ3 satisfying the above inequality. Further,

(P4)k=2 : λ2,2
.
= −1.4142 < −0.0000

.
= λ3,2 < λ2,1

.
= 1.4142,

and λ3,2 is the only component of λ3 satisfying the above inequality.
Therefore, (P4) is numerically underpinned.

Remark 4.2. The computations of the eigenvalues were done by the Matlab routine eig.m.

4.2. Numerical Example 2. As the second numerical example, we choose

T = T4 =


0 −1 0 0

−1 0 −1 0
0 −1 0 −1
0 0 −1 0

 ∈ R4×4

so that m = 4 as well as ai = −1 ̸= 0, i = 1, 2, 3(= N) or γ′
j = −1, j = 1, 2, 3(= m − 1) and

ci = 0, i = 1, 2, 3, 4(= N + 1). Further, βj = 0, j = 0, 1, 2, 3(= m − 1), γj = γ′
j
2
= 1 > 0, j =

1, 2, 3(= m− 1). Let Ei ∈ Ri×i be the i× i-identity matrix for i = 2, 3, 4. Herewith,

p4(x) = (xE4 − T4).

Further, let

T3 =

 0 −1 0
−1 0 −1
0 −1 0

 ∈ R3×3

and

T2 =

[
0 −1

−1 0

]
∈ R2×2.

Then,
pj(x) = (xEj − Tj), j = 4, 3, 2.

For the eigenvalues
λj,k, k = 1, . . . , j
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of Tj for j = (m = 4), 3, 2, we obtain

λ4 :=


λ4,1

λ4,2

λ4,3

λ4,4

 =


1.6180
0.6180

−0.6180
−1.6180

 , λ3 :=

 λ3,1

λ3,2

λ3,3

 =

 1.4142
0.0000

−1.4142


and

λ2 :=

[
λ2,1

λ2,2

]
=

[
1

−1

]
,

where the numbering of the vector components is such that

−∞ < λj,j < λj,j−1 < · · · < λj,2 < λj,1 < +∞
for j = 4, 3, 2. Therefore, (P1) is satisfied. Further, we check (P2). The cases j = 4 and j = 1 are
left to the reader. For j = 3, we obtain

(P2)k=1 : p3(λ3,1) = 0 , p4(λ3,1) p2(λ3,1) = −1 < 0,

(P2)k=2 : p3(λ3,2) = 0 , p4(λ3,2) p2(λ3,2) = −1 < 0,

(P2)k=3 : p3(λ3,3) = 0 , p4(λ3,3) p2(λ3,3) = −1 < 0.

Moreover, for j = 2,

(P2)k=1 : p2(λ2,1) = 0, p3(λ2,1) p1(λ2,1) = −1 < 0,

(P2)k=2 : p2(λ2,2) = 0, p3(λ2,2) p1(λ2,2) = −1 < 0.

Thus, (P2) is numerically underpinned. Next, we check (P3). The cases j = 4 and j = 1 are left
to the reader. For j = 3, we obtain

(P3)k=1 : (−1)k p3(x) = (−1)k︸ ︷︷ ︸
<0

(x− λ3,1)︸ ︷︷ ︸
<0

(x− λ3,2)︸ ︷︷ ︸
>0

(x− λ3,3)︸ ︷︷ ︸
>0

.
= 1.0607 > 0

for
x =

λ3,2 + λ3,1

2

.
= 0.7071

so that
λ3,2 < x < λ3,1.

Further,

(P3)k=2 : (−1)k p3(x) = (−1)k︸ ︷︷ ︸
>0

(x− λ3,1)︸ ︷︷ ︸
<0

(x− λ3,2)︸ ︷︷ ︸
<0

(x− λ3,3)︸ ︷︷ ︸
>0

.
= 1.0607 > 0

for
x =

λ3,3 + λ3,2

2

.
= −0.7071

so that
λ3,3 < x < λ3,2.

Moreover, for j = 2,

(P3)k=1 : (−1)k p2(x) = (−)k︸︷︷︸
<0

(x− λ2,1)︸ ︷︷ ︸
<0

(x− λ2,2)︸ ︷︷ ︸
>0

= 1 > 0

for
x =

λ2,2 + λ2,1

2
= 0
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so that
λ2,2 < x < λ2,1.

On the whole, (P3) is numerically underpinned. Finally, we check (P4). The cases j = 1 and
j = 4 are left to the reader. For j = 3, we obtain

(P4)k=1 : λ3,1
.
= 1.4142 < 1.6180

.
= λ4,1 < λ3,0 = +∞,

and λ4,1 is the only component of λ4 satisfying the above inequality. Further,

(P4)k=2 : λ3,2
.
= 0.0000 < 0.6180

.
= λ4,2 < λ3,1

.
= 1.4142,

and λ4,2 is the only component of λ4 satisfying the above inequality. Finally,

(P4)k=3 : λ3,3
.
= −1.4142 < −0.6180

.
= λ4,3 < λ3,2

.
= 0.0000,

and λ4,3 is the only component of λ4 satisfying the above inequality.
For j = 2, we obtain

(P4)k=1 : λ2,1 = 1 < 1.4142
.
= λ3,1 < λ2,0 = +∞,

and λ3,1 is the only component of λ3 satisfying the above inequality. Further,

(P4)k=2 : λ2,2 = −1 < 0.0000
.
= λ3,2 < λ2,1 = 1,

and λ3,2 is the only component of λ3 satisfying the above inequality. Therefore, (P4) is numeri-
cally underpinned.

Remark 4.3. Again, the computations of the eigenvalues were done by the Matlab routine eig.m.

5. CONCLUSION

In this paper, as the main new result, we could show that the eigenvalues of a real tridiag-
onal matrix have the eigenvalue-separation properties (P1) - (P4) of Lemma 2.1 provided that
the products of corresponding entries above and below the diagonal are positive. In the special
case of a symmetric tridiagonal matrix, this turns into the simple sufficient condition that all
entries above and below the diagonal are different from zero. This applies, in particular, to the
special matrix studied by Grünbaum who assumed that the eigenvalues are distinct whereas
here this could be proven. The eigenvalue-separation properties are much more than the prop-
erty that its eigenvalues are just distinct. A further interesting point is that the elements γj in
(2.1) are independent of the diagonal entries βj so that the sufficient condition γj > 0 depends
only on the entries under and above the diagonal, not on the diagonal entries.
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